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Abstract—We present a novel approach for monitoring marine
environments by a team of heterogeneous robots, comprising of
a fixed-wing aerial vehicle, an autonomous airboat, and a legged
underwater robot. The goal is to receive a region of interest from
a remote human supervisor, and then using the coordinated effort
of the robot team, produce a concise summary consisting of a
small number of images, which capture the visual diversity of
the region of interest. The summary could then be used by a
human supervisor to plan for further exploration.

I. INTRODUCTION

Monitoring marine environments is a challenging problem
for several reasons. Being underwater for long periods of
time is inherently dangerous for humans, and there are strong
limitations on duration and depth of dives. Even if an under
water robot is used, the lack of high bandwidth wireless
communications underwater makes it difficult to remotely
operating a vehicle underwater. Furthermore, many of the
regions which need monitoring are far away from civilization,
which makes continuos human presence around the region of
interest very expensive.

We propose a solution to these problems by using a team of
heterogeneous robots, which first helps in identifying a region
of interest (ROI) by remote human supervisor, and then given
the location of this ROI, returns a summary consisting of a
small number of images that include any surprises that were
encountered. This system addresses drawbacks of conventional
reef monitoring methods [1] by automating the data collection
process. Our work is complementary to work by Smith et
al. [2], who have proposed a path planning technique for
underwater gliders, given some regions of interest.

Our multi-robot system takes inspirations from related
works in automated underwater data muling [3], target tracking
using aerial and surface robotic vehicles [4], and marine
monitoring using multiple heterogeneous robots [5, 6].

As shown in Fig. 2, our heterogeneous robot team is
comprised of three vehicles that operate in diverse domains:
the Aqua AUV platform [7], the Unicorn fixed-wing UAV,
and the Marine Autonomous Robotic Explorer (MARE) [8]
catamaran ASV.

During a monitoring session, our UAV carries out repeated
aerial coverage [9] of the target reef region, and sends live
bird’s-eye view footage of the coral reef to the home base.
Next, particular inspection sites are identified based on this
live footage, either using our automated extremum summary
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Fig. 1. Summarizing complex marine environments. We use a realtime online
topic modelling framework, which describes the incoming observations using
a low dimensional semantically sensitive descriptor. Then, using an online
summarizer we build a summary which covers all observations this far, in the
topic space. Surprise of a new observation is its distance to the closest sample
in the summary. If this surprise is above a threshold we update the summary
with the new observation.

algorithm, or obtained from human experts. These coordinates
are then relayed to Aqua AUV via Mare ASV, which then
proceeds to build a summary of the region of interest, and relay
it back to the human supervisor. Building a good summary is
an essential part of the system as wireless bandwidth is often
the most limiting constraint while exploring remote regions.
A summary consisting of surprising observations could be
quickly used to determine whether a given region should be
explored further or not.

Figure 1 gives an overview of the proposed summarization
strategy. The online summarization task can be broken down
into two sub problems: first, how can one describe what is
being observed by the robot in a meaningful way, which is
sensitive to thematic scene changes, while being immune to
low level noise in the sensor data; and second, given a semantic
description of the observations, how can one decide if the
observation is surprising and should be part of the summary.

For the first problem, we use an online topic-modeling
framework to describe the world being observed by the robot
in realtime, using a low dimensional descriptor, which attempts
to be sensitive to semantics of what is being observed. This
descriptor is a probability distribution over the presence of
various objects in the scene, which in an underwater environ-
ment might correspond to a distribution over rocks, different
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(a) Aqua AUV (b) Unicorn UAV (c) MARE ASV

Fig. 2. Our robot team consists of (a) the Aqua AUV, an agile legged underwater robot, (b) the Unicorn, a fixed-wing UAV with an on-board autopilot and
gimbal-mounted camera, and (c) the Marine Autonomous Robotic Explorer (MARE) catamaran ASV, which can operate in turbulent open water regions.

coral species, and sand etc... Given such a descriptor, we then
use an online summarization algorithm which tries to identify
samples, which cover the set of all observations, in this low
dimensional semantic space. Since all observations must be
covered, the summarizer encourages outliers to be part of the
summary, which can be interpreted as surprising observations.

II. THE ROBOT TEAM

Our robot team consist of three vehicles: a fixed wing un-
manned aerial vehicle (UAV), an autonomous surface vehicle
(ASV), and an underwater vehicle (AUV).

