
Fast and Efficient Rendezvous in Street Networks

Malika Meghjani, Sandeep Manjanna and Gregory Dudek

Abstract— We address the problem of rendezvous between
two agents in urban street networks. Specifically, we consider
the case where the agents have variable speeds and they need to
schedule a rendezvous or a meeting under uncertainty in their
travel times. Examples of such a scenario range from everyday
life where two people would like to coordinate a meeting while
going from office to home; to a futuristic case where auto-
mated taxis would like to meet each other for load balancing
passengers. The scheduling for such scenarios can easily become
challenging with uncertainties such as delayed departures, road
blocks due to construction or traffic congestion. Any solution
for such a task is required to minimize the waiting time and
the planning overhead. In this paper, we propose an algorithm
that optimizes the total travel time and the waiting time for
two agents to complete their respective paths from start to
rendezvous and from rendezvous to goal locations subject to
delays along their paths. We validate our approach with a street
network database which has a cost associated with every query
made to the database server. Thus our algorithm intelligently
optimizes for rendezvous trajectories that effectively mitigate
the scourge of traffic delays, while simultaneously limiting the
number of queries through careful analysis of the informative
value of each potential query.

I. INTRODUCTION

Traffic delays have long been a focus of frustration
for urban commuters and have lead to countless solutions
such as traffic-only radio stations and traffic-aware GPS
guidance systems. We consider a robotic planning problem,
of rendezvous between pairs of agents in urban streets,
where traffic delays also play a key role. Examples of such
scenarios are often experienced by both humans scheduling
a meeting along their desired paths and robots physically
coming together to exchange high bandwidth information
or load balancing along their designated routes. A robot’s
rendezvous planning algorithm can access updated traffic
information on-the-fly, thus allowing optimized routes to
be considered, however this comes at a cost in terms of
communication and planning time. In this paper, we propose
an algorithm that intelligently optimizes for rendezvous
trajectories that effectively mitigate the scourge of traffic
delays, while simultaneously limiting the number of queries
through careful analysis of the informative value of each
potential query.

In our problem formulation, we consider two agents that
are given their respective start and destination locations and
they are expected to meet while reaching their destination in
the shortest time possible with minimal uncertainty in their
travel times as well as reducing the communication cost. This

The authors are with the Centre for Intelligent Machines,
McGill University, Montréal, Québec, Canada.
email:{malika, msandeep, dudek}@cim.mcgill.ca

Fig. 1: Our rendezvous planner using Google maps API c©.
The individual paths of the two agents are represented by the
blue solid lines. Red arrow heads illustrate the waypoints.
Small cyan and red circles indicate potential rendezvous
points which are computed using Euclidean metric and actual
travel times on the road network, respectively. The optimized
rendezvous location using our cost function is shown by the
center of the big red circular disk.

combined optimization problem requires the agents to plan a
rendezvous while considering spatial, temporal and commu-
nication constraints. The examples of spatial constraints are
one-way streets and inaccessible rendezvous locations such
as in middle of a creek whereas the temporal constraints may
refer to acceptable waiting times by the two agents at the
selected rendezvous location. The communication constraints
can be represented by the number of queries allowed to a
database server which provides routing information of street
networks. The desire to minimize the number of queries is
important since the access to a centralized server can be both
slow and expensive. In addition to these constraints, there are
complications due to temporal uncertainties such as delayed
departures from the starting locations of the agents, unknown
road blocks due to construction-work, or unpredicted traffic
congestion.

We model the uncertainty in travel time by considering
different possible combinations of agents’ speeds with ex-
pected delay times proportional to the agents’ path lengths.
This model also accounts for the temporal constraints on
the waiting time while selecting the optimal cost rendezvous
location. The spatial constraints are satisfied by applying our
scheduling algorithm on a real street network database as
illustrated by the example in Fig. 1. Lastly, we optimize the

communication constraint by proposing a Hybrid algorithm
to lower the number of queries.

