
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

 

  

Extending the Capabilities of the 
Mooring Analysis Program: A 
Survey of Dynamic Mooring 
Line Theories for Integration 
into FAST 
Preprint 
M. Masciola, J. Jonkman, and A. Robertson 
National Renewable Energy Laboratory 

To be presented at the 33rd International Conference on Ocean, 
Offshore and Arctic Engineering 
San Francisco, California 
June 8 – 13, 2014 

Conference Paper 
NREL/CP-5000-61159 
March 2014 



 

 

NOTICE 

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC 
(Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US 
Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of 
this contribution, or allow others to do so, for US Government purposes. 

This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Available electronically at http://www.osti.gov/scitech 

Available for a processing fee to U.S. Department of Energy 
and its contractors, in paper, from: 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831-0062 
phone:  865.576.8401 
fax: 865.576.5728 
email:  mailto:reports@adonis.osti.gov 

Available for sale to the public, in paper, from: 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 
phone:  800.553.6847 
fax:  703.605.6900 
email: orders@ntis.fedworld.gov 
online ordering:  http://www.ntis.gov/help/ordermethods.aspx 

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL 
16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721. 

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste. 

http://www.osti.gov/scitech
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx


1 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

EXTENDING THE CAPABILITIES OF THE MOORING ANALYSIS PROGRAM: A 
SURVEY OF DYNAMIC MOORING LINE THEORIES FOR INTEGRATION INTO FAST 
 
 

Marco Masciola 
National Renewable Energy Laboratory 

Golden, Colorado USA 

Jason Jonkman 
National Renewable Energy Laboratory 

Golden, Colorado USA 
 

Amy Robertson 
National Renewable Energy Laboratory 

Golden, Colorado USA 
 

ABSTRACT 
Techniques to model dynamic mooring lines take various forms. 
The most widely used models include a heuristic representation 
of the physics (such as a lumped-mass system), a finite-element 
analysis discretization of the lines (discretized in space), or a 
finite-difference model (which is discretized in both space and 
time). In this paper, the authors explore the features of the 
various models, weigh the advantages of each, and propose a 
plan for implementing one dynamic mooring line model into the 
open-source Mooring Analysis Program (MAP). MAP is 
currently used as a module for the FAST offshore wind turbine 
computer-aided engineering (CAE) tool to model mooring 
systems quasi-statically, although dynamic mooring capabilities 
are desired. Based on the exploration in this paper, the lumped-
mass representation is selected for implementation in MAP 
based on its simplicity, low computational cost, and ability to 
provide physics similar to those captured by higher-order 
models.  
 
To begin, the underlying theories defining the three classes of 
dynamic mooring line models are identified and explored. This 
leads to insight into the capabilities of each representation. 
These capabilities are weighed against the current needs of the 
FAST wind turbine CAE tool, to which MAP will be coupled. 
Based on the assessment, a plan for integrating the dynamic 
mooring line theory into the current MAP structure is 
developed. Common problems arising from the determination 
of the model static equilibrium and known issues with 
numerical stability are addressed. Because MAP is a module 
that FAST can call, a plan consistent with the FAST 
modularization framework principles is described. Adding 
dynamic mooring line capabilities extends the features in MAP 

and also allows uncoupled analysis to be performed through 
MAP’s native Python bindings.  

NOMENCLATURE 
 cubic spline coefficients 

  damping force vector   N 
  elasticity matrix    N 

 cable axial stiffness   N 
 cable bending stiffness  Nm2 

  time and space dependent force   N 
 nth longitudinal natural frequency  Hz 
 nth transverse natural frequency  Hz  

 hydrodynamic force vector [hx hy hz] N 
 curvature parameter 
 unstretched cable length   m  
 mass matrix    kg 
 external applied moment   Nm 

 internal element bending moment  Nm 
  internal bending moment vector  Nm 
 3 × 3 rotation matrix 

  global position vector   m 
  position vector on a line at (s,t)  m 
 unstretched distance along the line  m 
 tension in the ith element   N 
 tangential pretension at fairlead  N 

  element tension force vector  N/m 
  time     s 
 inputs 

 axial cable displacement   m 
 gravitational force vector   N 

  translational cable displacement  m 
  continuous state equations 
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  continuous states 
  global frame coordinates   m 

  outputs 
  constraint equations 

  constraint states 
  relaxation parameter 
  artificial force    N  

  fluid and cable density, respectively  kg/m3 
  cable mass per length   kg/m 
  Lagrange multiplier 
  interpolation (shape) function 