The UAV in the heterogeneous robot team is first used for
scouting out regions of interest, and then for relaying this
location information to the MARE ASV. Mare ASV and the
Aqua AUV then move to target location, and start the survey.
The ASV or the UAV can only maintain radio link with Aqua
while it is on the surface. Hence, the ASV acts as buffer for
locations of regions to be explored, and relays them to Aqua
whenever it is on the surface. Since both the ASV and the
AUV use very little power, while they are not actively moving,
they can be left in the field for days without recharging the
batteries.

A. Unicorn UAV

The Unicorn UAV is a kite-sized fixed-wing aerial vehicle
with a 1 m wingspan. It operates at an average ground speed
of 14 m/s for up to 30 minutes of flight time. This vehicle
is equipped with multiple sensors, including an IMU, a GPS,
and pressure-based altitude and speed sensors. These devices
are integrated with an on-board autopilot micro-processor,
which uses them to navigate autonomously based on waypoint
directives issued from the home base. Communication between
the autopilot and the home base is established using a high-
power radio modem, which allows the UAV to be controlled
at multi-kilometer ranges. The Unicorn is also equipped with
a CCD camera mounted on a pan-tilt gimbal, which allows
the home base to receive live aerial feed through an analog
radio frequency channel.

B. MARE ASV

The Marine Autonomous Robotic Explorer (MARE) [8] is
a robotic airboat developed to explore coral reefs and shallow
seabeds. Its two-pontoon catamaran chassis provides sufficient
hydrodynamic stability to operate in turbulent open water

environments. MARE is actuated using two air propellers
in a differential drive configuration. MARE is capable of
conducting autonomous visual exploration [8] using its suite of
sensors, which includes a downward-facing camera, an IMU,
and a GPS device.

C. Aqua AUV

The Aqua AUV [7] is a six-legged amphibious robot that
can both swim underwater and walk on land. It maneuvers
underwater by synchronously actuating its six flippers, and its
aluminum shell is designed to operate at depths up to 40 m.
This AUV is powered by high-capacity Lithium-Ion batteries,
and can operate under full load underwater for more than five
hours. Aqua is equipped with a variety of sensors within its
waterproof shell, including: three cameras, an inertial measure-
ment unit (IMU), a pressure-based depth sensor, and an XBee
digital radio transceiver. We also used an externally-mounted
sensor kit to facilitate wireless communications, since the
AUV’s metallic shell acts as a Faraday cage and thus greatly
attenuates the transmission of radio signals. In particular, this
detachable and self-powered pack contains a GPS receiver and
an XBee module, which are used to augment Aqua’s sensing
capabilities by relaying GPS readings and transmission from
the MARE ASV wirelessly using the XBee communication
channel.

III. ONLINE EXTREMUM SUMMARIES

Although are many ways in which observations made by
a robot could be summarized [10, 11, 12], we are interested
in online summaries, which cover the range of what has been
observed, including outliers. Online extremum summaries [13]
provides a novel way to maintain a set of observations
which cover the space of all observations, while minimizing
the radius. Given a summary S = {S1, · · · , Sk}, and all
observations so far Z = {Z1, · · · , Zn}, extremum summaries
minimize the cost function

Cost(S|Z) = max
i

min
j
d(Zi, Sj), (1)

where d is the distance function, which measures distance
as the symmetric KL divergence between the corresponding
topic distributions. Minimizing this distance is essentially
minimizing the distance of the worst outlier to the summary.
The novelty or surprise of a new observation ξ(Zt) is then
defined as its Hausdorff distance from the summary. When
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(a) Dataset 1 - bag of words (b) Dataset 1 - topics (c) Dataset 2 - bag of words (d) Dataset 2 - topics

Fig. 3. Example of summaries generated by our system. We see that bag-of-words descriptor (a,c) is not able to differentiate between different images of
sand, and hence the corresponding summaries contain similar images. The proposed topics based summaries (b,d) do not have such problems.

the summary size is fixed, the threshold surprise score for
inclusion in the summary is mini d(Si,S−i), where S−i is
the summary with ith sample removed.