Given these constraints, our goal is to minimize the
weighted sum of travel and waiting time at the rendezvous
location, along with optimizing the number of queries made
to the database server. A detailed problem formulation and
our proposed approach are presented in Section III and
Section IV, respectively. Experimental results on the street
network database is presented in Section V.

II. RELATED WORK

The theoretical foundation for the rendezvous problem
originated in game theory where it was first applied to simple
and abstract environments such as straight lines and random
graphs [1], [2]. The problem evolved with technology and
created interesting applications in everyday life and robotics.
One of the first robotics application for rendezvous was
proposed by Roy et al. [3] for multi-robot exploration and
mapping of unknown indoor environments. Our previous
work [4] [5], is motivated by their rendezvous strategies for
exploring office-like environments and random graphs with
multiple agents without any prior knowledge. Specifically,
we define a cost efficient ranking criteria for combining
exploration with rendezvous. The problem discussed in this
paper however, deals with a known world and plans for an
offline rendezvous.

A common approach for multi-agent problems is to opti-
mize the rendezvous locations only with respect to the start
locations without considering any concurrent task that must
be achieved or the desired end locations of the agents. An
example for this case is the energy efficient rendezvous al-
gorithm, proposed in [6] for a team of heterogeneous robots.
Their work aims to minimize the total cost of traveling to the
rendezvous location by proposing a heuristic in which the
local heading of individual robots is iteratively computed,
based on the start locations of other robots. This solution
was empirically shown to be near optimal by comparing it
against the globally optimal solution.

Another application of using multi-agent rendezvous for
charging mobile robots was addressed in [7]. The aim of
this work was to plan routes for the charger ground robots
given the trajectory of the UAV worker robots. This problem
was formulated as a directed acyclic graph with vertex parti-
tions containing sets of charging points where rendezvous
can potentially occur for each worker robot. The authors
proposed a heuristic strategy that involves transforming the
graph problem to the traveling salesman problem and then
solving a mixed integer linear program using a heuristic
solver. Though, these multi-agent rendezvous algorithms are
energy efficient they do not account for communication cost
or travel time uncertainty.

In the context of route optimization on large Geographical
Information Systems (GIS), one of the notable result is
presented by Bast et al. in [8], where path planning and data
access are relevant constraints (without considering the ren-
dezvous process itself). Similarly, [9], and [10] worked on the
combined problem of route optimization and rendezvous in

large GIS systems. However, their methods neither consider
the route optimization post-rendezvous process nor minimize
the uncertainty in travel time.

Yan et al. [9], discuss an optimal meeting point algorithm
for street networks, applicable in the scenario where a tourist
bus is deciding on an optimal location to pick up passengers
who are at different locations. The optimal meeting point is
then selected based on the minimum sum distance criterion.
The desired target locations of the passengers are however,
not taken into consideration. In contrast, Papadias et al. [10]
consider the target locations of the agents while optimizing
the meeting point. An example would be the case where a
group of friends would like to meet for dinner and each one
has a different restaurant preference. The proposed algorithm
then selects a rendezvous location which minimizes the
sum of distances to all the points from a given set of
target locations. This problem has some similarity to our
work, presented in this paper, with a key difference that our
potential meeting locations are not the same as the target
locations of the agents.

III. PROBLEM DESCRIPTION AND ASSUMPTIONS

We consider the offline problem of finding the optimal
rendezvous location for two asynchronous agents moving in a
graph defined by city streets. Each agent has an independent
preferred trajectory and we seek a rendezvous location that
both agents can visit (where the first to arrive waits for
the second). Our approach is based on our previous work
[11], where we discretize the agent trajectories into segments
of uniform length, and select the corresponding preliminary
potential rendezvous locations that are fair with respect to the
travel time for each agent. We presume traffic information
(i.e. travel time) is collected and managed by a central
database and we can obtain this data over a selected road
segment at some cost per query. Hence, our optimization
criterion is to minimize the weighted sum of travel and
waiting time at the rendezvous location, and the number of
queries to the database.