 
1 INTRODUCTION 
As a publicly disseminated, open-source program to model 
mooring systems, the Mooring Analysis Program (MAP) tool is 
designed for use in parallel with the FAST offshore wind 
turbine computer-aided engineering (CAE) tool developed by 
the National Renewable Energy Laboratory (NREL) [1]. The 
FAST tool is developed to model, simulate, and analyze a wide 
range of land-based, fixed-bottom offshore, and floating 
offshore wind turbines. Among its features, FAST is a coupled 
aero-hydro-servo-elastic tool that models the aerodynamic 
loads, turbine control system, tower and blade flexibility, and 
hydrodynamic loads from irregular waves and currents in 
offshore wind turbines. Historically, FAST has had the 
capability to model mooring systems with nonintersecting, 
homogenous cables using a quasi-static approximation, but in 
the new FAST modularization framework [2], MAP is now used 
as a replacement for the old model. MAP improves on the 
traditional quasi-static functionalities by adding the ability to 
model multisegmented mooring systems; however, a dynamic 
mooring line model is needed. This paper discusses the 
introduction of a dynamic mooring line model in MAP 
configured to the requirements of the FAST modularization 
framework. 
 
MAP currently can model multisegmented, quasi-static (MSQS) 
mooring systems [3]. The existing theory in MAP is based on 
conventional closed-form analytical cable models solved 
simultaneously with force-balance equations to ensure static 
equilibrium of the interconnected system. The theory is similar 
to that outlined in Peyrot and Goulois [4], but the solution 
procedure is fundamentally different because the problem is 
solved with a monolithic perspective. MAP is designed to be an 
independent library accessible from third-party software written 
in Python, Fortran, C, or C++. It has binaries released for 
Windows, OSX, and Linux platforms, and is constructed with 
FAST framework definitions in mind. This last feature offers 
the flexibility for MAP to be used as a design tool or a 
simulation program. Although MAP’s MSQS model has 
widespread utility for rapid prototyping, design, and modeling 
of mooring systems, it has well-known limitations because it 
lacks inertial effects, bending, torsion, shear stiffness, and 
hydrodynamic loads. The inability to represent contoured 

bathymetries with quasi-static models is another well-known 
limitation [5,6]. A dynamic mooring line model can resolve 
these limitations by capturing the true system physics more 
accurately and eliminating the geometric limitations that plague 
closed-form analytical models. In this context, “geometric 
limitations” refer to “S” shaped cable profiles that cannot be 
achieved by closed-form continuous analytical models [7] and 
mooring lines resting on an inclined seabed [8]. 
 
1.1 DYNAMIC MOORING LINE CAPABILITIES 
Dynamic mooring line models are distinct from quasi-static 
models because they can account for inertia effects, internal 
damping, and drag loading. In particular, dynamic mooring 
lines propagate longitudinal u(s,t) and transverse w(s,t) 
vibrations as shown in FIGURE 1 and Fig. 2. These vibrations 
are ignored in quasi-static models, although there are more 
advanced continuous analytical models that attempt to capture a 
limited vibration mode range [9,10]. As Fig. 1 suggests, the 
transverse cable vibrations impart a distinct set of internal cable 
loads that are not captured in quasi-static analysis. These 
frequencies are estimated as [11] 
 

, (1) 
 
where n is an integer representing the nth mode shape. Equally 
as important are the longitudinal vibrations propagating axially 
along the mooring line with frequency 
 

. (2) 
 
Equations (1) and (2) are regarded as estimates because the 
boundary conditions can be different from the fixed-fixed 
condition used in their derivation. 
 
The strength of the platform-cable coupling is dependent on 
many parameters [12], but the platform-mass to cable-mass 
ratio is one common proxy for identifying the strength of this 
coupling [5]. The severity of the sea state also implies the 
importance of using a dynamic mooring model in the simulation 
as demonstrated in the DeepCwind semisubmersible tank test 
campaign [12,13]. Because of the limitations with quasi-static 
analysis, a dynamic mooring formulation is viewed as a 
rigorous approach for measuring ultimate and fatigue loads in 
floating offshore wind turbine moorings. This is the primary 
motivation for adding this capability in FAST through the MAP 
module. Dynamic mooring models also feature the ability to 
easily model cable/seabed contact with irregularly contoured 
seafloors [14] and impact with the seafloor, as well as the 
capacity to capture fluid drag loading and vortex-induced 
vibrations [15]. 
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FIGURE 1: MOTION OF A SINGLE TETHER UNDERGOING 
TRANSVERSE w(s, t)  OSCILLATIONS IN A TENSION-LEG 

PLATFORM (TLP). FIGURE IS ADAPTED FROM [12]. 
 
