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Abstract

This paper presents performance metrics that can be used to evaluate the response sensitivity of a Tension Leg
Platform (TLP) to its tendons. An uncoupled TLP model ignores the intrinsic dynamics and environmental
loads on the cables by treating each tendon as an ideal massless spring. A coupled TLP system, in contrast,
considers the effects of distributed mass and drag along the tendon. Under certain operating conditions,
an uncoupled dynamics model can produce results comparable to its coupled counterpart. This paper defines
the conditions under which it is acceptable to model a TLP tendon as a linear spring, as opposed to one
that considers the cable dynamics. The analysis is performed in the frequency domain and, for generality,
the results are non–dimensionalized. The findings indicate that a more elaborate set of conditions than the
platform–to–cable mass ratio must be satisfied for the two models to provide similar results. To conclude this
study, two simulations are performed and compared against the performance metrics derived in this paper.

1 Introduction

A Tension Leg Platform (TLP) can be described as an offshore structure consisting of a buoyant body
tethered to the sea floor by a series of pretensioned cables. A TLP is generally viewed as an assembly with
two main components: the surface vessel and the tendons. Each component imparts its own unique dynamic
characteristics on the system response. Although interest in tension leg platforms peaked in the late 1980s,
there has been a recent surge of interest to studying how these, and similar systems, behave [1, 2, 3, 4].
Historically, the motivation to study TLPs has been dominated by the oil industry; however, there has been
a shift studying how these systems can be applied to lightweight floating offshore wind platforms [5, 6].

To begin the systematic design of a TLP, the first step is to assemble a dynamics model. Dynamics mod-
els can be classified into two high level groups, as defined by both the International Ships and Offshore
Structure Congress (ISSC) and the American Petroleum Institute (API) [7]: uncoupled analysis and coupled
analysis. Uncoupled analysis ignores the cable dynamics and drag forces by assuming the tendons behave
as linear springs. Examples of such systems are plentiful [1, 2, 8, 9]. On the other hand, a coupled model
represents the cables as a discretized system of masses attached to visco–elastic elements. The most common
implementations use some form of the Finite Element Analysis (FEA) representation to model the tendons
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[10, 11, 12, 13]. To avoid confusion, we emphasize that uncoupled/coupled analysis only refers to the manner
of cables representation, and not the coupling effects that occur between degrees of freedom.

As suggested by the works surveyed [2, 8, 14], in certain circumstances, it is reasonable to replace the FEA
cable with a linear spring equivalent. The idea behind the substitution is to increase simulation efficiency
and speed, while maintaining accuracy. The mechanisms promoting similarity between the coupled and
uncoupled models are not fully understood, though great efforts were undertaken by Mekha et al. [14], to
study how particular cable models affect a TLP simulation. Among the observations, Mekha demonstrates
that water depth increases, differences between the models are more likely. Although this work identifies
the source of disagreement, the results pertain only to the specific TLP being modeled, making it difficult
to characterize other platforms. Others have identified the platform–to–cable–mass ratio as a parameter
gauging the significance of tendon dynamics [15, 16, 17]. The goal of the work discussed in this paper is to
investigate this issue rigorously using analytical models, which can be used to interpret the characteristics
portrayed in numerical models.

Figure 1: The analytical models derived in this work assume the TLP geometry and boundaries depicted in this figure.
Variable Tx(t) is the dynamic tension due to transverse oscillations, and it is aligned with the x–axis. For clarity, the profile
for one tendon is shown, but it is implied that remaining tendons oscillate in a similar manner.
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2 Overview of the Analysis Technique

To initiate this study, the research team derived a set of transfer functions describing the platform response
for each degree of freedom. The TLP has motion in six directions: surge (x), sway (y), heave (z), roll (φ),
pitch (θ) and yaw (ψ); but only four were modeled because sway is analogous to surge, and roll is analogous
to pitch. Roll/pitch is defined as a rotation about the x/y axis, and yaw as a rotation about the z axis
(Figure 1). The coupled analytical model is obtained by treating each tendon as a continuous system with
mass subject to external (hydrodynamic) forces, and acts as a surrogate for a coupled TLP dynamics model
that uses an FEA cable representation. This substitution permits a closed–form analytical solution to be
obtained to predict time domain response characteristics [18, 19]. The derivation process used here is similar
to that used by Grosenbaugh [18], but differs by the addition of multiple cables and use of a non-dimensional
solution. For baseline comparison, an uncoupled analytical model is also derived. The linearized tendon
restoring force in the uncoupled analytical model is based on the stiffness matrix developed by Malaeb [9].

Before proceeding, it is important to first understand the relationship between transverse and longitudinal
cable vibrations, and how they react with TLP motions. Two studies chronicle theses effects; Nordgren [20]
shows that high–frequency degrees of freedom, which tend to be the heave and roll/pitch directions in TLPs,
are sensitive to the longitudinal tendon frequencies. This is attributed to the longitudinal cable natural fre-
quencies approaching the heave and roll/pitch natural frequencies. Therefore, the coupled analytical models
for heave and roll/pitch directions were developed while assuming that the longitudinal cable excitations
are important. Dong et al. [21], shows the low frequency degrees of freedom (i.e., the surge/sway and yaw
directions in TLPs) are more likely to respond to transverse cable disturbances. This examination of the
surge/sway and yaw analytical models consider transverse cable disturbance effects, but not longitudinal
vibrations. The principle assumptions used in this analysis are summarized in the following statements:

• Surge/sway and yaw platform motions excite the transverse tendon modes.