We formally describe our problem with two agents A1

and A2 who are assigned paths U and V , respectively.
These paths are discretized into uniform time segments
separated by n waypoints, such that, U = {u1, u2, ..., un}
and V = {v1, v2, ..., vn} as illustrated in Fig. 2. The
potential rendezvous points are selected as the locations
where the expected waiting time for the two agents is zero,
given that the agents depart from and return to waypoints
synchronously. The set of these points is represented by
R = {r1, r2, ...rn}. The paths joining the waypoints to
potential rendezvous points are labeled as the bridge paths
and are denoted by b. The agents are allowed to leave and
rejoin their trajectories at any waypoint. This implies that the
agents are not bound to their original routes (U , V). Thus
our formulation of the problem facilitates the agents to have
different speeds.

Our goal is to find a rendezvous point r∗ ∈ R that
minimizes the total expected travel and waiting time given

Fig. 2: Paths executed by two agents where agent A2 is faster
than agent A1 and A1 skipped all the waypoints.

all the path combinations.

r∗ = argmin
ri

T (ri, j1, j2) (1)

where, T (ri, j1, j2) provides a set of shortest expected travel
times, given a rendezvous point ri, i ∈ {1, n} and number
of skipped waypoints, j1, j2 ∈ {0, (n−2)} for the agents A1

and A2, respectively. Each of these shortest expected travel
times is represented by t∗i,j1,j2 .

t∗i,j1,j2 = min
k1,k2

ti,k1,k2
(2)

ti,k1,k2
=

t(u1, uk1) + t(uk1 , ri) + t(ri, uj1+k1+1) + t(uj1+k1+1, un)

+t(v1, vk2
) + t(vk2

, ri) + t(ri, vj2+k2+1) + t(vj2+k2+1, vn)
(3)

where, t(ui, ui+1) denotes the expected travel time between
the nodes ui and ui+1. k1 ∈ {1, (n − 1 − j1)} and k2 ∈
{1, (n− 1− j2)} are indices for the waypoints in U and V
at which the agents A1 and A2 leave their respective paths
to rendezvous as shown in Fig. 3.

Fig. 3: Agent A1 leaves its path at the waypoint Uk1 to go
for rendezvous at ri and continues to its path after skipping
j1 waypoints. Agent A2 leaves its path at the waypoint Vk2

to go for rendezvous at ri and continues to its path after
skipping j2 waypoints.

In order to obtain an estimate of waiting time for the
two agents, we need to account for the travel time and the
uncertainty in travel time of the agents. Specifically their
travel duration in traffic conditions. Since we do not have
access to the actual travel durations in traffic conditions, we
model the travel time as a Gaussian random variable:

ti,k1,k2
∼ η(ti,k1,k2

, σ̂2
i,k1,k2

) (4)

where, σ̂2
i,k1,k2

is an estimate of the variance in the travel
time. In our formulation, we select the variance to be
proportional to the path length because the uncertainty in
travel time increases with the path length. This also allows
us to account for delayed departures.

The waiting time is then given by the difference in travel
times of the agents between their respective start locations
and the rendezvous point. Given that the travel times are
Gaussian random variables, the waiting time (tw) is also a
Gaussian with mean as the difference of the mean travel
times of the two agents and variance as sum of the variances,
as given in Eq. 5.

tw ∼ η(|t̄1 − t̄2|, (σ̂2
1 + σ̂2

2)) (5)

where,

|t̄1−t̄2| = |(t(u1, uk1)+t(uk1 , ri))−(t(v1, vk2)+t(vk2 , ri))|,

σ̂2
1+σ̂

2
2 = (σ̂2

1(u1, uk1)+σ̂
2
1(uk1 , ri))+

ˆ(σ2
2(v1, vk2)+σ̂

2
2(vk2 , ri)).