1.2 SYNOPSIS OF THIS WORK 
This paper serves two purposes. The first is to investigate the 
various mooring dynamic models used in past offshore system 
modeling efforts. The second is to select one dynamic mooring 
model, and reshape its formulation to meet the requirements of 
the FAST modularized framework for integration into the FAST 
CAE tool. Although there are a number of dynamic mooring 
line representations ranging from finite-element analysis (FEA), 
finite-difference (FD), and lumped-mass (LM), most models 
achieve similar results as long as a sufficiently fine 
discretization is used. Simplifications can be introduced into the 
model to reduce computational expense, and a common 
omission is bending, torsion, and shear stiffness. Cable bending 
effects are important in low-tension towing maneuvers [16] and 
for fatigue analysis in taut systems, such as at the tendon roots 
in TLPs [17], but bending also augments the stability of the 
numerical model [18,19].  

 

 
FIGURE 2: TRANSVERSE (TOP) AND LONGITUDINAL 

(BOTTOM) VIBRATIONS IN A CABLE ARE A FUNCTION OF 
BOTH TIME (t) AND DISTANCE ALONG THE LINE (s). 

FIGURE IS ADAPTED FROM [12]. 
 
This paper concentrates on the differences in formulation 
among the dynamic model families, limitations of the solution 
techniques, and expected computational efforts. Classifying the 
model in this fashion helps justify the use of a particular 
dynamic mooring line formulation based on what has been done 
in the past, the current capabilities of FAST, and the desired 
features. 
 
2 MOORING LINE THEORIES  
Mooring line dynamic theories are categorized into two main 
groups: FEA models and FD models. A third subcategory, the 
LM model, can be derived from the FEA process, so it is 
regarded as a simplification of a higher-order model. It is 
valuable, however, to describe the distinct features of all three 
models to understand the capabilities and cost each bring to a 
dynamics simulation.  
 
The earliest discretized cable models emerged in the late 1950s 
[20] as heuristic representations of the physical system. At this 
time, FEA was still being pioneered [21]. It was not in 
widespread use and not a candidate for cable system modeling. 
The LM representation matured over the next two decades [22], 
which naturally led to FEA concepts being applied to the cable 
dynamics problem [23]. As Ketchman and Lou [23] 
demonstrated, however, the LM methodology converges onto 
the same results as FEA representations as long as the 
discretization size is sufficiently small. Discretized cable 
systems comprise a system of nodes and elements. Take, for 
example, the structure illustrated in Fig. 3. This cable array is 
modeled as a system of N+1 nodes and N visco-elastic 
elements. The position of the ith node is defined in the global 
[x,y,z] coordinate frame using vector ri. Definitions of the 
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element stiffness term t, damping term b, hydrodynamic force 
h, and weight term w depend on the formulation used, which 
will be introduced later when the LM model is discussed.  
 
When bending and torsion stiffness is included, the derivation 
becomes burdened, and a discretization of the continuous 
formulation must be adopted to obtain the equation of motion. 
The continuous cable with bending and torsion loads included, 
but with shear neglected, can be shown to be equivalent to 
[24,25] 
 

 (3) 
 

, (4) 
 
where () is a time derivative, (’) is a spatial derivative, and  
represents the per-unit-length equivalent to ( ); hence, the 
governing formulation is in the form of a partial differential 
equation (PDE). The spatial derivatives are needed to resolve 
the slope (curvature) of the line element between adjacent nodes 
to calculate bending moments. Equation (3) is a summation of 
forces along the line element, and Equation (4) states that the 
internal moment n must balance the applied external moment m 
and the internal moment arm that results from strain and 
damping. Effects from bending are included in Equation (3) by 
rewriting Equation (4) in terms of (t’+b’) and substituting it 
into Equation (3). There are two methods to resolve Equations 
(3) and (4). One method applies Galerkin’s method to eliminate 
the spatial derivatives and reduce the PDE to an ordinary 
differential equation (ODE); this leads to FEA and higher-order 
LM formulations [26].  An FEA discretization of M leads to a 
diagonally dominant matrix populated with off-diagonal terms. 
If the mass matrix is reduced to a diagonal matrix, the 
formulation adopted is considered to be a LM matrix, which 
yields the LM formulation in [35]; this is regarded as a “high-
order” LM model. Some LM models go even further and 
discretize the stiffness matrix and force terms without 
interpolation functions [27,34,44]; this is regarded as a “low-
order” LM model.  
 
The second discretization method involves a Taylor series 
expansion of the differential terms to estimate derivatives about 
an operating point; this leads to the FD approach. From a 
simple heuristic cable model, the FEA and FD approaches take 
form. Equations (3) and (4) spawn the growth of most 
discretized cable models that include bending effects.  
 
