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1 École Polytechnique de Montréal, Montréal Québec, Canada
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Abstract. This paper presents an approach based on graph cuts ini-
tially used for motion segmentation that is being applied to the non-
rigid registration problem. The main contribution of our method is the
formulation of landmarks in the graph cut minimization framework. In
the graph cut method, we add a penalty cost based on landmarks to the
data energy. In the presence of a landmark, we adjust the T-link weights
to cut strategic links. Our formulation also allows the spread of a land-
mark influence to its neighborhood. We first show with synthetic images
that minimization with graph cuts can indeed be used for non-rigid reg-
istration and show how landmarks can guide the minimization process
towards a customized solution. We later use this method with real im-
ages and show how landmarks can successfully guide the registration of
a coronary angiogram.

1 Introduction

In image processing, many applications rely on a point by point correspondence
for image analysis. In the medical field, comparing multiple images is an im-
portant task for diagnostics. For instance, when dealing with repeated imaging,
pathologies are easier to monitor when they are correctly aligned on the im-
ages. The need for a common reference is essential to integrate complementary
information acquired from different modalities (such as magnetic resonance or
computed tomography) in the same visualization framework. The correct align-
ment of these images requires the transformation mapping all points from one
image to the other image. Finding this transformation map is known as the
registration process.

Non-rigid registration is a challenging problem as each point can have its
own motion. Many approaches exist to solve the non-rigid problem ([1–3] for
surveys). Popular methods involve parametric models such as free form defor-
mations ([4]) or thin plate splines ([5]). These methods manipulate control points
which are handled automatically or are inputs from the user. Applying forces to
the deformation field is another popular approach. In [6] a physical model is used
by adding an elasticity constraint to the deformation field. Horn and Schunk [7],
and Lucas and Kanade [8], find the vector field by solving the optical flow equa-
tion which assumes a point keeps a similar intensity over time and the vector
field remains smooth.



Proc. of the 4th International Conference, ICIAR 2007, LNCS, Vol. 4633, pp. 167

Optical flow is a seminal method for a very related problem – motion seg-
mentation – where objects in images are found by segmenting the motion field.
Among the approaches proposed to solve motion segmentation, energy minimiza-
tion via graph cuts ([9–12]) finds a solution which has the nice property of being
within a known factor of the global minimum ([12]). Further work with graph
cuts ([13, 14]) handle occlusions in visual correspondence and motion segmenta-
tion. However, when the deformation field is assumed to be smooth and to have
no break, occlusions can be negligible. In non-rigid registration, this happens
when all points of an object have a correspondence on the other image.

The graph cut minimization framework as described in [12] can be used to
solve the non-rigid, unsupervised, registration problem. It has been used in [15]
to find visual correspondances between two images. We introduce in this paper
a formulation for landmarks that guides the minimization towards a customized
solution. This helps solve ambiguities and allows a supervision of the registration
process. The method will first be explained. Later, landmarks are being studied
with experiments using synthetic and real images.

2 Method

The main objective of this paper is to introduce landmarks in the graph cut
minimization framework. We propose a new energy formulation to solve a land-
mark based non-rigid registration. First, we formulate non-rigid registration as
an energy minimization problem that can be solved via graph cuts. Second, we
introduce landmark in the minimization framework.

2.1 Non-rigid Registration as an Energy Minimization

In a non-rigid deformation, although each pixel of an image can move freely, the
motion is assumed to be locally coherent. The deformation field undergoes two
forces, one that matches the warped image with the original image, the second
that keeps the deformation field smooth.

