
Multi-agent rendezvous on street networks

Malika Meghjani and Gregory Dudek

Abstract— In this paper we present an algorithm for finding
a distance optimal rendezvous location with respect to both
initial and target locations of the mobile agents. These agents
can be humans or robots, who need to meet and split while
performing a collaborative task. Our aim is to embed the
meeting process within a background activity such that the
agents travel through the rendezvous location while taking the
shortest paths to their respective target locations. We analyze
this problem in a street network scenario with two agents who
are given their individual scheduled routes to complete with an
underlying common goal. The agents are allowed to select any
combination of the waypoints along their routes as long as they
travel the shortest path and pass through the same potential
rendezvous location. The total number of path combinations
that the agents need to evaluate for the shortest path increases
rapidly with the number of waypoints along their routes. We
address this computational cost by proposing a combination of
Euclidean and street network distances for a trade-off between
the number of queries and a distance optimal solution.

I. INTRODUCTION

This paper examines multi-agent rendezvous problem in
real-world environments, and specifically rendezvous in ur-
ban environments where mobility constraints must be taken
into consideration. The key problem is to allow agents to ex-
ecute self-selected trajectories defined by a set of waypoints,
while also allowing them to meet (i.e. rendezvous) at some
point during their travels. We propose an energy efficient
rendezvous algorithm that combines this meeting process
with the background activity which is represented by the
sequential visitation of the waypoints. Examples of this kind
of optimization are often encountered in everyday life, when
a person would like to meet a friend on their way from office
to home, or more hypothetically in the future where industrial
robots are organizing the warehouse and would like to meet
each other for load balancing, or when automated taxis need
to load balance passengers. We propose a formalism for this
problem, along with an algorithmic approach to solving it in
a particular context, and then evaluate it using a web-based
application framework that we have developed.

Our particular representation of the problem is character-
ized by a pair of agents that wish to meet, a sequence of
waypoints for each agent, and an underlying road network
that expresses the allowable paths which the agents may
execute. While in prior work [1], we and others have exam-
ined this kind of problem using highly idealized topological
models, in the present work, we examine an instance of the
problem where the road network and navigation constraints
are expressed by an actual traversability database for urban

The authors are with the Centre for Intelligent Machines,
McGill University, Montréal, Québec, Canada.
email:{malika, dudek}@cim.mcgill.ca

Fig. 1: An instance of rendezvous planner using Google maps
API c©. The blue solid lines on the map indicates individual
agent trajectories, red arrows indicate waypoints, cyan circles
indicate rendezvous points computed using Euclidean metric
and red circles indicate rendezvous points generated using
actual travel times on the road network.

road networks embedded in a geographic information system
(GIS), such as the one used by OpenStreetMap [2], Mi-
crosoft’s Bing maps [3] or Google maps [4]. In this context,
we seek not only to optimize the performance goal of the
navigation problem, but we also seek to optimize the number
of queries to the database server that we use for planning.
In practice, query cost can be a significant factor in terms of
both real time delays and actual costs since such queries are
made using slow and costly cellular networks.

Thus, our problem entails three different classes of per-
formance criteria, namely waypoint visiting efficiency, ren-
dezvous efficiency and database query efficiency. The way-
point visiting efficiency can be seen largely in terms of the
length of the path that covers the waypoints and skips as
few of them as possible (with some skipping of waypoints
permitted if a penalty is incurred). The rendezvous efficiency
includes the consideration that both agents should arrive
at the rendezvous point at about the same time in order
to minimize waiting by one or the other (assuming that
the first to arrive waits for the second agent). Lastly, the
database query efficiency relates to the number of individual
queries that need to be posed across the Internet. We will
particularly address the waypoint efficiency and the database
query efficiency in this paper.

II. RELATED WORK

The multi-agent rendezvous problem was first introduced
as a search problem in game theory by Alpern et al. [5] who
extensively studied this problem on simple world models
(e.g. lines, circles and polygons) and in metric environments
[6]. The transition of this problem from theoretical environ-
ments to real world scenarios was addressed by Dudek et
al. in [7]. Specifically they proposed rendezvous strategies
for two robots to physically meet each other and share
maps while exploring unknown environments. Our previous
work [1], [8] is motivated by their rendezvous strategies for
exploring random graphs for multiple agents without any
prior knowledge. In the same work, we also introduced a
cost efficient ranking criteria for combining exploration with
rendezvous. The problem discussed in this paper however,
assumes a known world which helps in planning the ren-
dezvous off-line.