2.1 LUMPED-MASS MODEL 
There are several variations of the LM model 
[8,16,18,27,28,29,30], each echoing a different formulation 
based on specific needs and derivation processes. A model is 
defined as an LM system if the mass matrix is strictly diagonal 

[26]. As was done in other works [31], the force terms can be 
discretized based on Galerkin’s expansion in an LM model, but 
the fundamental interest of preserving a diagonal mass matrix 
must be maintained. The benefit of an LM model is that the 
mass matrix does not need to be inverted, using either iterative 
(i.e., Krylov sequence) [32] or direct (i.e., LU factorization) 
methods, which can be cumbersome as the matrix size grows. 
This eliminates added computation to give results quickly. 
Lumped-mass approximations work well for cable systems 
because the chain of elements can easily (naturally) be arranged 
to lie in series (see Fig. 3). In comparison, consistent mass 
formulations achieve matrices with an upper and lower 
bandwidth of two [31,33]. Consequently, the LM formulation is 
an acceptable simplification for a single-line system with 
elements in series. The mass matrix bandwidth will increase, 
however, when three or more elements connect to a single node, 
such as nets and the web systems considered in [4]. In these 
scenarios, the LM approach could lose accuracy and the LM 
model might miss coupling terms. 
 
The LM representation traditionally has been derived 
heuristically using Newton-Euler methods, but it can also be 
obtained based on Lagrange and Hamiltonian mechanics [34]. 
Elements contain the spring and damper properties; nodes 
contain the system mass properties. Without bending or 
torsional effects, the equation of motion for the LM model is 
obtained based on a summation of forces at the nodes [18,28]: 
 

, (5) 
 

 
FIGURE 3: DIAGRAM OF THE LM MODEL. ELEMENTS 

CONTAIN THE SPRING AND DAMPING PROPERTIES OF 
THE SYSTEM; NODES CONTAIN THE MASS PROPERTIES. 
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which is a second-order differential equation describing the 
motion of the ith node in the cable kinematic chain shown in 
Fig. 3. Note that Equation (5) was derived purely on the basis of 
Newton’s equation. No concepts from FEA were brought in, and 
the equation was obtained without the aid of Equations (3) and 
(4). The internal element forces bi and ti depend not only on the 
position of the ith node, but also on the motion relative to 
adjacent nodes i+1 and i-1. The gravitational force vector wi is 
the net weight of the node in fluid. The hydrodynamic force 
vector hi represents the viscous drag loading and other 
exogenous external loads applied at the node. Hydrodynamic 
viscous loads and inertial loads from wave kinematics (i.e., the 
Froude-Krylov force) are largely neglected in hi based on the 
assumption that line elements are far from the sea surface, but 
added-mass effects related to the acceleration of the 
surrounding fluid resulting from the line element motion are 
included in Mi in Equation (5). This is important for capturing 
the correct translational oscillation frequency akin to Equation 
(1), because the cable will have a larger apparent mass in 
seawater compared to air.  
 
Equation (5) is regarded as a low-order LM formulation 
because bending effects are omitted. Equations (3) and (4) were 
later used to derive a high-order LM formulation in [35] by 
introducing bending stiffness, which takes the form of 
 

. (6) 
 
The LM formulation in [35] adopts a similar interpretation to 
Equation (5), except an additional internal force term is 
included to account for bending effects. As a result, bending 
resistance in this specific instance of the LM model can be 
disabled without changing the solution approach of the original 
formulation. One notable feature of this interpretation is that 
only three equations need to be integrated to include axial 
forces and bending effects, although torsion is neglected. 
 
2.2 FINITE-ELEMENT MODEL 
FEA cable models have matured over the past four decades 
[25,36,37,38] to include several advanced features, including 
cable pay-out [39], hybrid models combining FEA with 
analytical solutions [14], and advanced numerical integration 
strategies to augment stability [40]. Notably, FEA models are 
capable of yielding higher quality results with lower 
discretization resolution compared to LM representations 
[20,38]. In theory, Equation (5) can be interpreted to represent 
the consistent formulation of an FEA cable model, but an 
alternative formulation will be examined for the purpose of 
appreciating the diversity of techniques used in practice. A 
specific modern FEA implementation with bending stiffness is 
given in Garrett [25,41] and Ran [33]. The derivation process 
initiated in [25,33,41] is similar to the comprehensive, high-
order LM approach in [35], and is based on a discretization of 

Equations (3) and (4). The LM and FEA models, however, 
differ on several important points: 

 
 Mass matrix discretization 
 Boundary condition discretization 
 Discretization of the external and internal forces. 