We select a truncated Gaussian distribution to account
for the above uncertainty in travel time for simplicity of
the analysis. Alternatively, it can be replaced with one of
the several statistical distributions presented in the related
work on traffic flow modeling [12]. It is interesting to note
that in the aforementioned paper, Aron et al., empirically
show that mixtures of Gaussian were the best fit to their real
data with traffic congestion. However, a Gaussian distribution
is unrealistic, because it assigns finite probabilities even to
negative travel times, albeit only with very small cumulative
probability. Although the difference in travel times is itself a
Gaussian with possibly-negative values, the resulting waiting
time is the absolute value of this Gaussian, which is strictly a
positive quantity. Thus, we transform the Gaussian distribu-
tion, representing the waiting time in Eq. 5, to a half-normal
distribution, as given below,

tw ∼ |t̄1 − t̄2|+ η(0, σ̂2
w) (6)

tw ∼ |t̄1 − t̄2|+ 2ηh

(
σ̂w

√
2

π
, σ̂2

w

)
(7)

where, σ̂2
w = σ̂2

1 + σ̂2
2 and ηh is a half-normal distribution

(Eq. 7). We finally derive the expected waiting time, tw as,

tw = |t̄1 − t̄2|+ 2σ̂w

√
2

π
(8)

We propose a heuristic cost function to account for
both travel time and waiting time. The cost ci,k1,k2

, of
a path where agents A1 and A2 depart from waypoints
k1 and k2 respectively, to reach a rendezvous location

ri (as in Fig. 3), is given as the sum of total expected
travel time ti,k1,k2 (Eq. 4) and expected waiting time (Eq. 8).

ci,k1,k2
= ti,k1,k2

+ |t̄1 − t̄2|+ 2σ̂w

√
2

π
(9)

Therefore, we aim to minimize the cost which is a proba-
bilistic bound on the total expected travel time, and includes
the expected waiting time.

IV. PROPOSED APPROACH

Our proposed approach requires two pairs of source and
target locations to represent the start and end points for the
two agents. We query for the shortest path between these
pairs of points to obtain the two paths U and V . These
paths are truncated to be of the same length and divided
into segments of uniform time for synchronizing the travel
times of the agents. The midpoints in travel time of the paths
joining the corresponding waypoints of the two agents are
selected as the potential rendezvous points. These midpoints
represent the locations where the expected waiting time for
two synchronized agents is zero, given their mean velocities.
For the asynchronous agents, the expected waiting time is
greater than zero and hence we account this factor while
calculating the cost optimal rendezvous location.

In order to find the minimum cost path using Eq. 9, we
need to account for all possible combinations of waypoints
that the agents can skip. The minimum number of skips,
considering one agent and one rendezvous point, is zero
which provides (n−1) possible paths. The maximum number
of skips are (n− 2) which can be traversed in only one way
i.e. navigating from the source location to the rendezvous
point and returning to the path at the target location. The total
number of possible paths for one agent and one rendezvous
point is n(n−1)

2 . A graphical representation of all possible
paths for 5 waypoints, one agent and one rendezvous point
is presented in Fig. 4. Similarly, the total number of paths

Fig. 4: An illustration of Exhaustive path combinations for
one agent and one rendezvous point.

for two synchronous agents having the same speed and
|R| rendezvous points is n(n−1)

2 |R|. For two asynchronous

agents, the total number of paths increases to n2(n−1)2

4 |R|,
since we need to consider all possible combinations of skips
for the two agents. In our problem formulation, there are as
many rendezvous points as the number of waypoints, i.e.,
|R| = n. Hence, we need O(n5) queries to consider all the
possible paths.