The prior work in multi-agent rendezvous literature finds
the rendezvous locations only with respect to the initial
locations and totally neglect the background activity and the
individual target locations of the agents. One such example
is the energy efficient rendezvous algorithm as proposed by
Zebrowski et al. in [9] for a group of heterogeneous robots.
The goal of this work was to minimize the total cost of
traveling to the rendezvous location. The authors proposed
a heuristic in which the local heading of individual robots
is iteratively computed, based only on the starting location
of the other robots. This solution was empirically shown to
be near optimal by comparing it against the globally optimal
solution.

An extension of the previous problem was addressed by
the same authors in [10]. This work, discusses the problem
of finding a set of meeting places for a tanker robot to
rendezvous individually with multiple worker robots such
that they can recharge with minimal energy expenditure. This
problem is analyzed in two parts, (a) finding optimal ren-
dezvous locations for meeting each robot and (b) obtaining
an optimal order for visiting them. It was shown that the
combinatorial problem of finding an optimal visiting order
and meeting locations together is NP-hard. Therefore, the
authors consider that the visiting order is given and solve
for finding optimal meeting locations only using a numerical
solution to sequentially resolve the optimal meeting locations
for each robot. This solution is a generalized version of the
facility location problem.

A similar application of using multi-agent rendezvous for
charging mobile robots was addressed by Waslander et al. in
[11]. The goal of this work was to plan routes for charging
ground robots given the trajectory of the UAV working
robots. This problem was formulated as a directed acyclic
graph with vertex partitions containing sets of charging
points where rendezvous can potentially occur for each
working robot. The authors proposed a heuristic strategy
that involves transforming the graph problem to a TSP and
then solving a mixed integer linear program using a heuristic
solver.

One of the related works in the context of route optimiza-
tion on large GIS systems was proposed by Bast et al. in [12]
where both routing and data access are relevant constraints
(without considering the rendezvous process itself). Yan et
al. [13] and Papadias et al. [14] worked on the joint problem
of route optimization and rendezvous in large GIS systems
and our work is motivated by their algorithms.

The former work, discusses an optimal meeting point
algorithm on street networks applicable in the scenario where
a tourist bus is deciding on an optimal location to pick
up passengers who are at different locations. The optimal
meeting point is then selected based on the minimum sum
distance criterion. The target locations of the passengers are
however, not taken into consideration. In the latter case,
the target locations are considered and it is similar to the
problem where a group of friends would like to meet for
dinner and each one has a different restaurant preference.
The proposed algorithm then selects a rendezvous location
which minimizes the sum of distances to all the points from
a given set of target locations. This problem is similar to our
work with the only difference that our meeting locations are
not the same as the target locations of the agents instead they
are the midpoints of the agent locations along their routes.

III. PROBLEM FORMULATION

We consider the following scenario for analyzing our ren-
dezvous problem. Two agents, A1 and A2, are assigned two
paths, U(t) and V (t) respectively, to follow as part of their
task. Let U(t) = {u1, u2, ..., un} and V (t) = {v1, v2, ..., vn}
be the discrete representation, as sequences of waypoints, of
these two paths. Let R = {r1, r2, ...rn} be the set of potential
rendezvous locations. These locations are the midpoints of
the waypoints that define the two paths. The agents are
initially located at u1 and v1 and their desired target locations
are un and vn. We design our problem such that the agents
depart from their original paths at locations uk and vk, at
the same time, attempt to meet at a rendezvous point ri and
return to their respective routes at some waypoints, u′k and
v′k. The total distance traveled by the two agents from their
source to target locations is required to be minimized with
respect to the rendezvous point. A graphical illustration of
our problem is given in Figure 2.

Fig. 2: U(t) and V (t) are the original paths of the agents with
{u1, v1} and {un, vn} as the source and target locations. In
this example r1 is the rendezvous location corresponding to
the shortest path: {u1, r1, u3, ..., un} for agent A1 where the
waypoint u2 is skipped.