 
The following integral equation describes the equation of 
motion for a generic system expressed in an FEA formulation: 
 

, (7) 
 
which is shown to be analogous to Equation (6) in [25,33,41] 
with internal cable damping omitted. The important concept to 
keep in mind is that an interpolation function, Φi, is needed to 
discretize the force, mass matrix, and stiffness matrix. For cable 
systems including bending, additional algebraic equations are 
needed to resolve the radius of curvature (slope) along the line: 
 

. (8) 
 
The combination of Equations (6)/(7) and (8) is known 
collectively as a differential-algebraic equation (DAE) when 
solved together [42]. The constraint in Equation (8) originates 
from solving the radius of curvature, where λ is a Lagrange 
multiplier, which is analogous to coefficients used in the cubic 
spline functions for the LM representation in [35]. The 
interpolation functions, Φi, are a function of λi. In practice, 
Equation (8) is usually solved explicitly (based on previous 
time-step information), thus reducing the DAE formulation into 
an ODE. Although the method in [25,33,41] is based on 
Galerkin’s method of weighted residuals, a different basis 
function can be used to obtain the equation of motion for the 
discretized cable system [43]. In [25,33,35,41], Φi is based on 
piece-wise cubic polynomials passing through the nodes to 
represent the suspended cable as a twisted spline. Unlike the 
LM formulations, the FEA cable representation uses the 
interpolation function Φi to assemble the consistent mass matrix 
M. Regardless of the discretization procedure, the FEA model 
and variations of the LM model can be expressed as Equation 
(6). 
 
2.3 FINITE-DIFFERENCE MODEL 
The FD approach is based on a Taylor series expansion of the 
governing PDEs to reduce the PDEs into ODEs and algebraic 
equation relations [45]. The FD approach differs from FEA by 
replacing piece-wise gradients with first-order difference 
functions. In other words, FEA computes derivatives of the 
basis function exactly; FD estimates the gradients. Equation (3) 
can be discretized in both space and time, with the FD 
formulation ostensibly defined as [46‒48]  
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, (9) 
 
where i is discretization with respect to time, j is discretization 
of the spatial derivatives, and f = (h+w). Equation (9) is not 
universally applicable for all FD implementations, and the 
discretization profile depends on the finite-differencing pattern 
(stencil) used. Formulations diverging from the abridged 
representation in Equation (9), though, are common 
[45,46,48‒50]. Equation (9) is defined for the box stencil, 
which is related to center finite differencing. Note that time-
derivative variables are differenced with respect to Δt and 
spatial derivatives are differenced with respect to Δs. Similar to 
computational fluid dynamics (CFD), stability depends on the 
stencil, the discretization size (both time and spatial steps), and 
the sizes of Δt and Δs.  
 
Unlike the FEA formulation, which guarantees L2 stability [51], 
the FD approach is known to break down if finite-differencing 
schemes are paired with incompatible integration techniques 
[52]. This introduces a conundrum of options that might need 
special tailoring for individual problems. The FD model also 
does not guarantee the conservation of energy, which is an 
inherent characteristic supported by FEA models because of 
Galerkin orthogonality. As an end result, mesh convergence 
studies might have to be performed to determine sensitivities. 
This suggests that unlike LM and FEA models, it is less obvious 
with FD representations what the optimal time-step size Δt and 
spatial resolution Δs are. In other words, mesh resolution can be 
dictated by numerical needs rather than accuracy requirements. 
Gobat and Grosenbaugh [47] studied the numerical limitations 
of FD techniques, and this effort led to a comprehensive 
understanding of how integration methods contribute to 
stability. This work greatly advanced the state of the art in FD 
cable models, and is worth further study for interested readers. 
 
Although FD models have limitations in terms of numerical 
implementation, the main advantages of this model are that it 
can be implemented into a computer code with relative ease 
(Equation [9] compared to Equations [6] and [7) and the 
formulation can be reorganized to contain a diagonal mass 
matrix (but without a need for order reduction like the LM 
model). Once the numerical barriers are addressed, FD models 
provide high-fidelity modeling capabilities on par with FEA 
representations. To summarize, FD models are rarely used in 
commercial applications or in production codes because of 

numerical sensitivities and nuances, and more work is 
warranted to improve the approach. 

 
2.4 PROPOSED MODEL 
The LM and FEA models discussed previously offer examples 
of typical formulations used in dynamic simulation programs. 
Unlike the FD formulation, the LM and FEA models are 
inherently less prone to numerical errors (drift) because the 
formulation ensures that energy flux is conserved. Depending 
on the implementation used, the LM model can be based on an 
order reduction of the FEA process, but LM formulations may 
require more elements to approach the accuracy of FEA 
assemblies. Because of its coding simplicity, ability to capture 
the physics of a higher-order model, computational efficiency, 
and historical application as a design and analysis tool, the LM 
model is chosen for development in MAP. The development is 
based on the high-order LM methodology described by 
Buckham and colleagues [16,18,35]. 
 