• Heave and roll/pitch platform motions excite the longitudinal tendon modes.

• The equations are obtained by linearizing the platform about a zero initial displacement.

• Motion between degrees of freedom is decoupled in order to simplify the analysis and to obtain a
fundamental understanding of the mechanisms influencing the importance of tendon dynamics on the
TLP response.

• In the example presented in this manuscript, the fluid damping forces are linearized quadratic drag
terms [22], and the fluid added mass is a fixed coefficient. However, the method of analysis does not
change if radiation damping is considered, or if the added mass is frequency dependent. In seeking a
non-dimensional solution, we will show the results are independent of platform damping coefficients.

3 Coupled Analytical Model

In this section, we show the derivation of the heave coupled analytical model in a meticulous manner; this
discussion provides the mathematical foundations needed to obtain the remaining degrees of freedom. The
tendon is attached to the platform at z = L, and to the seabed at z = 0 (Figure 1). The function u(z, t)
describes the cable stretch in the z direction, and w(z, t) represents the transverse amplitude (Figure 2).
The motions u(z, t) and w(z, t) are presumed to act independently to one another. Thus, a one–dimensional
wave equation is sufficient to describe the tendon motions. The function u(z, t) is [23]:

c2zuzz (z, t) + ĝ = utt (z, t) +
dz
µ
ut (z, t) (1)

Equation 1 is used to develop the heave and roll/pitch coupled analytical models. The transverse tendon
displacement, w(z, t), is once again governed by a one–dimensional wave equation [23]:

c2xwzz (z, t) + ĝ = wtt (z, t) +
dx
µ
wt (z, t) (2)
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Equation 2 is used to characterize the surge/sway and yaw coupled analytical models. In the above equations,
ĝ = g ρc−ρρ is the effective gravitational force per unit length after accounting for buoyancy, µ is the cable
mass plus added mass per unit length, dz and dx give the cable damping coefficients per unit length,

cz = [AE/µ]
1/2

and cx = [T0/µ]
1/2

are the longitudinal and transverse wave speeds, respectively. In the
definition for ĝ, ρc is the cable density in air, ρ is the density of sea water, and g is the acceleration due

to gravity. The expression uij denotes the second partial derivative uij = ∂2u
∂i∂j . Variable T0 is the tendon

pretension and AE is its axial stiffness. For a circular cable element, the fluid added mass is equal to the
mass of the fluid being displaced; thus µ = A(ρc + ρ) [26]. It is assumed the cable properties are constant
along the length of the cable. Tangential viscous forces along the cable are omitted since these are small
compared to the longitudinal cable tension [18, 19]. All linearized coefficients (such as dx and Di, which is
introduced later) are obtained using the Caughey linearization technique [22].

Figure 2: In the coupled analytical TLP model, each tendon is permitted to deform in the manner pictured. u(z, t) represents
the cable stretch in the longitudinal direction, and w(z, t) is a displacement in a direction normal to the z-axis and represents
transverse motions.

3.1 Heave Analytical Model

Coupling of the platform and cable dynamics is accomplished by solving Equation 1 with the platform
equation of motion acting as a boundary condition. Recognizing that the platform motion is identical to the
tendon motion at u(L, t), the TLP equation of motion in the heave direction is:

Mzutt(L, t) +Dzut(L, t) = B̄(t)−Mtlpg − T̄z(t) (3)

Variable T̄z(t) = 4T0+4Tz(t) is a sum of the initial cable pretension and the time–varying tension Tz(t), and
B̄(t) = B0 +B(t) is the static buoyancy B0 plus dynamic buoyancy B(t). The remaining terms are defined
as: Mz is a sum of the platform mass (Mtlp) and added mass; L is the tendon length; Dz is the linearized
platform damping coefficient in the heave direction. It follows that, with the platform in static equilibrium:

B0 −Mtlpg − 4T0 = 0 (4)

The dynamic buoyancy is:

B(t) = Kz {Y (t)− u(L, t)} = Fz(t)−Kzu(L, t) (5)
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where Kz = 4gρAc represents the buoyancy stiffness, Ac is the column cross–sectional area, and Fz(t) is the
varying heave force due to the wave height Y (t) = Hejωt. After substitution, the final form of Equation 3
is:

Mzutt(L, t) +Dzut(L, t) +Kzu(L, t) + 4Tz(t) = Fz(t) (6)

where
Tz(t) = AEuz(L, t) (7a)

Equation 7a is the upper boundary condition that completes the platform/cable coupling. The lower bound-
ary condition (i.e., at the tnedon base) is simply:

u(0, t) = 0 (7b)

3.1.1 Non–Dimensionlization of the Heave Model

For generality, the problem is non–dimensionalized to identify the important cable parameters influencing
the system response. This introduces the following dimensionless terms:

z = Lz̃ t =
L

cz
t̃ u = Hũ(z̃, t̃) ω =

cz
L
ω̃

This results in the following synthesis of Equations 1 and 6:

Longitudinal Wave Eqn. ũzz(z̃, t̃) +
L2

c2zH
ĝ = ũtt(z̃, t̃) +

Ldz
µcz

ũt(z̃, t̃) (8a)

Heave EOM
Mz

4µL
ũtt(1, t̃) +

Dz

4µcz
ũt(1, t̃) +

KzL

4AE
ũ(1, t̃) + ũz(1, t̃) =

LFz(t)

4AEH
(8b)