Querying for all the O(n5) paths to find the minimum cost
path can greatly increase the communication cost. Hence, we
propose a Hybrid algorithm to efficiently find the minimum
cost path with the smallest travel time and waiting time. We
compare this minimum cost with the cost of minimum travel
time path obtained using two extreme methods, namely,

• Euclidean algorithm and
• Exhaustive algorithm
For the Euclidean algorithm, all paths are compared in Eu-

clidean metric to find the shortest travel time path. The path
lengths are measured in Euclidean distance. The travel times
corresponding to these paths are obtained using Euclidean
distance and speed estimates of the two agents. Similarly for
the Exhaustive algorithm, all paths are compared with respect
to the actual travel times which are obtained by querying to
the street network database server.

Instead of iteratively querying to the database server for
the actual travel distance and time for all the O(n5) paths,
we propose a smart querying method. This method requires
cached queries for only the bridge paths. These bridge paths
can be added to the required segments from the paths U and
V to reconstruct the desired path by parts. Since there are
n waypoints and |R| rendezvous points, the total number of
bridge paths and hence, the total number of smart queries
for two agents are only O(n2).

We further minimize the number of smart queries using
our Hybrid algorithm. The assumption of this algorithm is
that the Euclidean distances are good first approximations of
the real street distances, as presented in our previous work
[11]. Given this assumption, we sort all the bridge paths in
ascending order of travel time using the Euclidean length
of the path and estimated average speed of the agents. We
then replace the shortest travel time in Euclidean space with
actual travel time by querying the database. This process
is performed iteratively, until we receive the shortest path
containing all parts in actual travel times.

Since we allow the two agents to have variable speeds,
we need to optimize the cost with respect to individual
rendezvous points such that the two agents select the same
rendezvous location. We achieve this by iteratively apply-
ing our algorithm to each set of paths having the same
rendezvous point. In addition, we pre-sort the rendezvous
points in ascending order of their cost in Euclidean space. A
summary of our proposed Hybrid algorithm is presented in
Algo. 1.

The best case result of this algorithm returns the path
corresponding to the least cost with 4 queries for the 4 bridge
paths and in the worst case the number of queries can be
four times the number of smart queries, hence, O(n2). For
calculating the travel time in Euclidean metric, we do not
require any queries to the server and so the number of queries

are zero. A comparison of the number of Exhaustive, Smart,
Hybrid and Euclidean queries is presented in Table I.

Queries
Exhaustive Smart Hybrid Euclidean
O(n5) O(n2) O(n2) 0

TABLE I: Number of queries

1) Input:
• Endpoint selection:{u1, un, v1, vn},
• Path generation: U(t) = {u1, u2, ..., un} and
V (t) = {v1, v2, ..., vn}

2) Rendezvous selection: generation of possible ren-
dezvous points R = {r1, r2, ..., rn}

3) Query synthesis:
• Find all the costs in Euclidean space using Eq. 9:
C = {C1, C2, ..., Cn} where, Ci is the set of costs
for all paths through Ri.

• Sort(Ci) in ascending cost order, ∀i.
• Sort(C) based on the minimum in each set Ci.
• Assign, cmin = min(C1)
• For each rendezvous point ri

– if (cmin > min(Ci))
then cmin = min(Ci), rmin = ri

– if cmin is not expressed as street network cost
then make it so.

– else cmin is the minimum cost in street network
space for the set Ci.
∗ Add, cmin to the set Ci+1

∗ Next ri
• c∗ = cmin, r∗ = rmin

• The minimum cost is c∗ And, the minimum cost
rendezvous location is r∗.

4) Path execution

Algorithm 1: Hybrid algorithm

V. EXPERIMENTAL RESULTS

We validate the proposed Hybrid algorithm (Algo. 1)
using our web application interface which we developed with
Google Maps API c© [13]. Our algorithm was applied to the
Google street network database for 8 cities around the world.
The source and target locations are randomly selected around
the city centers for 100 trials per city. We recorded the travel
time, waiting time, minimum cost and the number of queries
for Euclidean, Exhaustive and Hybrid algorithms.

