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Abstract

In the short time since publication of Boykov and Jolly’s

seminal paper [3], graph cuts have become well established

as a leading method in 2D and 3D semi-automated image

segmentation. Although this approach is computationally

feasible for many tasks, the memory overhead and supralin-

ear time complexity of leading algorithms results in an ex-

cessive computational burden for high-resolution data. In

this paper, we introduce a multilevel banded heuristic for

computation of graph cuts that is motivated by the well-

known narrow band algorithm in level set computation.

We perform a number of numerical experiments to show

that this heuristic drastically reduces both the running time

and the memory consumption of graph cuts while produc-

ing nearly the same segmentation result as the conventional

graph cuts. Additionally, we are able to characterize the

type of segmentation target for which our multilevel banded

heuristic will yield different results from the conventional

graph cuts. The proposed method has been applied to both

2D and 3D images with promising results.

1. Introduction

The graph cuts technique of Boykov and Jolly [3] has

witnessed an explosion of interest in recent years, rising

rapidly to become one of the leading algorithms for inter-

active segmentation in 2D and 3D [12, 9, 11]. Concur-

rently, the resolution of digital cameras and medical imag-

ing scanners continues to increase at a rapid pace, e.g., it

is not uncommon for a present-day Computed Tomography

(CT) scanners to produce volume data of more than 100

million voxels. Although the algorithm presented in [4]

operates at an interactive speed for lower-resolution digital

photographs, its use for interactive segmentation of higher-

resolution images and volumes is limited both by the intense

memory requirements and the supralinear time complexity.

In the present work, we explore the use of a multilevel

heuristic from the level sets literature to produce the high-

quality segmentations of graph cuts, while drastically re-

ducing the computational burden. Specifically, we perform

graph cuts on a low-resolution image/volume and propagate

the solution to the next level by only computing the graph

cuts at that level in a narrow band surrounding the projected

foreground/background interface. Since the algorithm is

run only on the subgraph that comprises the narrow band,

the additional computation required at the fine resolution is

significantly less than running it on the full graph. Addi-

tionally, since weights need only be stored for the coarse

resolution and the interior of the fine-resolution bands, the

memory requirement is also significantly less. For higher-

order connectivity of an image graph, this savings can be

enormous.

Multilevel approaches have a long history of exploration

in the context of Markov Random Fields (MRFs), of which

graph cuts is a special case. Although there is a vast litera-

ture on this subject (see [10] for a review), the problems re-

main: Given conditional probabilities between sites at a fine

level, how does one construct conditional probabilities at a

coarse level? Given a solution at a coarse level, how can this

be used to find a solution at the fine level? In the context of

graph cuts, the sites are graph nodes (i.e., pixels or voxels)

and the between-site probabilities translate to edge weights.

In other words, given a fine-level, weighted graph, how does

one construct weights for a coarse-level graph? Moreover,

once a solution is obtained for a coarse-level graph, how

may that solution be used to obtain a fine-level solution?

Exact answers to these questions were given by Gidas’ work

[5] based on renormalization group theory from statistical

mechanics. Unfortunately, the coarse-level graphs require

enough additional edges that the benefit of reducing to a

coarser grid is reduced or eliminated. A different type of

approach was taken by Krishnamachari and Chellappa [8]

where the coarse-level parameters were estimated by mini-

mizing the Kullback-Leibler distance between local condi-

tional distributions and the solution was propagated from a

coarse level to a fine level as an initialization for a local op-

timization method. However, in the context of graph cuts,

which is a global optimization approach, such an initializa-
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tion is not relevant. For this reason, we chose to modify the

graph by removing all nodes outside of a narrow band in-

stead of using such an initialization scheme. Presegmenta-

tion on a fine-level image may also be used by coarse-level

graphs. In the recent work from Li, Sun, Tang and Shum

[9], the graph cuts technique is used on watershed regions.

Hence solving the coarse-level graph will immediatly lead

to a fine-level segmentation. However having a fast solving

of a coarse-level graph is at the expense of a watershed pre-

computation that could be very costly. Also, giving that the

watershed algorithms result in an unpredictable number of

regions, it is not clear what the gain of speed and the reduc-

tion of memory consumption could be for large images and

volumes.

We take the position in this work that the quality of graph

cuts segmentation has now been well-established. There-

fore, our aim is to give details of our multilevel banded ap-

proach and verify empirically that the computational burden

is dramatically reduced while maintaining the segmentation

quality of graph cuts. Additionally, we seek to provide the

reader with an understanding of when to expect our heuris-

tic to fail and when we should expect it to perform well.

Section 2 develops our method and provides implementa-

tion details. In Section 3 we compare the computational

speed and memory requirements of our approach to stan-

dard graph cuts. Next, we apply this hierarchical algorithm

to a set of shapes with increasingly complex boundary in

order to provide the reader with an intuition of when to ex-

pect failure of this heuristic. Finally, segmentation results

on a set of 2D and 3D images are presented in Section 4. A

conclusion follows in Section 5.

2. Multilevel Banded Graph Cuts

2.1. Image Segmentation by Graph Cuts

We begin by briefly summarizing the Boykov and Jolly’s

graph cuts algorithm to N -D image segmentation [3]. Note

that in this paper we use the term “segmentation” for its

meaning of delineating a boundary of one or multiple ob-

jects from images rather than the meaning of partitioning

images into disjoint regions.