3.1.2 Solution to the Heave Coupled Model

The preceding equations are used to obtain the transfer function G̃z(s̃) = Ũ(1,s̃)

F̃z(s̃)
, which relates the heave

motion response with respect to the vertical wave force. Before solving the problem, the time variable in
the governing partial differential equation is removed by virtue of the Laplace transformation [18, 19, 25].
Equation 8a is:

Ũ ′′(z̃, s̃) +
L2

c2zH
ĝ = s̃2Ũ(z̃, s̃) + s̃

Ldz
µcz

Ũ(z̃, s̃) (9)

where s̃ is the complex frequency jω̃, and Ũ ′′(z̃, s̃) represents the second derivative of Ũ(z̃, s̃) with respect
to z̃. Equation 9 is a non–homogeneous differential equation, and the solution to this problem is:

U(z, s) = C1e
k̃z(s̃)z̃ + C2e

−k̃z(s̃)z̃
︸ ︷︷ ︸

CF

−β(s̃)
︸︷︷︸

PI

(10)

where the elastic wave number k̃z(s̃) is equal to:

k̃z(s̃) =

√

s̃2 + s̃
Ldz
µcz

(11)

CF is the complementary function and PI is the particular integral. The boundary conditions, Equations 7a
and 7b, are transformed into their dimensionless equivalent to find a solution for Equation 9:

Ũ(0, s̃) = 0 (12a)

Ũ ′(1, s̃) =
LTz(s̃)
AEH

(12b)

where Tz(s̃) is the tension at z = L. The complementary function is solved by setting L2

c2zH
ĝ in Equation 9 to

zero, then solving for β(s̃). With β(s̃) now known and L2

c2zH
ĝ inserted back into the equation, the coefficients
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C1 and C2 are determined. The solution to the particular integral is not of interest for a reason that will
become apparent shortly. However, for completeness, the value of β(s̃) is stated as:

β(s̃) =

L2

c2zH
ĝ

s̃2 + s̃Ldzµcz

The complete solution to Equation 9 is:

Ũ(z̃, s̃) =







LTz(s̃)
AEHk̃z(s̃)

ek̃z(s̃) + β(s̃)

e2k̃z(s̃) + 1






ek̃z(s̃)z̃ +







β(s̃)ek̃z(s̃) − LTz(s)
AEHk̃z(s̃)

2 cosh
{

k̃z(s̃)
}






e−k̃z(s̃)z̃ − β(s̃) (13)

Isolating Tz(s̃) in Equation 13 gives the tension at the top of the tendon:

Tz(s̃) =
AEHk̃z(s̃)

L tanh
{

k̃z(s̃)
} Ũ(1, s̃)− Tz(s̃)

β(s̃)

sinh
{

k̃z(s̃)
} (14)

Ideally, a transfer function describing the TLP displacement is desired. This is achieved by applying a
Laplace transformation on Equation 8b, then inserting Equation 14 into this equation. This results in:

F̃z(s̃) +
β(s̃)

sinh
{

k̃z(s̃)
} = Ũ(1, s̃)



s̃2
Mz

4µL
+ s̃

Dz

4µcz
+
KzL

4AE
+

k̃z(s̃)

tanh
{

k̃z(s̃)
}



 (15)

Since β(s̃)

sinh{k̃z(s̃)} is independent of the input F̃z(s̃) and the output Ũ(1, s̃), it is disregarded as part of the

desired transfer function. The transfer function describing the heave motion now appears in its final form:

G̃z(s̃) =
Ũ(1, s̃)

F̃z(s̃)
=

1

s̃2 Mz

4µL + s̃ Dz
4µcz

+ KzL
4AE + k̃z(s̃)

tanh{k̃z(s̃)}
(16)

The dimensionless vertical wave force is:

F̃z(s̃) =
LFz(s̃)

4AEH
(17)

3.2 The Remaining Degrees of Freedom

For brevity, the following sections present the differential equations and governing conditions used to assemble
the remaining coupled analytical models. Each degree of freedom is analyzed and solved in a manner
consistent to the heave direction. For the roll/pitch and yaw directions, the following normalized terms must
be considered:

θ(t) =
2H

La
θ̃(t̃) ψ(t) =

H

Lb
ψ̃(t̃)

where La is the lateral distance between adjacent tendon attachment points and Lb is the distance from the
TLP center of gravity and tendon attachment point in the xy plane. The transverse tendon displacement
must also be non–dimensionalized:

w = Hw̃(z̃, t̃)

When considering surge/sway and yaw degree of freedom, different dimensionless time and frequency vari-
ables must be used since the transverse tendon oscillations are important:

t =
L

cx
t̃ ω =

cx
L
ω̃
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3.2.1 Surge/Sway Coupled Model

The dynamic tension in the surge/sway direction is:

T0wz(L, t) = Tx(t) (18a)

Figure 1 assists in the physical description of Equation 18a. It is assumed the pretension T0 is fixed with
respect to time and length along the cable. At the seabed, the tendon is fixed and immovable; therefore:

w(0, t) = 0 (18b)

Both Equations 18a and 18b combine to form the boundary conditions in the surge/sway directions. The
forces acting on the platform are a result of the four tendons 4Tx(t), the surge hydrodynamic resistance
coefficient Dx, and a surge wave excitation force Fx(t). The coupled equation of motion for the platform in
the surge direction is:

Mxwtt(L, t) +Dxwt(L, t) + 4T0wz(L, t) = Fx(t) (19)

where Mx is the summation of the structural and added mass. In dimensionless form, the expressions used
to solve the coupled surge/sway analytical model are:

Transverse Wave Eqn. w̃zz(z̃, t̃) = w̃tt(z̃, t̃) +
Ldx
µcx

w̃t(z̃, t̃) (20a)

Surge/Sway EOM
Mx

4µL
w̃tt(1, t̃) +

Dx

4µcx
w̃t(1, t̃) + w̃z(1, t̃) =

LFx(t)

4T0H
(20b)

The effects of gravity ĝ is removed from Equation 20a since it is not important to the final solution. This
results in:

G̃x(s̃) =
W̃ ( ˜1, s)

F̃x(s̃)
=

1

s̃2 Mx

4µL + s̃ Dx
4µcx

+ k̃x(s̃)

tanh{k̃x(s̃)}
(21)

where the dimensionless elastic wave number k̃x(s̃) is:

k̃x(s̃) =

√

s̃2 + s̃
Ldx
µcx

(22)

3.2.2 Roll/Pitch Coupled Model

A pitch displacement θ(t) also induces a displacement at the end of the tendon according to La
2 θ(t) = u(L, t).

This leads to the following normalized relationship:

Hũ(1, t̃) =
La
2

2H

La
θ̃(t) ⇒ Ũ(1, s̃) = Θ̃(s̃)

The equation of motion in the roll/pitch direction is:

Ixxθ̈(t) +Dθ θ̇(t) +Kθθ(t) + 4

(

h̄T0θ(t) +
1

2
LaTz(t)

)

︸ ︷︷ ︸

Dynamic Tendon Moment

=Mθ(t) (23)

where Ixx is the platform mass moment of inertia, including the added mass moment of inertia, in seawater.
The dynamic tendon moment is solved by summing all individual cable moments about the platform’s
center of gravity, Mθ(t) is the wave moment in the roll/pitch direction, Kθ = ρgI00 is the buoyant righting
moment [9], and I00 is the second moment of area where the waterline intersects the TLP. Variable h̄ is the
vertical distance from the center of gravity to the tendon attachment point. The roll/pitch coupled analytical
model is developed using:

Longitudinal Wave Eqn. ũzz(z̃, t̃) = ũtt(z̃, t̃) +
Ldz
µcz

ũt(z̃, t̃) (24a)

Roll/Pitch EOM
Ixx
L2
aµL

θ̃tt(t̃) +
Dθ

L2
aµcz

θ̃t(t̃) +

(
KθL+ 4h̄T0L

L2
aAE

)

θ̃(t̃) + ũz(1, t̃) =
LMθ(t)

2LaAEH
(24b)
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The solution to Equation 24a and 24b is:

G̃θ(s̃) =
Θ̃(s̃)

M̃θ(s̃)
=

1

s̃2 Ixx
L2
aµL

+ s̃ Dθ
L2
aµcz

+ KθL+4h̄T0L
L2
aAE

+ k̃z(s̃)

tanh{k̃z(s̃)}
(25)

3.2.3 Yaw Coupled Model

The platform yaw equation of motion is:

Izzψ̈(t) +Dψψ̇(t) + 4LbTx(t) =Mψ(t) (26)

The transverse wave equation, Equation 2, is used to solve the yaw coupled analytical model. In dimensionless
form, the equations solved are:

Transverse Wave Eqn. w̃zz(z̃, t̃) = w̃tt(z̃, t̃) +
Ldx
µcx

w̃t(z̃, t̃) (27a)

Yaw EOM
Izz

4L2
bµL

ψ̃tt(t̃) +
Dψ

4L2
bµcx

ψ̃t(t̃) + w̃z(1, t̃) =
LMψ(t)

4LbT0H(t)
(27b)

The solution is:

G̃ψ(s̃) =
Ψ̃(s̃)

M̃ψ(s̃)
=

1

s̃2 Izz
4L2

b
µL

+ s̃
Dψ

4L2

b
µcx

+ k̃x(s̃)

tanh{k̃x(s̃)}
(28)

3.3 Coupled Model Summary

The non–dimensional transfer functions, which are given in Equations 16, 21, 25, and 28, all have the form:

G̃i(s̃) =
1

s̃2Γi + s̃Πi +Ωi +
√
s̃2+s̃Λi

tanh{√s̃2+s̃Λi}
(29)

where Γi, Πi, Ωi, and Λi are dimensionless coefficients representing the following:

• Γi is the platform/cable mass ratio

• Πi is the platform drag/elastic cable force ratio

• Ωi is the platform buoyancy/cable stiffness ratio

• Λi is the dissipative/elastic cable force ratio

Table 2 gives the values for the dimensionless coefficients based on the model implemented in Malaeb [9], but
with the platform at two operating depths: d = 600 meters and d = 1200 meters. The platform properties
are outlined in Table 1.