We compare the cost of the path suggested by our Hybrid
algorithm to the cost of the shortest travel time path provided
by the Euclidean and Exhaustive algorithms in Table II.
It can be observed that the Hybrid algorithm provides an
intermediate cost between the underestimated Euclidean cost
and the cost corresponding to the actual shortest travel time
path provided by the Exhaustive algorithm. The fractional
cost improvement achieved by using Hybrid algorithm over

the Exhaustive algorithm is presented in the column: “%Re-
duced”. The cost reduced is typically small indicating that
the Hybrid algorithm finds paths similar to those produced
by the Exhaustive algorithm but with a much more efficient
data-access policy. In our experiments, the Hybrid algorithm
found the same solution as the Exhaustive algorithm in 47%
trials while saving 64% of queries over Smart queries on an
average. This indicates that the Hybrid algorithm is efficient
in finding the low cost trajectories with minimal database
queries.

A comparison of the total number of queries required to
find path combinations to the number of Smart and Hybrid
queries, along with percentage of queries saved by the Hybrid
algorithm over the smart queries is presented in Table II
(last column). In general, the percentage of queries saved are
correlated to how well the Euclidean algorithm represents the
actual travel times. We calculated the number of Smart and
Hybrid queries as a function of average number of waypoints
(n = 4.97), using Table II. We observed that on average,
for 8 cities, the multiplicative factor for Hybrid queries
(presented in Table III) is much lesser than the multiplicative
factor for the smart queries (0.75 < 2).

Queries
Total Smart Hybrid
O(n5) 2n2 0.75(n2)

TABLE III: Number of queries from the experimental results

In order to analyze the average travel and waiting time for
the minimum cost path provided by the Hybrid algorithm,
we compare them individually to the actual shortest travel
time path provided by the Exhaustive algorithm. Fig. 5,
illustrates a comparison for these average travel times. It can
be observed that the Hybrid algorithm finds paths which have
travel times similar to the actual shortest travel time provided
by the Exhaustive algorithm. The waiting time corresponding
to these travel times is presented in Fig. 6. The Hybrid
algorithm has shorter waiting time for all the cities when
compared to the waiting time of the shortest travel time path
provided by the Exhaustive algorithm.

The travel paths of the two agents along with the selected
rendezvous locations provided by Hybrid (green blob) and
Exhaustive (red blob) algorithms, are presented in Fig. 7. The
blob size is proportional to the waiting time for the illustrated
instance. The waiting time difference is significant for non-
grid like cities, Fig. 7 (e.g. Montreal, Tokyo, Sydney and
Hyderabad). Since in non-grid cities, the Euclidean metric
fails to provide a good approximation of the street distances,
the Hybrid algorithm ends up finding paths which have
slightly higher travel times than the actual shortest travel
time at the benefit of minimizing the waiting time. For the
grid-like cities, Fig. 7 (e.g. New York, San Francisco) the
Hybrid algorithm has good approximation of travel time from
Euclidean algorithm and hence finds path similar to the actual
shortest travel time with similar waiting times.

Cities Cost No. of Queries
Euclidean Exhaustive Hybrid %Reduced Total Smart Hybrid %Saved

Montreal 48.68 59.06 57.49 2.66 928.08 55.10 17.68 67.91
New York 46.88 57.34 56.39 1.66 980.9 57.98 18.32 68.40
San Francisco 58.05 67.51 65.35 3.20 1574.28 70.92 23.74 66.53
Paris 43.6 51.64 50.94 1.36 712.51 50.70 16.00 68.44
Singapore 47.03 60.52 58.86 2.73 548.90 47.46 20.67 56.45
Tokyo 32.62 40.86 39.72 2.79 135.09 28.72 11.14 61.21
Sydney 45.69 53.40 51.77 3.06 780.31 53.94 18.78 65.18
Hyderabad 47.47 61.43 59.60 2.98 768.03 52.28 21.79 58.32
Average 46.25 56.47 55.01 2.56 803.51 52.14 18.52 64.06

TABLE II: Average minimum cost and the corresponding number of queries.