For any particular agent, given a rendezvous location ri,
and a task path that consists of n waypoints, the number
of possible paths that visit the rendezvous point is n(n−1)

2 .
This is explained by exhaustively considering all possi-
ble combinations of the rendezvous points and number of
waypoints that the agent skips during its route. The agent
can either choose to visit all of its waypoints and there
will be (n − 1) possible paths to choose from or consider
skipping one waypoint with (n− 2) options and so on until
skipping all the waypoints with only one possible path from
the source u1 to rendezvous point ri and returning to the
original path at final waypoint un. Hence, the total number of
paths considering one agent and all the potential rendezvous
locations is O(n3) = n(n−1)

2 ∗ |R|.
We would like to find the rendezvous point r∗ that

minimizes the total path length among all the combinations
for the rendezvous points ri where i ∈ {1, n} and number
of skips j ∈ {0, (n− 1)} i.e.

r∗ = argmin
ri

D(ri, j) (1)

where D(ri, j) is a function that returns p∗i,j which is the
minimum path length for a given rendezvous point ri and
number of skips j.

p∗i,j = min
k

pi,k (2)

pi,k = bi,k + bi,(j+k+1) + d(u1, uk) + d(u(j+k+1), un) (3)

where k ∈ {1, (n− 1− j)}, is the waypoint index at which
the agent takes a detour from its path, d is the distance
function, bi,k represents the bridge distance between the
rendezvous point ri and waypoint uk. In our formulation,
the rendezvous points are selected as midpoints of the two
paths and therefore, the bridge distances are symmetric for
the two agents as given in Equation (4).

bi,k = d(ri, uk) = d(ri, vk) (4)

The cost function optimized in our above problem formu-
lation is purely based on the distance measurements which
does not account for the number of waypoints covered along
the way. This can be incorporated by associating a reward
with every waypoint and then optimizing the solution by
using a weighted sum of distances and rewards. Similarly, the
rendezvous locations can be prioritized based on the number
of interesting locations around it and the order in which they
occur along the agents’ routes.

IV. PROPOSED APPROACH

We analyze our problem on street networks using the
Google maps API [15]. We presuppose that the starting
and ending points for each agent are given, along with a
sequence of waypoints of interest between these points. In
our actual implementation, we allow the user to select the
starting and ending locations manually, and can synthesize
an illustrative set of waypoints using either domain specific
features (such as restaurants), uniform subdivision, or pre-
specified locations based on a task of interest. In this paper,

however, we consider the more idealized case where the
waypoints are generated automatically by partitioning the
most efficient route from start to end into uniform segments.
This case where the waypoints arise naturally from starting to
ending locations is inherent in some domains (e.g. highways)
and is easier to evaluate experimentally than paths that are
generated with a domain specific selection of waypoints,
such as drop off points for deliveries in a courier task.

Once the waypoints are obtained for the two agents, we
make their path lengths equal by truncating the longer path.
This is justified by the requirement that that two agents
need to meet before reaching their target locations. Next, we
calculate a street network path between uniform segments
of the two routes and we find the midpoint along this path.
This midpoint is considered as one of the potential meeting
locations. The process is repeated for all the segments along
the path to obtain a list of potential rendezvous locations.
For simplicity, we consider that the agents have the same
speed. Also, to reduce the number of directional queries to
the server we consider only the walking directions which are
bidirectional and hence symmetric for the two agents.

Given the original routes divided into segments and the
potential rendezvous locations, we exhaustively list O(n3)
combinations of possible paths for one agent at a time as
explained in Section III. Since the number of combinations
increase very fast with number of waypoints, we propose
a smart query reduction method. According to this method
we only require n2 queries to the server to enumerate all the
O(n3) path lengths for one agent. Specifically, we query only
the distances between the waypoints U(t) and rendezvous
points R as described in Equation (4). We combine these
distances with the segment lengths from the original routes to
obtain the total path length by parts for all the combinations.

Table I: Asymptotic bounds for worst case queries

Queries
Total Smart Euclidean Hybrid
O(n3) O(n2) 0 O(n2)

A further reduction in the number of queries can be
achieved by considering an inherent property of the street
networks. On the street networks, the Euclidean distances
provide a lower bound on the street network distances. We
leverage this fact and propose a hybrid combination of Eu-
clidean and street network distance measures for calculating
the path lengths. Specifically, we obtain a list of Euclidean
distances for all the bridge paths (paths towards and away
from rendezvous point as in Equation (4)) and arrange
them in ascending order. The bridge path corresponding to
the shortest path in Euclidean distance is re-evaluated for
street network distance. If the street network distance is still
the minimum in the list of bridge path lengths then the
rendezvous location along this path is selected. Otherwise,
the process is repeated until the shortest bridge paths are in
street network distances. This process can reduce the number

of queries to as low as 2 for two bridge distances (bi,k,
bi,(j+k+1)) in the best case and less than twice the number
of smart queries in worst case. The asymptotic number of
queries in worst case for all the methods is presented in
Table I and a summary of our hybrid approach is presented
in Algorithm 1.