4 Uncoupled Analytical Model

The uncoupled analytical TLP model serves as a benchmark for comparing model differences. This helps
clarify how tendon properties influence TLP responses. Less effort is required to derive this model because
cable dynamics are neglected, effectively rendering the TLP to a mass–spring–damper system. The trans-
fer functions are obtained by linearizing the tendon forces about the platform equilibrium position. For
generalized coordinates qi = {x, z, θ, ψ}, the linearized equation of motion is:

Miq̈i(t) +Diq̇i(t) + Ciqi(t) = Fi(t) (30)

Ci is the linearized tendon stiffness for the ith degree of freedom obtained by linearizing Malaeb’s stiffness
matrix about the platform equilibrium [9]. Buoyancy stiffness is also accounted for in Kz (for heave) and
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Table 1: TLP Physical Properties

Property Value
D - Column Diameter 16 m

La - Pontoon Length 60 m

Lb - Distance from Cg to Column 42.4 m

Lc - Equilibrium Submerged Column Length 33 m

Lp - Pontoon Width/Height 8.86 m

h̄ - Height of Cg Above Platform Base 31 m

Ttot - Total Pretension 1x108 N

Mtlp - Platform Mass in Air 3.466x107 kg

Ixx - Moment of Inertia About x-axis 8.45x1010 kg·m2

Iyy - Moment of Inertia About y-axis 8.45x1010 kg·m2

Izz - Moment of Inertia About z-axis 1.02x1011 kg·m2

ρc - Cable Density in Air 6500 kg/m3

A - Cable Cross Sectional Area per Corner 0.1982 m2

E - Cable Modulus of Elasticity 180 GPa

Kθ (for pitch). This process is applied to each degree of freedom. The dimensionless uncoupled analytical
model bears the following form:

H̃i(s) =
1

(τis)2 + ζiτis+ 1
(31)

where the coefficients τi and ζi are:

τi =

√

Mi

Ci
ζi =

Di√
MiCi

Values for coefficients τi and ζi are given in Table 3. Note that the dominant TLP natural frequency is the
reciprocal of τi, i.e. TLP natural frequency = τ−1

i , so it has units of seconds per radian.

5 Parameter Sensitivity

The uncoupled and coupled models are identical when transfer functions G̃i(s̃) and H̃i(s) are that same.
An examination comparing the similarities of G̃i(s̃) and H̃i(s) can be performed two ways. Method one
involves plotting both transfer functions, then through a visual inspection, noting the differences between
them. This is a subjective method, requiring all coefficients in Table 2 and Table 3 to be readily known.
The second method evaluates the coupled and uncoupled transfer functions algebraically. A benefit of this
technique is that it eliminates the linearized hydrodynamic coefficients Di from the process, which results in
less effort required to perform the analysis. For complex sub–sea geometries, calculating the linearized drag
coefficients Di can become difficult.

5.1 Visual Relationships

To assist our understanding of the dynamic characteristics, the Bode plots of Equations 29 and 31 are given
in Figure 3. Because these models are expressed non–dimensionally, the roll/pitch and yaw directions adopt
similar behaviors and characteristics. The wave band frequency, defined as the region where 90% of the wave
energy is concentrated, is also shown. Based on these figure, the following observations are noted:

1. The plots show strong agreement between the coupled and uncoupled models at low frequencies up to
the wave band frequencies. This reinforces observations made in the literature [14]. Disagreements be-

9



Table 2: Coupled TLP analytical model dimensionless coefficients

Degree of Freedom Γi Πi Ωi Λi

G̃x(s̃)
Mx

4µL
Dx

4
√
µT0

– Ldx√
µT0

(at depth = 600 m) 12.86 1.62 2.73

(at depth = 1200 m) 6.43 1.62 5.45

G̃z(s̃)
Mz

4µL
Dz

4
√
µAE

KzL
4AE

Ldz√
µAE

(at depth = 600 m) 11.13 0.49 0.034 2.05×10−4

(at depth = 1200 m) 5.56 0.49 0.068 4.11×10−4

G̃θ(s̃)
Ixx
L2
aµL

Dθ
L2
a

√
µAE

KθL+4h̄T0L
L2
aAE

Ldz√
µAE

(at depth = 600 m) 34.86 2.15 0.046 2.05×10−4

(at depth = 1200 m) 17.43 2.15 0.093 4.11×10−4

G̃ψ(s̃)
Izz

4L2

b
µL

Dψ
4L2

b

√
µT0

– Ldx√
µT0

(at depth = 600 m) 22.90 3.22 2.73

(at depth = 1200 m) 11.45 3.22 5.45

tween models appear at longitudinal cable natural frequencies in the heave response. These disparities
appear at increments of ω̃nx,z = nπ, where n = 1, 2, · · · .

2. Λi governs the amplitude of the peaks located at ω̃nx,z. When Λi < 1, the amplitudes at ω̃nx,z are
large, which implies the damping coefficient di is small and the cable itself cannot dissipate energy
propagating along the tendon. As a result, the residual energy is transferred to the platform. This
is evident by the heave responses in Figure 3. The cable cannot completely dissipate longitudinal
energy, which makes the platform sensitive to high frequency disturbances. This agrees with principles
outlined in [10, 13].

3. When Λi > 1, di is large, the tendon will provide supplementary damping (that is, damping in addition
to Di) to the platform. As exemplified in [14], this effect is most likely to be observed in surge/sway
and yaw. The transverse cable damping dx is a result of viscous drag in the cross–flow direction, which
will slow the platform progression and limit the amplitudes of oscillation. Figure 3(b) illustrates subtle
evidence of this, where the peak amplitude of G̃x(s̃) is less than H̃x(s).

4. As water depth increases, the tendon natural frequencies approach the wave band frequencies, present-
ing a proclivity for tether excitation.

This study demonstrates, through graphical interpretations, the manner in which the tendon dynamics will
influence the TLP response. Additional factors, which are not apparent from this analysis, are also important.
The next section outlines the criteria that must be achieved to preserve agreement between the two models.