Let the deformation field be represented by a vector field f where each vector
has a deformation fp ∈ L defined in RD. The deformation field between two
images I1 and I2 can be recovered by minimizing the following energy:

E(f) =
∑
p∈I

D (I1(p), I2(p + fp)) + λ
∑

p,q∈N
V (fp, fq) (1)

The first term, Dp(fp), measures how the data differs between the original
image and the warped image. For instance, it can be the squared sum of differ-
ences. When using multimodal images, mutual information can be used ([16]).
The second term, Vp,q, measures the smoothness of the deformation field. It
can be the norm of the difference of two neighboring vectors. The parameter λ
controls the smoothness.
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w(α, p) = D(α)
w(ᾱ, p) = D(fp), if p /∈ Pα

w(ᾱ, p) = ∞, if p ∈ Pα

w(p, a) = V (fp, α), and similar for w(a, q)
w(p, ᾱ) = V (fp, fq)
w(p, q) = V (fp, α), when fp = fq

p ∈ Pα if the link (p− α) is cut
p ∈ Pfp if the link (p− ᾱ) is cut

Fig. 1. An example of a graph used in an iteration of the α expansion algorithm. Here,
four variables are implemented with four graph nodes. Two special nodes α and ᾱ,
connected to the variable nodes with data links, optimally assign the value α or fp to
each variable. All link weights w are provided on the right.

Boykov et al ([12]) show two algorithms based on graph cuts: the α expan-
sion and the α − β swap algorithms. They minimize any functional (1) whose
smoothness term is either metric or semi-metric, that is:

V (α, β) = 0 ⇔ α = β

V (α, β) = V (β, α) ≥ 0
V (α, β) ≥ V (α, γ) + V (γ, β)

If the first two conditions are satisfied, the smoothness term is said to be
semi-metric, and the α − β swap algorithm can be used. However, if all three
conditions are satisfied, the term is said to be metric, and the α expansion can
also be used. A metric term is chosen for (1), for instance:

E(f) =
∑
p∈I

(I1(p)− I2(p + fp))
2 + λ

∑
p,q∈N

||fp − fq|| (2)

The main idea of the α expansion algorithm is to iteratively minimize the
energy, testing one value α at a time. Here, α can be any allowed deformation,
e.g., α = (+1,+1) pixels. At each step, graph cuts (Fig. 1) optimally assign
fp = α to the deformation field f . The α region is said to expand. In [12], a
more in depth explanation of the α expansion algorithm is provided.

One attractive property of the α expansion algorithm is that it guarantees a
convergence towards a local minimum E(f̂) that is within a known factor of the
global minimum E(f∗):

E(f̂) ≤ 2
(

maxfp 6=fq
||fp − fq||

minfp 6=fq ||fp − fq||

)
E(f∗)

2.2 Landmarks in the Graph Cut Framework

The recovery of the deformation field as just proposed earlier is a non super-
vised process. The inputs are the two images, and the minimization finds the
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Fig. 2. Penalty associated with a landmark. The landmark transformation (f(k) =
{−25, +25}) is displayed with the arrow – The image shows for each pixel the cost
to assign a transformation fp such that fp 6= f(k), i.e., different than the landmark
transformation. The penalty cost gets high in the landmark neighborhood and tends
to zero when it is far from the landmark. This cost will eventually change the data cost
Dp for each pixel.

best deformation field. Introducing landmarks into this framework would allow
interaction and control from the user.

A landmark k ∈ K defines a motion f(k) ∈ L at its position p(k) ∈ I. In
other words, the pixel siting at a landmark position p(k) on the original image is
known to have moved by f(k) on the second image. This can be seen as a hard
constraint on the motion field.

In the minimization framework, that means, where there is a landmark k,
the transformation of pixel p should always be the label f(k). In the graph cut
methods, wherever there is a landmark k at a pixel p, it should be impossible
to cut the data link, or T-link, (α− p) with α 6= f(k) (i.e. the pixel p cannot be
assigned something else than the label f(k)). This is enforced by setting these
link weights to infinity, or more generally:

Dp(α) = ∞ if α 6= f(k) at a landmark site k

A landmark can influence its neighborhood by using a penalty cost over the
whole image. This penalty is infinity at the landmark site and quickly decreases
around the landmark. For instance, the data term can be:

Dp(α) = dp(α) + µ
∑
k∈K

f(k) 6=α

r2

|p(k)− p|2
(3)

Besides the standard data cost dp(α) (e.g. sum of squared differences), all
landmarks, whose deformation f(k) 6= α, provide a penalty based on the distance
of the point p to each landmark (Fig 2). Here r is the distance within which the
landmark k has a strong effect on point p. Beyond this distance, the penalty
drops below 1 and tends to 0 at infinity. If the point p is at a landmark site, the
penalty is infinity and it is not possible to assign the value α at this point. µ is
a factor controlling the penalty of landmarks.
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Note here that the cost to assign α does not depend on landmarks whose
deformation is f(k) = α. Regions with the label f(k) could not only happen
around the landmark site, but anywhere. By adding no penalty for f(k) = α, all
regions are given an equal opportunity to be assigned f(k).

3 Results

To validate our method we use three experiments. The first shows how to recover
a non-rigid deformation field. The second shows how landmarks can influence the
deformation map. The third is a real case example with a coronary angiogram.
There, we show that the use of landmarks can improve the visual quality of the
deformation map in a graph cut minimization framework.

During the experiments, the data term of (2) has been replaced with the
landmark formulation (3) (second term, below). This yields to:

E(f) =
∑
p∈I

(I1(p)− I2(p + fp))
2 + µ

∑
p∈I

∑
k∈K

f(k) 6=fp

r2

|p(k)− p|2
+ λ

∑
p,q∈N

||fp − fq||

3.1 Synthetic Transformation

In this experiment a recovered deformation map is compared with its ground
truth. The figure 3b shows the known transformation between image I1 (Fig 3a)
and image I2 (Fig 3c) such that for a pixel p, I1(p) = I2(p + fp).

It is known from the ground truth that a pixel moves at most by 15 pixels.
The used label set is then fp ∈ {(dx, dy)}, where dx ∈ [−15;+15] and dy =
[−15;+15]. A smoothness coefficient of λ = 0.01 has been used. Minimization
with graph cuts could successfully recover the deformation map (Fig 3e). This
transformation has been applied on image I2 which resulted in an image I ′2 (Fig
3d) very close to I1. The registered image I ′2 is constructed from pixels of I2

such that I ′2(p) = I2(p + fp).
The recovered map is almost identical to the ground truth. The exaggerated

difference (Fig 3f) shows it is almost zero. However disconcordancies appear
at the top right corner of the image (gray sky). This region is mainly uniform
and many transformations can lead to a correct solution. In such regions, the
optimization tends to produce piecewise uniform rigid transformations.

3.2 Influence of Landmarks

The registration process is an ill-posed problem. Many transformations can lead
to the given images. Here, we show that landmarks can favor one solution to
another. Two vertical bars are moved apart by 20 pixels (original on Fig 4a,
final on Fig 4b). Many transformations can move the two bars apart. Three
labels are used fp ∈ {(−20; 0), (+20; 0), (0, 0)}. A pixel can move left, right,
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(a) image I1
(b) transformation

(ground truth)
(c) image I2

(d) registerd I2 with I1
(e) transformation

(recovered)
(f) difference

Fig. 3. Recovering a non-rigid transformation map: (a,c) Image I1 and I2, and (b) the
ground truth f∗ such that I1(p) = I2(p+ f∗p ). (d) shows the registered image I2(p+ f̂)

overlayed with I1 in light contours. (e) shows the recovered transformation map f̂ .
(f) shows the magnitude of the squared difference of the deformation map f̂ with its
ground truth f∗ (intensities are multiplied by 5 for a better comparison).

or remain static. When running the graph cut optimizer, the deformation field
shown on the figure 4c shows a line delimiting the motions moving the vertical
bars apart.