IV. TOPIC MODELING

We use an online topic modelling framework [14] to rep-
resent observations made by a robot in a low dimensional
thematic space. Topic modeling methods were originally de-
veloped for text analysis. Hofmann [15] introduced the idea
of probabilistic Latent Semantic Analysis (PLSA) for text
documents. PLSA models the probability of a observing a
word wi in a given document dm as:

P(wi|dm) =

K∑
k=1

P(wi|zi = k)P(zi = k|dm), (2)

where zi is the hidden variable, or topic label for wi, which
takes a value between 1 · · ·K.

The central idea being the introduction of a hidden (latent)
variable z, which models the underlying topic, or the context
responsible for generating the word.

Bei et al. [16] developed the idea of pLSA further and
introduced Latent Dirichlet Allocations (LDA). LDA proposes
improvement over pLSA by the use of Dirichlet priors for
both document and topic models. Success of LDA based topic
modeling methods for semantic clustering and classification of
text documents has led to their use in computer vision domain.
The general idea being that a textual word could be replaced
by visual words, such as ones described by Sivic et al. [17].
Works by Fei Fei et al. [18], have demonstrated the use of
LDA to model visual scenes.

To make topic-modeling relevant for robotics use, we depart
from the traditional idea of modeling the data as a discrete set
of documents, and instead model the data as points or words in
a continuous space and time. This allows for a more natural
interpretation of topics as context, regions, or objects with
continuity in space and time.

Each observations is a tuple (wi, xi) consisting of an
observed visual word wi = 1 · · ·V from a fixed vocabulary
of size V , and its associated spatiotemporal coordinate xi.
Dimensionality of the coordinates depend on the problem
and the hardware setup. We observe this data in a streaming
manner, and our goal is then to compute the topic labels

zi = 1 · · ·K, for each of these incoming observations, and
update the labels of previous observations in the light of this
new incoming data. For the system to work in real-time, we
must guarantee that the update iterations happen in a constant
time.

Compared to the standard document-topic generative model
used by LDA, we replace the idea of documents with neigh-
borhoods. We assume the following generative model. Given
a location x, we define its spatiotemporal neighborhood by
G(x). The visual appearance of the location is then produced
by independently sampling a topic z for each word in its
neighborhood θG(x), and then independently sampling the
word from φz .

The neighborhood G(x) of an observation can either be
defined using a k-nearest neighbor search or a radius search.
Hence, the posterior distribution of a topic assignment, given
the Dirichlet prior and the other assignments is

P(zi = k|z−i,w,x) ∝
ntk,−i + β∑V

t=1(n
t
k,−i + β)

·

nkG(y),−i + α∑K
k=1(n

k
G(y),−i + α)

.

(3)

Several different strategies exist in the literature to do
online refinement of the topic assignment in a given streaming
dataset [19]. The general idea is to initialize the topic label
of the current observation with random labels, and then do a
batch refine of the entire dataset. This allows for previous topic
assignments to be updated in the light of new observed data.
Convergence is guaranteed because in the limit of time going
to infinity, the algorithm behaves like a batch Gibbs samples.

Since we have a fixed amount of time between two ob-
servation, we can only do a constant number of refinements.
Hence, we used a biased Gibbs sampler, which randomly picks
spatiotemporal regions, giving higher picking probability to
recently observed regions, and then refines their topic labels.

V. RESULTS

Figure 3 shows examples of extremum summaries generated
using the proposed topics based descriptor, by the Aqua AUV.
For comparison, we show extremum summaries produced by
using the classic bag-of-words descriptor. We see that topics
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based extremum summaries clearly outperform the bag-of-
words based summaries, as they are better able to capture
visual appearance of the environment. Bag-of-words based
extremum summaries contain multiple images of sand, which
although have very different descriptors, do not correspond
to different semantics content. Topics based descriptor is not
confused by such images.

VI. CONCLUSION

Continuous monitoring of remote marine environments is
a challenging task for both humans and robots. Constraints
related to battery life, bandwidth, and multiple environments
make it difficult for a single robot to monitor a remote
underwater region for long periods of time. We have proposed
a novel use of a team of heterogeneous robots, which is
efficiently able to aid a remote human supervisor in identifying
and inspecting an underwater region such as a coral reef.
In our trials we see that the proposed summarizer is able
to recognize different coral species and include them in the
summary, and hence is useful for marine monitoring. In our
ongoing future work, we hope to design a combined topic
model that learns correlated topics using observations from
different robots. Such a model would be useful, for example,
to match an underwater view of a location to its aerial view.
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