5.2 Algebraic Relationships

It is understood the uncoupled and coupled transfer functions behave identically when G̃i(s̃) = H̃i(s). Thus:

s̃2Γi + s̃Πi +Ωi +

√
s̃2 + s̃Λi

tanh
{√

s̃2 + s̃Λi
} = (τis)

2 + ζiτis+ 1 (32)
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Table 3: Uncoupled TLP analytical model dimensionless coefficients

Degree of Freedom τi ζi

H̃x(s)
√

MxL
4T0

s/rad Dx

√
L

4MxT0

(at depth = 600 m) 17.72 0.45

(at depth = 1200 m) 25.10 0.64

H̃z(s)
√

MzL
KzL+4AE s/rad Dz

√
L

Mz(KzL+4AE)

(at depth = 600 m) 0.40 0.14

(at depth = 1200 m) 0.56 0.20

H̃θ(s)
√

IxxL
KθL+4h̄T0L+L2

aAE
s/rad Dθ

√
L

Ixx(KθL+4h̄T0L+L2
aAE)

(at depth = 600 m) 0.71 0.36

(at depth = 1200 m) 0.98 0.49

H̃ψ(s)
√

IzzL
4L2

b
T0

s/rad Dψ

√
L

4Izz(L2

b
T0)

(at depth = 600 m) 23.64 0.34

(at depth = 1200 m) 33.44 0.48

Or, equivalently,

[

Γi −
(ci
L

)2

τ2i

]

s̃2 +
[

Πi −
(ci
L

)

ζiτi

]

s̃+ [Ωi − 1] +

√
s̃2 + s̃Λi

tanh
{√

s̃2 + s̃Λi
} = 0 (33)

Values for the heave direction are inserted into Equation 33 to produce:

Γz −
(cz
L

)2

τ2z ⇒ 4AE

KzL+ 4AE
= 1 (34a)

Πz −
(cz
L

)

ζzτz ⇒ 4AE

KzL+ 4AE
= 1 (34b)

Ωz − 1 +

√
s̃2 + s̃Λz

tanh
{√

s̃2 + s̃Λx
} ⇒ KzL

4AE
+

√
s̃2 + s̃Λz

tanh
{√

s̃2 + s̃Λz
} = 1 (34c)

The requirement governing Equations 34a and 34b are identical, and are achieved only if KzL ≪ 4AE,
which is a condition less obvious through graphical interpretation. A small Kz compared to a large 4AE/L
has the effect of reducing platform heave sensitivity to wave height fluctuations, which in turn limits cable
tension variations. If the criteria in Equation 34a/34b is met, Equation 34c reduces to the following relation
since KzL

4AE ≈ 0: √
s̃2 + s̃Λz

tanh
{√

s̃2 + s̃Λz
} = 1 (35)

Equation 35 cannot be satisfied since it is a frequency–varying function. There are, however, instances when
the tendon dynamics can be deemed negligible, which renders Equation 35 insignificant. As outlined earlier,
this is most likely when Λz = 1.

5.2.1 The Consequences of Λi

Figure 4 illustrates the left–hand side of Equation 35 with Λi varying between 0.001 and 100. When Λi < 1,
the plot exhibits peaks appearing at intervals of π(2n − 1)/2, and troughs appearing at intervals of πn.
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(b) Depth = 1200 m

Figure 3: The non–dimensionalized TLP surge and heave responses of a TLP in (a) 600 meters depth and (b) 1200 meters
depth. This figure depicts both the coupled analytical model G̃x,z(s̃) and the uncoupled analytical model H̃x,z(s̃).

Troughs occur at tendon natural frequencies. As Λi increases, the peak amplitudes decrease, and the tendon
provides an added source of damping to the TLP. When Λi > 1, the result is a leftward shift in the critical

frequency. The critical frequency is defined as the frequency where
√
s̃2+s̃Λi

tanh{√s̃2+s̃Λi} begins a downward trend.

As this frequency approaches the platform natural frequency, the TLP will change its response characteristics
and begin adopting a ‘damped’ response. The critical frequency is determined by finding the roots of the
numerator in Equation 35:

√

s̃2 + Λis̃ = 1 (36)

There are two roots for the critical frequency ω̃ci , but only one root is real:

ω̃ci =
−Λi +

√

Λ2
i + 4

2
(37)

If diL is large relative to
√
µT0 or

√
µAE, cable damping effects are important and their influence is reflected

in the TLP response curves. This materializes when L
c τ

−1
i > ω̃ci is satisfied (which is occurring in the surge

response of Figure 3b), implying transverse cable motions can provide supplemental damping to the platform.
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Figure 4: When Λi is a small number, the platform senses the longitudinal/transverse tendon motions. In the opposite case,
the mooring line provides additional damping in the platform.
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5.2.2 Summary for the Remaining Degrees of Freedom

Calculations equivalent to Equations 34a–34c are performed for the remaining degrees of freedom, with the
results presented in Table 4. The coefficients for a TLP at d = 600 and d = 1200 meters water depth is given
using the platform properties defined in Table 1.

The first condition, the Tendon Force Condition, arises from the Λi term. This quantity can also be viewed
as the ratio of dissipative capacity–to–internal cable energy. When this term is equal to 1, the cable can
effectively dissipate the energy contained within it. In practice, this is rarely achieved. For cases Λi > 1, the
tendons provide extra damping to the platform, which may lead to a reduced oscillation amplitude; this is
likely to occur for the surge/sway and yaw degrees of freedom. When Λi < 1, the platform will respond to
the natural frequencies of the tendon, because the cable cannot dissipate its internal energy in that direction.
This is likely to occur for the heave and roll/pitch degrees of freedom.