• Initialization: endpoint selection:{u1, un, v1, vn}, way-
point selection (optional)

• Rendezvous selection: generation of possible ren-
dezvous points R = {r1, r2, ..., rn}

• Query synthesis: output the shortest path, p∗ =
{u1, ..., ri, ..., un} using hybrid queries as described
below:

– Find all path lengths in Euclidean space P = {pik}
with i ∈ {1, n} and k ∈ {1, (n− 1− j)}

– Sort them in ascending order Sort(P)
– If the shortest path p∗ = P [0] is not expressed in

street network distance then make it so
– Else p∗ is the real optimal path and r∗ = ri is the

distance optimal rendezvous location
• Path execution

Algorithm 1: Hybrid algorithm

V. EXPERIMENTAL RESULTS

We evaluated our algorithm on urban street network maps
from 10 different cities around the world. The source and
target locations for two agents, were manually selected in
and around the city centers. The results are compared based
on Euclidean distances, street network distances and hybrid
combination of Euclidean and street network distances. The
criteria for comparison are the shortest path length from
source to target location passing through rendezvous loca-
tion, number of queries made to the server and whether the
suggested Euclidean distance based rendezvous location is
accessible. A summary of the results is given in Table II
and some of the graphical representations of the results are
presented in Figures 3, 4 and 5.

We observed that the Euclidean based measures were a
close approximation to the street network path lengths when
used for calculating distances between the waypoints and the
rendezvous locations as illustrated in Figure 3. This property
of the street networks allowed us to significantly reduce the
total number of smart queries to the server as observed in
Table II.

The reduction in total number of queries can be compared
using the data in the queries column of Table II. This column
provides information regarding, the total number of possible
paths between source and target locations for one agent via
different rendezvous points which is O(n3), the number of
smart queries which is fixed at n2 and the number of street
network distance queries for the hybrid algorithm along with
number of queries saved by using the hybrid method instead
of the smart queries. The hybrid algorithm had lesser queries
than smart queries in all but one case and always provided

the same length of the path as obtained by smart queries
on street network distances. The average fraction of queries
saved using the hybrid algorithm in 10 scenarios, that we
illustrated is 40%.

An anomalous case can be observed for Hong Kong city,
where the shortest path was obtained at the cost of larger
number of queries than the smart queries but whithin its
worst case O(n2). This result can be explained by the
forest regions where there are no street network paths but
Euclidean distances underestimate the street network path
lengths. Another disadvantage of the Euclidean distance
based measurements is that the rendezvous locations may not
be accessible in some cases as illustrated in Figure 4. The
rendezvous location for the shortest path in each of these
scenarios are in the middle of a park, forest and lake respec-
tively. In addition, as the original path lengths of the routes
from source to target location increases, the Euclidean based
measures deviate more from the street network distances as
observed in the cases: Singapore (Fig.3(c)) and Mexico city.

The results reported in this section consider the agents to
be walking pedestrians. We also evaluated our algorithm in
driving mode for one of the special scenarios in Brussels,
as presented in Figure 5(a), where most of the roads are
unidirectional. In this case, we can observe that though the
path lengths were relatively short the street network distances
were largely underestimated by the Euclidean measures.
Another special case was evaluated in Paris city across a
strait where both the Euclidean and street network distance
based rendezvous points were relatively near each other but
all the Euclidean rendezvous points were suggested in the
water while all the street network rendezvous points were
suggested across the bridge.