3 MODEL DEVELOPMENT 
The LM model pictured in Fig. 4 represents a kinematic chain 
of mass-spring-damper elements and is used to describe the 
equation of motion for the system. In Fig. 4, a breakdown of 
one element is given. The vector ri describe the node position in 
the inertial frame. Each element has a damping coefficient, bi, 
and a stiffness coefficient, ki. An orthogonal local coordinate 
system, xi, yi, zi, describes the element orientation relative to F0, 
an inertial global frame, where zi is parallel to the straight-line 
element and zi = xi × yi. Finally, the radius of curvature, , is 
used to compute the magnitude of the bending moment of the 
elements. The line curvature is calculated using third-order 
spline functions passing through sequential node points. The 
forces acting on a line element are viscous hydrodynamic loads, 
internal tension, internal damping, self-weight, buoyancy, and 
bending resistance loads, all of which are defined in the local 
element frame xi, yi, zi. The nodal equation of motion from 
Equation (6) is used, where the internal bending force is defined 
as [35] 
 

. (10) 
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FIGURE 4: DEFINITION OF ELEMENT AND NODE 

COMPONENTS WITHIN THE LM MODEL. q(s) IS A CUBIC 
SPLINE FUNCTION INTERPOLATED THROUGH ALL THE 

NODE POINTS.  
 

3.1 LINE KINEMATICS 
Defining the line kinematics and system coordinate frame is the 
first step in obtaining the equation of motion. Alternative 
derivations can also be found in [16,18,27,28,31,35]. Let 

 

 (11) 
 
represent the transformation matrix relating the body-frame 
coordinates to a global inertial frame. As a result, 

  
 

, (12) 
 
where Li + Δi is the stretched length of the ith element. From 
trigometric relations, the Euler angles θi and φi are given by 

  

 (13) 
 
and 
 

 (14) 
 
if cosθi > sinθi, and 
 

 (15) 
 

otherwise. The inverse tangent calculation should capture 
angles across the full range of the unit circle (i.e., from 0–2π). 
From Equation (12), it is evident that the stretched line length is 
equivalent to the magnitude of the difference between ri and 
ri+1:  
 

. (16) 
 
3.2 INTERNAL FORCES 
Internal forces are derived from three sources: strain, damping, 
and bending resistance. Strain is proportional to the element 
stiffness, ki, which is the element axial stiffness EA/Li. Internal 
forces occur in the direction parallel to zi, so 
 

 (17) 
 
and  
 

, (18) 
 
where Δi is readily known from Equation (16). Equation (17) is 
set to zero if Δi < 0, because cables cannot support compressive 
loads. Applying internal damping in structural members is a 
delicate issue [53], but it is generally accepted to be 
proportional to the relative velocity between nodes: 
 

. (19) 
 
Deciding a coefficient for bi is a matter being debated within 
structural modeling circles, but a strong argument states that 
damping can be stiffness and mass proportional (i.e., Rayleigh 
damping) [11]. With certain integration schemes, though, 
structural damping is not recommended because this leads to 
conservative results [40]. This is especially true for most 
implicit integration techniques that include numerical 
dissipation. The effort of deriving the internal bending force 
was treated rigorously in [16,18,35]; readers are encouraged to 
refer to those texts for a detailed treatment of the bending 
stiffness formulation. As demonstrated by earlier works, the 
bending stiffness is given by the quantity 
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, (20) 
 

where  and  equate the magnitude and axis (direction) at 
which the bending moment is applied in the local element 
frame. Equation (20) is expressed in an inertial reference frame 
consistent with Equation (6) once the Euler rotational sequence 
is performed. The spatial curvature parameter  can be 
determined by [54] 
 

, (21) 
 
where  is the magnitude of the radius of curvature, is the 

discrete form of q(s)  to represent a three-dimensional cubic 

spline expressed in a Frenet-Serret frame, and  is the second 

derivative of the spline function with respect to s.  is a third-

order polynomial function evaluated for the ith element and is 
valid between the two nodes bounding an element: 
 

. (22) 
 
It is essential for slopes of adjacent piece-wise elements to 
match, such that 
 

. (23) 
 
An algorithm describing the process to obtain the piece-wise 
spline function can be found in [55]. The X,Y components of the 
curvature parameter are determined using 
 

. (24) 
 
The slope of the cubic spline function passing through the 
nodes is the critical component to determine the bending force 
magnitude. When the spline function, , is a straight line, the 

bending moment vanishes and Equation (20) is zero. As an 

alternative, if a cable element can be represented by a straight-
line spline function, Ci=Di=0 in Equation (22), and  in 
Equation (21) is zero.  
 