The second condition shown in Table 4, the Frequency Condition, ensures the platform is not responding to
surplus cable damping. This is the criteria containing platform mass as a property, which is embedded in
τ−1
i . In typical TLP systems where Mi is large, the dominant natural frequency of the surge/sway (τ−1

x )
and yaw (τ−1

ψ ) are low. Therefore, it normally follows that L
cx
τ−1
x < ω̃cx and L

cx
τ−1
ψ < ω̃cx. As platform mass

decreases or water depth increases, the TLP will become increasingly aware of the tendon damping effects.

The third condition, the Stiffness Condition, measures the relative stiffness of the tendons in relation to the
buoyancy stiffness. As the tendon stiffness increases, the likelihood for the coupled and uncoupled models
to agree increases. Differences between the two systems typically appear when the buoyant spring stiffness
exceeds the tendon stiffness by 5% or greater, i.e Ωz =

KzL
4AE > 0.05. This estimation is based on a parametric

sweep of the deployment depth on the TLP model illustrated next.

Table 4: Criterion promoting agreement between a coupled and an uncoupled TLP model

Degree of Freedom Tendon Force Frequency Stiffness
Condition Condition Condition

Surge – x Ldx√
µT0

≥ 1 L
cx
τ−1
x < ω̃cx None

(at depth = 600 m) 2.73 > 1 0.27<0.33 –

(at depth = 1200 m) 5.45 > 1 0.39>0.17 (violation) –

Heave – z Ldz√
µAE

≥ 1 L
cz
τ−1
z < ω̃cz

KzL
4AE ≪ 1

(at depth = 600 m) 2.05×10−4 < 1 (violation) 0.30<0.99 0.034 < 1 (weak violation)

(at depth = 1200 m) 4.11×10−4 < 1 (violation) 0.44<0.99 0.068 < 1 (strong violation)

Pitch – θ Ldz√
µAE

≥ 1 L
cz
τ−1
θ < ω̃cz

KθL+4h̄T0L
4L2

aAE
≪ 1

(at depth = 600 m) 2.05×10−4 < 1 (violation) 0.17<0.99 0.046 < 1 (weak violation)

(at depth = 1200 m) 4.11×10−4 < 1 (violation) 0.25<0.99 0.093 < 1 (strong violation)

Yaw – ψ Ldx√
µT0

≥ 1 L
cx
τ−1
ψ < ω̃cx None

(at depth = 600 m) 2.73 > 1 0.21<0.33 –

(at depth = 1200 m) 5.45 > 1 0.30>0.18 (violation) –
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6 Case Studies

To demonstrate the cases outlined in Table 4 further, the team performed simulations of the two TLP
systems. Implementation details of the coupled and uncoupled TLP dynamics models can be found in
Masciola, et al. [24], but a brief overview of the models is given as follows:

• The wave forces were evaluated using Morison’s equation at even intervals along the square pontoons
and cylindrical columns. This is an acceptable estimation for the wave forces provided the column
diameter is much smaller than the wave length [27].

• The uncoupled model treats each tendon as a linear spring.

• A lumped mass cable formulation was used to assemble the coupled TLP model. The forces acting on
the cable are due to viscous drag, added mass, internal damping, weight and buoyancy.

• The coupled TLP model was compared and validated against commercial simulation tools to ensure
the dynamic models provide an accurate representation of the system response [24]. The validation
involved OrcaFlex to model both the platform motion and dynamic mooring line force, and WAMIT
to capture the hydrodynamic radiation, diffraction and frequency dependent added mass coefficients.

To proceed with the simulations, a Bretschneider spectrum with a significant wave height of Hs = 5 meters
and an average period of Tavg = 15 seconds is used to generate the wave height time histories. The wave
direction aligned with the platform surge axis; therefore, the surge, heave and pitch degreesof freedom are
excited. In Figures 5 and 6, the platform time history in the surge, heave and pitch directions, as well
as the tendon tension, are given for the two TLP test cases at 600 meters and 1200 meters water depth.
Accompanying each time history is the corresponding Power Spectral Density (PSD) plot to help identify
the frequency range where disagreements show. The TLP properties used in this exercise is based on the
data in Table 1.

6.1 Depth = 600 meters

The time histories for a TLP in 600 meters depth is depicted in Figure 5, and in accordance with the results
in Table 4, the coupled and uncoupled TLP models agree well. The fairlead tension in one tendon and its
corresponding PSD plot for the 600 meter TLP is given in Figure 5a. Although the tendon force condition
is violated for the heave and pitch directions, the two TLP systems appear to be nearly identical because
the cable natural frequencies are not being excited. This excitation can occur through cable snap loads,
interactions with the surface waves, or coupling with the platform natural frequencies. As demonstrated in
Figure 3, the gap between the longitudinal cable natural frequencies and the wave band expands as water
depth decreases.

The sole difference between the coupled and uncoupled model occurs at the platform pitch natural frequency,
as identified by the arrow in Figure 5d. Because Ωθ is larger than Ωz, the pitch direction reveals the first
symptoms in terms of model difference. The tendon tension also shows a disparity at the pitch natural
frequency. The heave natural frequency is less likely to reveal differences because the buoyancy stiffness–to–
tendon stiffness ratio Ωz is smaller than Ωθ, making the system less sensitive to small variations in tendon
tension in that degree of freedom.

