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ABSTRACT
With the increasing availability of 4D cardiac imaging tech-
nologies, the need for efficient spatio-temporal segmentation
algorithms for the heart is growing. We propose a new method
for heart segmentation in 4D data sets. We efficiently use the
established graph cut method for the segmentation of the heart
by simultaneously exploiting motion and region cues. We
construct a 4D graph designed to find a moving object with
a uniform intensity from a static background. This method
has useful applications ranging from qualitative tasks such
as direct visualization of the heart by removing its surround-
ing structures, to quantitative tasks such as measurements and
analysis of the total heart volume. The method has been tested
on cardiac MRI sequences with successful results.

Index Terms— Image segmentation, Motion pictures,
Magnetic resonance imaging

1. INTRODUCTION

Cardiac motion provides additional physiological information
vital to the diagnosis and treatment of cardiac dysfunctions.
Traditionally 2D imaging such as fluoroscopy and echocar-
diography were used to sense the cardiac motion. Lately, im-
provements in MRI and CT imaging technologies allow the
visualization of a moving 3D heart. One important step in an-
alyzing the cardiac motion is the segmentation or isolation of
the heart throughout the whole image sequence.

Many different approaches have been proposed for 3D
segmentation of the heart. Popular methods (see [1] for a re-
view) include variational approaches ([2]), and model based
approaches ([3], [4], [5]), a growing interest also exists in
graph based approaches ([6], [7]). Efficient graph cut algo-
rithms allow the use of larger volumes ([8]) in faster time
([9]). Most of the works in cardiac segmentation actually fo-
cus on the blood pool, that is the inner boundary of the differ-
ent cardiac structures such as the left or right ventricle. Very
few works exist ([10]) in the segmentation of the total heart
as a single object including all chambers and myocardial mus-
cles.

Ingenious works ([11], [12], [13]) tackle the segmenta-
tion problem in the spatio-temporal domain. Temporal in-
formation improves the coherence of the segmentation pro-
cess throughout the whole image sequence. 4D approaches

usually try to recover the motion over time and later, moving
structures are segmented based on the results of the motion re-
covery. In [14] and [15], although computed iteratively, both
steps are formulated in the same functional to group image
layers of similar velocities. We propose to tackle the problem
by simultaneously segmenting the heart and exploiting mo-
tion information in a cooperative scheme. The method was
designed to be fast and robust for a majority of cases, while
allowing automatic processing as well as easy fine tuning of
the results.

2. METHOD

Our method is based on the graph cut algorithm ([6], [7]). We
incorporate motion cues in the algorithm in order to obtain
a smooth segmentation over time. The user can additionally
edit zones to be included or excluded in the final segmenta-
tion. First, we explain the graph cut algorithm. Secondly, we
show how to use motion cues extracted from the temporal do-
main into the algorithm. Lastly, we give details on how to
exploit user inputs.

2.1. Graph Cuts

In the graph cut algorithm, a graph G (Fig. 1) is constructed
from an image where each node in the graph corresponds with
a pixel p ∈ I in the image. All nodes are connected to two
extra special nodes, a source node specifying the object ter-
minal, and a sink node specifying the background terminal.

A cut C separating both terminals isolates the nodes in
two sets: those connected to object, and those connected to
background. The sum of the weights of all severed edges
(p, q) ∈ C gives its cost |C|. Finding the minimum cost |Ĉ|
yields the optimal segmentation f̂ of an object from its back-
ground. It has been proven ([16]) that such problem is equiva-
lent to finding the maximum flow of a graph, and polynomial
time complexity algorithms exist to find a global optimal so-
lution.

The energy to be minimized E(f) (or |C|) contains two
terms: the data term Edata(f) which tells how well the solu-
tion f fits with the observed data, and the smoothness term
Esmooth(f) weighted by a parameter λ which imposes a
smoothness constraint on the solution f ,



Fig. 1. 4D graph corresponding to 3 frames of a 33 volume.
Spatial links are all shown, and only temporal links of the
highlighted node are shown.

