
COMP 558: Assignment 1
Available: Saturday, October 5th, 2013

Due Date: Friday, October 25th, 2013 (before midnight) via mycourses.

Notes: You are encouraged to become familiar with the MATLAB environment which is
currently installed on Unix machines in the CS labs and to use it for the experimental parts
of the assignment. Morteza has already had a tutorial on its use and some helpful code is
posted on mycourses. Hints on assignment 1 will be provided once you get going and have
further questions. I EXPECT EVERYONE TO SUBMIT ORIGINAL WORK FOR THIS
ASSIGMENT. This means that if you have consulted anyone or any sources (including source
code), you must disclose this explicitly. Anything you submit reflects your own work. Your
submission should be in the form of an electronic report (PDF), which includes a description
of what you did, answers to the specific questions, and a presentation and discussion of your
results. Submit code that you have written to generate your results as a separate .zip file.

Question 1: Convolution and Edge Detection (10 marks)

For this question you will test your implementations in parts e) and f) on the two images for
edge detection located at:
http://www.cim.mcgill.ca/~morteza/COMP558.php.
A common strategy to detect edges which is consistent with biological processing is to con-
volve the image with oriented filters which look like second derivatives of 2D Gaussians in
one direction, and to find zero crossings of the result. This is motivated by the idea that
edges correspond to maxima of a first derivative or zero-crossings of a second derivative. The
convolution with a Gaussian has to do with the idea of limiting frequencies (or smoothing
out “noise”) in the input.

a) The expression of a normalized 2D Gaussian centered at the origin (0, 0) is given by

G(x, y) =
1

√
2πσ2

(

e−
x
2
+y

2

2σ2

)

Calculate the first and second partial derivatives of G(x, y) with respect to the variable
x and write down the results. This corresponds to a directional derivative of G(x, y) in
the horizontal direction, i.e., with y held fixed.

b) Using Matlab and appropriate plotting functions related to mesh and surface plots (e.g.
mesh or surf) create visualizations of G(x, y) and the first two partial derivatives you
calculated above for σ = 1, 2, 4. In your plots you can set the range of x and y to each
be (−3σ, 3σ). This is because 98% of the area under a Gaussian is within 3 standard
deviations of its center.

c) Now consider the operation of rotating the above 2D functions about (0, 0) by an angle
θ. This can be done in a very easy fashion by using the fact that if you write the

1



point (x, y) as a column vector a rotation by θ can be obtained by premultiplying by a
2× 2 matrix whose terms involve sin(θ) and cos(θ). Using this strategy write a Matlab
function to create a rotated copy of G(x, y) and its first two partial derivatives and
demonstrate that it works correctly by visualizing the rotated copies, for a few values
of θ, for a chosen value of σ.

d) Now consider the second derivative kernel you have created above in a) (prior to the
rotation step) but premultiply it by a Gaussian oriented along the y axis so as to limit
its spatial extent in the y direction. By a Gaussian oriented along the y-axis I mean one

that has no dependence on x, i.e., it has the form G(x, y) = 1√
2πσ2

1

(

e
−

y
2

2σ2
1

)

. By this

premultiplication you will be creating something that looks very much like the receptive
field corresponding to a simple cell, following which you can also create rotated copies
of the result using the answer to part c) you have developed. Illustrate this for a chosen
value of the σ, σ1 parameters.

e) Now consider 8 orientations θ = 0, π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8. Over a range
of standard deviations σ = 1, 2, 4, 8 convolve the input images with the kernel from
part d) but rotated by θ and detect zero-crossings of the result. You can pick a suitable
(but fixed) value for σ1. For each σ show the detected zero crossings at each direction
θ superposed on the original image. (In other words, for each image you should have 4
figures, one for each σ). Comment on and discuss the results you obtain.

f) You are now going to consider a different approach to edge detection, which is to directly
convolve the image with the Laplacian of a 2D Gaussian and detect zero crossings of
the result. In class and in the Marr-Hildreth paper we presented the form of the 2D
Laplacian of a Gaussian in polar coordinates. For each of the σ’s used earlier, i.e.,
σ = 1, 2, 4, 8 show your results overlayed on the original image. As in part e) for
each image you should have 4 figures, one for each σ. Comment on and discuss the
results you obtain, in comparison to the ones obtained in part e). Keep in mind that
the Marr-Hildreth edge detection strategy rests on the condition of linear variation
holding.

Question 2: Shape from Shading (10 marks)

Using the illumination direction ~i as an input variable (you will have to play with particular
choices) and the integrability constraints for p and q covered in class, implement the discrete
form of the Euler-Lagrange Equations to recover the depth map from the shaded images
provided for this question which will be located at: http://www.cim.mcgill.ca/~morteza/
COMP558.php.

You can use the following discrete approximation of the Euler-Lagrange equations that

2



uses finite differences over pixel coordinates (i, j):

−4pi,j + pi+1,j + pi−1,j + pi,j+1 + pi,j−1 = −
1

λ
(Ei,j − R(pi,j, qi,j)

∂R

∂p
(1)

−4qi,j + qi+1,j + qi−1,j + qi,j+1 + qi,j−1 = −
1

λ
(Ei,j − R(qi,j, qi,j)

∂R

∂q
(2)

Experiment with different values of the regularization parameter λ. What is the impact
of changing it? Display your findings and results using suitable functions in Matlab.

Hint: To implement the shape from shading algorithm, you will first need to initialize p
and q. Explore different possibilities and see if it gives you a faster and/or better convergence.

3