3.3 EXTERNAL FORCES 
External forces applied to the system arise from hydrodynamic 
loading, gravity, and seabed contact. To maximize code reuse 
and avoid duplicating actions performed in other FAST 
modules, hydrodynamic loads are calculated using a separate 
hydrodynamics module as exemplified in [56]. The 
hydrodynamic loads are based on the cable node motion and 
wave kinematics, which are used as input in a relative form of 
Morison’s equation to capture the element added-mass and 
quadratic drag forces. Buoyancy loads are also computed by the 
hydrodynamics module. The mapping of forces at discrete 
locations along the line occurs through the “mesh library,” 
which is a component defined in the FAST standard library 
[57]. Users only need to be concerned with providing the right 
inputs to the mesh library to obtain the desired outputs. More 
details on the mesh library are found in [64], but assuming the 
lumped hydrodynamic load, hx,y,z, is defined for the ith node, the 
force defined in vector form is 
 

. (25) 
 
The terms resulting from gravity are found using 
 

, (26) 
 
which is the net weight of the node in a vacuum. Seabed 
resistance forces are included through using an additional 
spring term. This spring is engaged when the Zi node position 
drops below a certain threshold. The formulation for this 
quantity resembles Equation (17), but requires Equation (18) to 
be rewritten to include this additional force. Some formulations 
include a two-parameter spring model with damping to relax the 
recoiling effect caused by a sudden onset of the contact force 
[14,48]. 
 
3.4 CABLE STATICS 
Cable statics are an important preliminary step in running a 
dynamics simulation, but numerical limitations drive this 
delicate matter. Because the objective of a dynamic mooring 
line model is to address a dynamics problem, the statics 
problem is largely viewed as an afterthought. The performance 
of the dynamic model, however, is strongly dependent on the 
quality of the initial starting point of the nodes and stretched 
element lengths.  
 
A statics solution is achieved by removing all time-dependent 
variables in Equation (6), then solving the resulting nonlinear 
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equations. Minimizing these functions is an immensely difficult 
task because the Jacobian matrix used by the nonlinear root-
finding algorithm is poorly conditioned [44]. Several 
approaches to solving the statics problem exist, and the chosen 
path is a matter of preference. The simple approach is dynamic 
relaxation [58,59], which involves executing a dynamics 
simulation with large damping values until transients dissipate.  
Another approach implements an artificial force term into 
Equation (6) that is initially set equal to the (unbalanced) node 
forces [19,60,61]   

 

, (27) 
 
where the j subscript is the solve step. For the first solve step, 
 

, (28) 
 
βj ranges from {1,0}, where βi = 1 at the first solve, and βj = 0 at 
convergence. A third approach uses a shooting algorithm, which 
involves a rewrite of the equations being solved by converting 
Equation (6) from an initial value problem to a boundary 
condition problem [44,62,63]. The approach to be implemented 
in MAP will be selected from one of these methods. 

 
4 FAST FRAMEWORK AMALGAMATION 
The FAST modularization framework can be considered to be 
an application program interface that defines the guidelines and 
standard practices for modules being integrated into the latest 
version of the FAST wind turbine CAE tool [1,57]. This 
framework compartmentalizes different components modeled in 
the wind turbine to separate the physics of the system. Although 
for most modules, communication with other modules is 
essential (such as hydrodynamic force mapping on a structural 
model [56]), the information-passing corridor is managed by the 

FAST glue code. In this regard, module developers are 
responsible for defining the quantities exchanged between 
modules and the information passed to and from FAST. This 
leads to extensible modules that can be separated away from the 
core glue code, allowing modules to conduct independent 
studies without redefining the source code.  
 
To draw parallels between the LM model and the FAST 
framework, the single-point mooring in Fig. 3 is used to define 
a mooring anchored to the seabed at node N+1 and attached to a 
floating wind turbine at node 1. Figure 5 demonstrates the flow 
of information between FAST and the proposed LM component 
of the MAP module. The passage of information and program 
flow illustrated falls under the auspice of the FAST “loose-
coupling” definition. Under the loose-coupling definition, each 
individual module is responsible for executing the solve 
routines and integration of differential equations (when 
necessary) for that module. The particular definition of each 
data structure is interpreted by the FAST glue code to describe 
the action taken on that variable.  
 