E(f) = Edata(f) + λEsmooth(f),where

Edata(f) =
∑
p∈I

Dp(fp)

Esmooth(f) =
∑

p, q ∈ N
fp 6= fq

Vp,q (fp, fq)

The data term will be discussed in the next sections and
will contain motion cues as well as user input information.
The smoothness term ensures that our segmentation f re-
mains smooth. An edge between two neighboring pixel
nodes p, q ∈ N having intensities I(p) and I(q) will have a
weight

Vp,q = exp

(
− (I(p)− I(q))2

2σ2

)
,

where the parameter σ controls the weight of the edge.
The smoothness term will thus favor segmented regions with
piecewise homogeneous intensities.

2.2. Motion Cues

In our method, we are actually looking for a moving ob-
ject surrounded by a static background. The terminal nodes
should therefore be named moving object and static back-
ground. Each pixel in the graph will be classified as either
being part of a moving object or part of a stationary back-
ground.

As in the optical flow method, a moving pixel is assumed
to have a varying intensity over time, and a stationary pixel
will have a constant intensity. The likelihood Dpi(obj ) of
pixel at time i for being part of an object will thus be good
if its pixel intensity variation between two frames i and i + 1
differs more than a value θmotion . Similarly, the likelihood
Dpi(bkg) for being part of the background will be low if the
intensity variation is below θstatic .

These will be the weights of the edges connecting all
nodes to both terminals, moving object and static background:

Dpi
(obj ) = µobj (pi) · exp

(
(I(pi)− I(pi+1))

2 − θ2
motion

)
,

Dpi(bkg) = µbkg(pi) · exp
(
θ2
static − (I(pi)− I(pi+1))

2
)

Note that our graph is designed to separate moving pixels
from stationary pixels and favor regions with uniform inten-
sities. This is why Vp,q only smooths intensity, motion cues
are given as a priori information. Both parameters µobj (pi)
and µbkg(pi) are factors affected by user inputs as explained
in the next section.

2.3. User Initialization

Motion appears in many regions. The heart is our target struc-
ture, but the chest also moves due to respiration, the lungs
being a very soft tissue presents motion, and the diaphragm
causes the respiration motion. If no additional information
is provided, the heart cannot be located, and large moving
regions having similar intensities will be grouped during seg-
mentation.

Typical graph cuts based methods for segmentation re-
quire the user to mark a few pixels as object and a few others
as background. Graph edges from these pixel nodes to either
terminal nodes will have infinite weights while all other pixel
nodes will have no links to the terminals.

We use a similar idea and we gradually affect the terminal
edge weight of a pixel with the geodesic distance of that pixel
to the set of marked pixels. The closer the pixel is to the set
of marked pixels and the more similar the pixel intensity is to
that set, the shorter its distance is. The geodesic distance be-
tween two points is the accumulation of the pixel intensities
along the shortest path between these two points. In our im-
plementation we used a region growing with a priority queue.

Our previous factors µobj (p) and µbkg(p) tell us how in-
fluent our motion cues should be at pixel p. For instance, if a
pixel is far away (in a geodesic sense) from the set of marked
object pixels, our terminal edge weight Dp(obj ) should be
low, similarly, if a pixel is close to the set, it is more likely to
be part of the object. We use:

µf (p) = exp
(
−df (p)2

2δ2

)
,

where dobj (p) or dbkg(p) is the geodesic distance from
point p to the set of marked object or background pixels, and δ
defines a radius of influence around each set of marked pixels.
If no pixels are initially marked as object nor background,
factors µf (p) could be set to 1.

3. RESULTS

The method has been tested on 5 MRI data sets. The first two
data sets have 11 and 14 frames of 88 × 128 × 16 volumes
presenting two human hearts. The next two data sets have



(a) Frames a time t0, t1, and t2

(b) 3D Segmentations

(c) 4D Segmentations

(d) 4D Segmentations using motion

Fig. 2. (a) Slices of 3 consecutive frames, and segmentation
results using (b) independent 3D graph cuts, the boundary
jumps from the outer to the inner myocardium wall, (c) 4D
graph cuts with no motion information, the myocardium is
not segmented, and (d) with motion information, the moving
myocardium is segmented.

both 25 frames of 256 × 256 × 18 presenting the same heart
from a long axis view and from a short axis view. The last
data set has 16 frames of 120× 128× 16 volumes presenting
only the apex of the heart.