VI. DISCUSSIONS AND CONCLUSIONS

This paper provides a proof of concept for a novel multi-
agent rendezvous problem in street networks. The previous
work for mobile agent rendezvous has been very focused
on idealized problems that, while illuminating, cannot be
readily applied in practice. On the other extreme, the real
world applications for human-human rendezvous using smart
phones, have been very popular with the goal of gathering
people to one single location. Typical practical solutions,
however, fail to account for many of the constraints and
specifically the joint optimization that characterizes our
problem. In our work we have bridged the gap between
pure theory based simulations and real applications using our
web application framework. In addition, we also addressed
the issue of reducing expensive query cost to the server for
finding the shortest path by combining Euclidean and street
network distance measurements. Our experimental results
suggest that the Euclidean based measurements can provide
a good first approximation of the street network distances
hence making the planning cost very reasonable.

VII. FUTURE WORK

The rendezvous planning problem can potentially be for-
mulated as an on-line problem rather than, or in addition

(a) New York

(b) San Francisco

(c) Singapore

Fig. 3: Examples of good approximation of Euclidean to
street network distance based rendezvous locations. Google
maps API c©

(a) Montreal

(b) Hong Kong

(c) Hyderabad

Fig. 4: Examples of inaccessible Euclidean distance based
rendezvous locations. Google maps API c©

Table II: A comparison of distances and number of queries for Euclidean, smart and hybrid methods

(a) Brussels with driving directions (b) Paris with rendezvous locations on the bridge

Fig. 5: Examples not included in Table II. Google maps API c©

to, the off-line optimization which we have considered
in this paper. The on-line planning extension can take into
consideration uncertainty in traffic patterns that is only de-
termined as the trajectory is executed, and thus can trade off
the expected impact of future uncertainty against rendezvous
efficiency. The on-line problem is a natural successor to the
off-line base problem considered in this paper.

VIII. ACKNOWLEDGEMENT

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) through the NSERC
Canadian Field Robotics Network (NCFRN). The authors
would specially like to acknowledge all the members of the
Mobile Robotics Lab at McGill University for their technical
discussions and motivation.

REFERENCES

[1] M. Meghjani and G. Dudek. Multi-robot exploration and rendezvous
on graphs. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages –. IEEE, 2012.

[2] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated
street maps. Pervasive Computing, IEEE, 7(4):12–18, 2008.

[3] Joe Schwartz. Bing maps tile system. Microsoft Developer network
Available: http://msdn. microsoft. com/en-us/library/bb259689. aspx,
2009.

[4] Daniel J Turco. Auto routing computer for eliminating the need for
maps or travel instructions, November 17 1981. US Patent 4,301,506.

[5] S. Alpern and S. Gal. The theory of search games and rendezvous.
pages 165–178, 2003.

[6] A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in
graphs. Algorithms-ESA 2003, pages 184–195, 2003.

[7] N. Roy and G. Dudek. Collaborative robot exploration and rendezvous:
Algorithms, performance bounds and observations. Autonomous
Robots, 11(2):117–136, 2001.

[8] M. Meghjani and G. Dudek. Combining multi-robot exploration
and rendezvous. In CRV ’11: Proceedings of the 2011 Canadian
Conference on Computer and Robot Vision, pages 80–85. IEEE
Computer Society, May 2011.

[9] P. Zebrowski, Y. Litus, and R.T. Vaughan. Energy efficient robot
rendezvous. In Computer and Robot Vision, 2007. CRV’07. Fourth
Canadian Conference on, pages 139–148. IEEE, 2007.

[10] Y. Litus, R.T. Vaughan, and P. Zebrowski. The frugal feeding problem:
Energy-efficient, multi-robot, multi-place rendezvous. In Robotics and
Automation, 2007 IEEE International Conference on, pages 27–32.
IEEE, 2007.

[11] Neil Mathew, Stephen L Smith, and Steven L Waslander. A graph-
based approach to multi-robot rendezvous for recharging in persistent
tasks. In IEEE Int. Conf. on Robotics and Automation, Karlsruhe,
Germany, 2013.

[12] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger,
Chris Harrelson, Veselin Raychev, and Fabien Viger. Fast routing
in very large public transportation networks using transfer patterns. In
Algorithms–ESA 2010, pages 290–301. Springer, 2010.

[13] D. Yan, Z. Zhao, and W. Ng. Efficient algorithms for finding
optimal meeting point on road networks. Proceedings of the VLDB
Endowment, 4(11), 2011.

[14] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest
neighbor queries. In Data Engineering, 2004. Proceedings. 20th
International Conference on, pages 301–312. IEEE, 2004.

[15] Gabriel Svennerberg. Beginning Google Maps API 3. Apress, 2010.