Fig. 5: Average travel time (100 trials).

Fig. 6: Average waiting time (100 trials).

VI. CONCLUSIONS AND DISCUSSIONS

This paper addresses the rendezvous problem with real
agents in real street networks. We proposed a fast and effi-
cient rendezvous algorithm that accounts for expected delays
of two agents along their original routes. Our algorithm
minimizes the weighted sum of travel and waiting times
while reducing the number of database queries, thus making
it fast and efficient. We also presented an uncertainty model
that guarantees a probabilistic bound on the rendezvous
time for two agents. Our experimental results support our

hypothesis that with a small increase in the expected travel
time, we can achieve reduction in expected waiting time. In
addition, we generalized the problem formulation presented
in our previous work for synchronous agents [11] to agents
with variable speeds. This increased the total number of
possible paths and hence the number of queries quadratically.
We presented a Hybrid algorithm to reduce the number
of queries to the server. In conclusion, we achieved cost
optimal rendezvous location with minimum expected travel
time, reduced expected waiting time and the least number of
queries to the street network database.

(a) New York (b) Montreal (c) San Francisco

(d) Tokyo (e) Paris (f) Sydney

(g) Singapore (h) Hyderabad

Fig. 7: Rendezvous locations selected by Hybrid (green) and Exhaustive (red) algorithms. The blob size represents the
waiting time. Examples of rendezvous locations with similar waiting times (a,c,e,g) and high variation in waiting times
(b,d,f,h) between Hybrid and Exhaustive algorithms. Google maps API c©

REFERENCES

[1] S. Alpern and S. Gal. The theory of search games and rendezvous.
pages 165–178, 2003.

[2] A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in
graphs. Algorithms-ESA 2003, pages 184–195, 2003.

[3] N. Roy and G. Dudek. Collaborative robot exploration and rendezvous:
Algorithms, performance bounds and observations. Autonomous
Robots, 11(2):117–136, 2001.

[4] M. Meghjani and G. Dudek. Combining multi-robot exploration
and rendezvous. In CRV ’11: Proceedings of the 2011 Canadian
Conference on Computer and Robot Vision, pages 80–85. IEEE
Computer Society, May 2011.

[5] M. Meghjani and G. Dudek. Multi-robot exploration and rendezvous
on graphs. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages –. IEEE, 2012.

[6] P. Zebrowski, Y. Litus, and R.T. Vaughan. Energy efficient robot
rendezvous. In Computer and Robot Vision, 2007. CRV’07. Fourth
Canadian Conference on, pages 139–148. IEEE, 2007.

[7] Neil Mathew, Stephen L Smith, and Steven L Waslander. A graph-
based approach to multi-robot rendezvous for recharging in persistent

tasks. In IEEE Int. Conf. on Robotics and Automation, Karlsruhe,
Germany, 2013.

[8] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger,
Chris Harrelson, Veselin Raychev, and Fabien Viger. Fast routing
in very large public transportation networks using transfer patterns. In
Algorithms–ESA 2010, pages 290–301. Springer, 2010.

[9] D. Yan, Z. Zhao, and W. Ng. Efficient algorithms for finding
optimal meeting point on road networks. Proceedings of the VLDB
Endowment, 4(11), 2011.

[10] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest
neighbor queries. In Data Engineering, 2004. Proceedings. 20th
International Conference on, pages 301–312. IEEE, 2004.

[11] M. Meghjani and G. Dudek. Multi-agent rendezvous on street net-
works. In IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, China, 2014.

[12] Maurice Aron, Neı̈la Bhouri, and Younes Guessous. Estimating
travel time distribution for reliability analysis. In Transport Research
Arena (TRA) 5th Conference: Transport Solutions from Research to
Deployment, 2014.

[13] Gabriel Svennerberg. Beginning Google Maps API 3. Apress, 2010.