We manually marked both ventricles with a single stroke
of paint, and added a second stroke of paint marking sur-
rounding areas such as the lungs or the organs below the heart.
We compared our results with 3 different algorithms, all using
the same parameters, user inputs, and graph connectivity.

The first method involves independent segmentations of
each frame using separate 3D graph cuts. We want to show
that segmentation using sole spatial information does not
guarantee temporal smoothness as shown in figure 2(b). In
these 3 consecutive frames of our first test volume (Fig. 2(a)),
the myocardium muscle is hardly distinguishable due to the
imaging conditions. That causes the segmentation boundary
to jump from the myocardium outer and inner walls be-
tween two consecutive frames. The second method involves
a spatio-temporal segmentation of all frames using a single
4D graph cuts. As traditionally used, terminal edges to the
marked object and background pixels are set with infinite
weight. The results in figure 2(c) show a more coherent
segmentation over time. The segmentation however fails to

(a) 3D (b) 4D (c) 4D+motion

Fig. 4. Slice of data set 4 with segmentation using (a) in-
dependant 3D graph cuts, (b) 4D graph cuts with no motion
information, and (c) with motion information.

include the moving surrounding myocardium. Our method
appearing on the last row of figure 2(d) detects the moving
myocardium while being coherent over time.

In all our cases, 3D graph cuts yield non coherent seg-
mentations over time. 4D approaches overcome this problem,
and our method using motion cues correctly adds additional
moving cardiac structures to the segmentation. The figure 3
shows all our 5 cases with the used markers.

In case 4 (Fig. 4), our method failed to include the my-
ocardium. When looking in 3D, the myocardium pixel inten-
sities are indeed similar to the surrounding organs pixel inten-
sities below the heart. Although it could be recovered with an
additional marking, we can observe that by looking at the de-
tails on figure 4, our method still includes additional moving
surrounding tissues. As no ground truth is available, and as
it is hard to perform a precise human expert segmentation co-
herent over time, it is difficult for us to state that our method
(Fig. 4(c)) clearly outperforms a 4D segmentation with sole
spatial information (Fig. 4(b)). In this case, a visual appre-
ciation tends to show that using motion cues leads to a better
segmentation.

Running separate 3D graph cuts is faster (from 3.38 sec
to 15.98 sec on a Core2 2.4GHz CPU) than running 4D graph
cuts (from 9.09 sec to 106.94 sec). In our implementation,
both methods using 4D graph cuts with and without motion
cues contain the same amount of nodes and links, so both
methods have similar running times. Our method also has a
small extra cost (from 1.73 sec to 6.73 sec) for computing
geodesic distances from the set of marked pixels.

4. DISCUSSIONS

In our method, we achieved utilizing motion cues directly in
the graph used for segmentation. Recovering a smooth mo-
tion information in a separate step has been shown to be diffi-
cult using the graph cuts method, layers of similar velocities
are rather recovered ([14]). But in this paper we try to show
that motion cues can still be successfully exploited in a joint
problem, where here segmentation and motion have to be pro-
cessed at the same time. Our graph has indeed been designed
to find a moving object with a uniform intensity in a single
step.



Case 1 Case 2 Case 3 Case 4 Case 5

Fig. 3. Heart segmentations in red of our 5 data sets, overlaid by the user marked voxels.

Future work include experiments on CT data where image
noise and blur bring challenging conditions, automating the
algorithm in a similar manner to [10] (i.e., finding the heart
with a growing ellipsoid). When advances in modern imaging
technology will permit, real time applications would be pos-
sible with little modifications (i.e. adding new volume frames
as new nodes to the graph, removing old frames as time goes
on). Shape and motion in the previous frames indeed mat-
ter, and the segmentation would benefit from our 4D method
using motion cues. It will be smooth and coherent over time.
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