6.2 Depth = 1200 meters

In the second case being evaluated, the TLP is in 1200 meter water depth. Six conditions are violated in
this scenario: a) the tendon force condition in heave and pitch; b) the frequency condition in surge and yaw;
c) and both stiffness conditions. This would lead one to expect the following discrepancies to occur:

• The heave and pitch directions may show difference since Ωz and Ωθ have increased.

• The amplitude of surge motion may reduce because cable damping (due to viscous drag) can no longer
be ignored.
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The disagreements projected in Table 4 can be observed in the platform displacement time history and PSD
plots shown in Figures 6b, 6c and 6d, with differences in surge and pitch most apparent. As anticipated by
the analytical model, the two models encounter differences in surge direction because the drag force on the
cables is significant enough to alter the platform response. This additional damping is created by the fluid
cross–flow drag on the cables. The increase in water depth also impacts the mooring lines stiffness. As depth
increases, the tendons soften, and this increases the platform sensitivity to disturbances. This impact can
be seen in Figure 6c, where the arrow indicates one event in which a series of high frequency fluctuations
are present in the coupled model heave response.

In the tension PSD plots, the figures show a series of high frequency amplitudes in the coupled model, the
first of which is identified by an arrow. These frequencies are equal to fn = n cz2L , where n = 1, 2, · · · , is an
integer, and fn represents the longitudinal cable excitation frequency. Although small in amplitude, these
frequencies can contribute significant differences between models, especially if they fall within the wave band
frequencies or if a snap load (and the ensuing cable rapid re–tensioning) episode is encountered. As Ωz or Ωθ
increases, the high frequency cable disturbances are more likely to be observed in heave or pitch directions.
These peaks are not present in the uncoupled system, as this model does not have the ability to model cable
structural dynamics.
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Figure 5: The above figures illustrate results for weakly coupled TLP in 600 meters water depth. Although
differences between the uncoupled and coupled are small when comparing the time histories, the PSD plots
help to elucidate the source of model differences. In the pitch PSD plot, a difference between models emerges
at the pitch natural frequency since Ωθ has approached a critical threshold.

15



350 400 450 500 550 600
1

1.5

2

2.5

3

3.5
x 10

7

Time [s]

T
en

si
o
n

[N
]

 

 
Coupled
Uncoupled

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15
x 10

14

Frequency [Hz]

T
en

si
o
n

P
S
D

[N
2
/
H

z] Wave Band

10
−2

10
0

10
2

10
5

10
10

10
15 Log Log Scale

(a) Tendon Tension

350 400 450 500 550 600
−2

0

2

4

6

8

S
u
rg

e
[m

]

Simulation Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

Frequency [Hz]

S
u
rg

e
P

S
D

[m
2
/
H

z]

Wave Band

10
−2

10
0

10
2

10
−10

10
−5

10
0

10
5 Log Log Scale

(b) Surge (x)

350 400 450 500 550 600
−0.15

−0.1

−0.05

0

0.05

0.1

H
ea

ve
[m

]

Simulation Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

Frequency [Hz]

H
ea

ve
P

S
D

[m
2
/H

z]

Wave Band

10
−2

10
0

10
2

10
−10

10
−5

10
0 Log Log Scale

(c) Heave (z)

350 400 450 500 550 600
−1

−0.5

0

0.5

1
P

it
ch

[d
eg

]

Simulation Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

Frequency [Hz]

P
it
ch

P
S
D

[d
eg

2
/H

z]

Wave Band

10
−2

10
0

10
2

10
−10

10
−5

10
0 Log Log Scale

(d) Pitch (θ)

Figure 6: Simulation results for a TLP in 1200 meters water depth. In this example, the coupled TLP
response is more receptive to the cable dynamics. Differences between the coupled and uncoupled models
are attributable to 1) the stiffness condition being violated, 2) the platform sensing the mooring drag force,
and 3) the cable natural frequencies being excited.

7 Conclusion

This paper outlines the mechanisms promoting similarity between a coupled and an uncoupled TLP model
using dimensionless analytical models. These results are intended to be used as a means for highlighting the
importance of tendon dynamics in a TLP system and to convey a general awareness of the differences that
may occur between coupled and uncoupled TLP numerical models. Alternatively, these results can be used
to justify the practice of using massless springs in place of a coupled analysis. We have used one–dimensional
wave equations to model the tendon dynamics in the a) longitudinal direction and b) transverse direction. A
total of eight conditions must be met to achieve agreement. These conditions, which are presented in Table 4,
are: a) tendon force condition; b) frequency condition; c) stiffness condition. The tendon force condition
ensures that the dissipative forces are equal to or greater than to the internal forces. If this criterion is not
met, the TLP may respond to the high frequency longitudinal waves propagating in the mooring line. The
second criteria, the frequency condition, signals that the platform will sense cable damping. If violated, the
surge/sway or yaw degrees of freedom will experience damped oscillations. The third condition is in place
to measure platform sensitivity to wave height variations. Generally, as tendon stiffness increases relative to
the buoyant stiffness, the likelihood of the models agreeing is increased.
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In the results derived, the platform mass–to–cable mass ratio appears implicitly through interactions of τ−1
i

and ω̃ci . Although the cable and platform mass are helpful in assessing the importance in the tendon and
platform coupling, this study shows other parameters, such as cable damping and the relative buoyant/tendon
stiffness ratio, also have a role in gauging the importance of the mooring line dynamics. A key element driving
the agreement between the coupled and uncoupled models is the buoyancy–to–cable stiffness ratio. As water
depth increases, each condition highlighted in Table 4 is more likely to be violated, an observation that is in
accordance with earlier findings in Mekah [14].
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