4.1 DATA STRUCTURES 
Data structures are used to define the interaction of variables 
between the FAST glue code and modules. For example, 
parameters p are constant, time-invariant values throughout the 
simulation, such as sea density, gravitational constant, or the 
anchor position of a line element. Likewise, continuous states, 
x(t), are those with which a differential equation is associated  
[57] 
 

. (29) 
 
Constraint states z are variables iterated by a root-finding 
algorithm to find the minimum of a function 

FIGURE 5: INPUTS, OUTPUTS, AND INTERNAL STATES FOR THE LM MODULE IN MAP. THIS FLOWCHART IS DEFINED FOR LOOSE 
COUPLING [1,56,57]. 
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, (30) 

 
with a requirement that  
 

. (31) 
 
Otherwise, the matrix in Equation (31) is rank deficient and a 
bounded inverse does not exist around a solution. Equation (31) 
is defined as the Jacobian matrix determinant, where the 
Jacobian matrix is used to find the roots of Equation (30). It 
becomes evident from Equations (29) and (30) that FAST is 
formulated as a multibody dynamics system and the solution is 
structured as a DAE [42]. The formulation, though, reduces to a 
conventional ODE when constraints z are not present.  
 
In the context of a dynamic cable model for FAST, the inputs to 
MAP would be the position and velocity of the node attaching 
to the floating platform and hydrodynamic loads on all nodes: 
 

. (32) 
 
The values in Equation (32) are transferred from the glue code 
using a mesh, because the node position and velocity are related 
to the platform global motion as computed by FAST. Outputs 
from MAP consist of the force and moment at the node 
attaching to the platform, and the position and velocity of all 
intermediate nodes between the fairlead and anchor. The 
intermediate nodes are mapped as meshes so kinematic 
information can be received by an external hydrodynamics 
module to calculate viscous loads. As a result, 
 

, (33) 
 
where the moments mbx

1  and mby

1  at the cable root are 

calculated using the procedure in [35]. The output vector is 
information passed back to the FAST glue code to advance to 
the next time-step sequence. In this application, the constraint 
variable, z, consists of the coefficients’ cubic polynomial 
function, , in Equation (22). As a result, the constraints are 

 

. (34) 
 
The continuous state consists of nodes whose position and 
velocity are obtained by way of numerical integration. They are 
defined as the nodes lying between the anchor point and 
fairlead: 
 

. (35) 
 
The node attaching to the floating vessel at i=1 has prescribed 
motion supplied by the FAST glue code, and it does not have an 
associated differential equation. Likewise, the anchor node is 
fixed, so it is encapsulated within p. The remaining variables, 
such as , θi and φi , are preserved in a database named “other 
states.” Storage of these variables in the other states derived 
type is allowable because they are explicitly derived from x, z, 
p, or u.  
 
4.2 EQUATIONS 
In this application of the LM model, two sets of equations are 
necessary to complete the FAST definitions. The first, the 
continuous equations, are those that can be differentiated with 
time. This was previously defined in Equation (6), rewritten as 
the following ODE: 
 

.
 (36) 
 
The second state equations, the constraint equations, are those 
iterating on the constraint variables, z(t), to minimize a 
function. In this case, the functions minimized are those 
providing the solution to the cubic spline interpolation function 
in Equation (22). An example algorithm is given in [55]. 
 
5 SUMMARY 
This paper surveys the various dynamic modeling line theories 
that are currently used in offshore modeling applications. 
Advantages of each model are considered, and although each 
model has merit, the LM model is selected for incorporation in 
MAP. The LM model is selected for the following reasons: 
 
 Computational performance is optimized for diverse 

applications: 
 A diagonal mass matrix may omit acceleration 

coupling terms, but limitations can be rectified by 
increasing the mesh resolution. 
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• Sensitivities of the numerical approaches are well studied. 
• Incorporation of bending stiffness is available as a user 

option: 
− Over the past two decades, the abilities of LM models 

have improved significantly to the extent that high-
order bending stiffness models have been included. 

− Bending can be disabled at run time. When bending 
stiffness is disabled, ni = 0 in Equation (6). 

 
Equations describing the LM model are reconstructed in the 
FAST framework context. Although this paper explores the 
framework from a loose-coupling standpoint, this model can be 
expanded to include essentials for tight coupling. 
 
As a land-based and floating wind turbine modeling tool, FAST 
is responsible for combining several physics to aid in the 
simulation of these devices. To assist in the integration of 
various physics, the modularization framework has been 
developed to help encapsulate data, encourage code reuse, and 
enable state linearization (e.g., for eigen analysis) and tight-
coupling dynamic analysis. This paper explains a new dynamic 
mooring line module in the context of this new framework. 
MAP is a module developed for FAST that is currently capable 
of quasi-static modeling. By adding a dynamic mooring line 
representation, MAP will enable coupled analysis in FAST. 
 
Future work will involve implementation, verification, and 
validation of this LM model within MAP and application of the 
coupled code to the analysis of promising floating offshore 
wind concepts. 
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