As the image intensities are either black or white, this line could be anywhere
between the two vertical bars. By placing two landmarks (Fig 4a), the motion
of white regions is fixed to the left on top of the image, and to the right on its
bottom. The smoothness coefficient has been set to λ = 0.01 and the landmark
influence to µ = 1 and r = 3. The deformation field recovered by the graph cut
optimizer shows that the landmarks dragged correctly the white regions (Fig
4d,e).

With graph cuts, the graph topology is known to change the cut metric. With
a neighborhood of 4 pixels, A cut between two neighbors can either be vertical
or horizontal. That means a graph cut such as on the figure 4d is cheaper than
the cut on the figure 4e. With a neighborhood of 8 pixels, diagonal cuts are now
permitted and the length of the graph cut on figure 4e becomes cheaper.

1 each landmark is displayed with a small arrow. Its base is where a pixel was on the
first image, and its tip points to where the pixel moved on the second image.
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(a) (b)

(c) (d) (e)

Fig. 4. Landmark influence: (a) original image with control points1, (b) final image.
(c) shows the recovered transformation map without landmarks. (d) shows the defor-
mation map with the use of landmarks and a 4 neighborhood system, and (e) with a
8 neighborhood system.

3.3 Real Case

Knowing that graph cuts can recover a non-rigid deformation field and that
landmarks can influence the solution, we applied this method on a real case im-
age. Two arbitrary frames from a coronary cineangiogram have been used. From
the images, the general motion of the vessels is downward. Heuristic inspections
yield that the vessel can move horizontally with dx ∈ [−18;+18] pixels, and
vertically with dy ∈ [−18;+5] pixels. This is used to reduce the search domain
and speed up the optimization. The smoothness coefficient is set to λ = 0.01
and the landmark influence to µ = 1 and r = 3.

On the figure 5c,d, no landmarks are used. The minimization prefered to
register the dark spine on the left side of the image rather than register the
vessels. That is because the vessels are too thin compared to the background and
as the graph cut minimization finds a solution close to the global optimum, the
recovered deformation field favored the registration of the background. This can
be solved by using landmarks located on the vessels (Fig 5e,f). The deformation
field becomes constrained in the vessels area and the solution on the figure 5e
shows an improvement on their alignment.
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(a) first frame I1

with landmarks
(b) second frame I2

(c) registered I2

without landmarks
(d) deformation field

(e) registered I2

using landmarks
(f) deformation field

Fig. 5. Non-rigid registration with landmarks: The first row shows two frames from a
coronary angiogram with the landmarks indicated with small arrows; the second row
shows the registration without landmarks, as seen on (c) the minimization prefers to
register the background (dark spine on the left and diaphragm on the bottom) rather
than the vessels (which are much smaller compared to the background); the third
row shows the registration with landmarks, as seen on (e) landmarks help register the
vessels. Images on (c) and (e) show the registered image I2 with the original frame I1

(in light contours). Images on (d) and (f) show the deformation map.
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4 Discussion

In this paper we proposed to use landmarks with the graph cut minimization
framework for non-rigid registration. The original framework has been used for
many applications including segmentation, restoration of images, visual corre-
spondence and in particular motion segmentation. As this last problem is closely
related to image registration, it is possible to use graph cuts to recover a non-rigid
transformation. Furthermore, a formulation for landmarks in this framework can
guide the minimization process towards a solution influenced externally. This
way, the registration process becomes supervised and interactive. The results
showed an example where a physician can use landmarks to correct an unsu-
pervised registration. Landmarks could also be set by an automatic process,
which could rely on a segmentation result. Furthermore the concept of land-
marks could be applied to other graph cut applications. They can set known
visual correspondences, or known intensities in image restoration.

The combinatorial nature of the graph cut method only allows a finite set of
possible transformations. The label set must include all possible transformations.
This is a limitation for the use of graph cuts in non-rigid registration. A different
approach using continuous values for transformations as well as a better way
to control the smoothness of the deformation field will allow a more complete
framework for non-rigid registration with graph cuts. Future work will aim into
these issues.
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