An N -D image can be specified by a pair (P, I) consist-

ing of a finite discrete set P of N -D points (pixels in R2

and voxels in R3), and a mapping I that maps each point p
in P to a value I(p) in some arbitrary value space. From a

given image, we can construct a weighted undirected graph

G = (V, E, W ) that consists of nodes (vertices) v ∈ V ,

edges e ∈ E, and nonnegative weights (costs) w ∈ W .

There are two special nodes in V : a source S node specify-

ing the “object” terminal and a sink T node specifying the

“background” terminal. The remaining nodes in V forms

a subset U = V/{S, T } where each node u ∈ U uniquely

identifies an image point in P . The set of edges E con-

sists of two types of undirected edges: n-links (neighbor-

hood links) and t-links (terminal links). Each image node

u ∈ U has two t-links {u, S} and {u, T } directly connected

to the terminal S and T , respectively. However, n-links are

completely determined by the neighborhood system used

(e.g., 4- or 8-neighborhood system in 2-D, and 6-, 18-, or

26-neighborhood system in 3-D1).

The segmentation of an image into object and back-

ground, known also as the hard segmentation, can be ex-

pressed as a binary vector A = (A1, · · · , Au, · · · , A|U|),
where the element Au gives the binary segmentation la-

bel of an image point identified by the node u. Boykov

and Jolly [3] show a segmentation A can be uniquely de-

termined by a cut C on the graph G, where the cut C is

defined as a subset of edges in E such that the terminals be-

come separated on the induced graph G(C) = (V, E/C).
Hence, the image segmentation problem can be solved as a

minimum graph cut problem on the following energy func-

tion

Ĉ = argmin
C∈F

∑

eij∈C

wij , (1)

where eij denotes the edge e spanning between the nodes

vi, vj ∈ V , wij denotes the weight assigned to the edge eij ,

and F denotes the set of all feasible cuts.

Assume that O and B denote the subsets of image nodes

marked as “object” and “background” seeds by the user.

Then the weight wij for the graph is given by 2

wij =



















exp
(

−
(Ii−Ij)2

2σ2

)

/dist(ui, uj) ui, uj ∈ U,

MAX ui ∈ O, uj = S,
MAX ui ∈ B, uj = T,
0 otherwise,

(2)

where dist(ui, uj) is the Euclidean distance between image

points pi and pj , identified by nodes ui and uj , respectively,

Ii = I(pi), Ij = I(pj), and MAX is a very large positive

constant. This energy penalizes cuts that pass through ho-

mogeneous regions and encourages cuts that pass through

places where intensity discontinuity is large. The constant

parameter σ can be either chosen empirically or estimated

as a standard deviation over an image sample.

One of the most desirable properties of the graph cut al-

gorithm compared to other energy minimization techniques

is that the global minimum of the above energy function

can be computed efficiently using a polynomial complex-

ity algorithm. In this paper, we use the recent max-flow

implementation proposed by Boykov and Kolmogorov [4]3

1Larger neighborhood systems typically yield better image segmenta-

tion results but at the expense of both increased running time and memory

consumption.
2Here, we used a simplified form that contains the boundary term only.
3Boykov and Kolmogorov’s max-flow implementation is publicly

available at http://www.cs.cornell.edu/People/vnk/software.html.
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Figure 1. Multilevel banded graph cuts algorithm

that has been shown to perform several times faster than

standardmax-flow implementations for the task of image

segmentation.

2.2. Multilevel Banded Approach

Despite the fact that the graph cuts technique provides a

powerful tool for image segmentation, the speed and mem-

ory consumption constrain its feasibility in many applica-

tions where large data sets need to be processed. For ex-

ample, the memory allocation for the graph construction in

Boykov and Kolmogorov’s max-flow implementation needs

24|V | + 14|E| bytes. To segment a typical CT volume of

size 5123 in a medical application, the memory consump-

tion is more than 8GB, obviously impractical for today’s

clinical computers. Moreover, finding the minimum cut for

a graph of such large size is prohibitive due to the polyno-

mial worst case complexity.

Inspired by both the multilevel graph partition

method [6] and the well-known narrow band algorithm

in level set methods [1], we propose a new segmentation

algorithm that first solves the graph cut on the coarsest level

graph and then solves the graph cut at successive higher

resolution but on a narrow banded graph derived from

the minimal cut found at the previous coarser graph. The

algorithm is illustrated in Figure 1. This multilevel banded

approach makes it possible to achieve high quality segmen-

tation results on large data sets with faster speed and less

memory consumption, thus allow it to be used in a wider

range of medical applications as well as in other practical

applications where high performance segmentation of large

image data sets is crucial.

Our proposed multilevel banded graph cuts method con-

sists of three stages: coarsening, initial segmentation, and

uncoarsening similar to those existing multilevel graph par-

tition methods (cf. [6, 2]). However, if the same strategy of

multilevel graph construction is applied to design a multi-

level graph cut algorithm, the memory consumption is not

reduced because the original graph is still needed to start the

coarsening process and refine the segmentation in the end.

Therefore, we favor the strategy of coarsening directly on

images using a standard multiresolution image technique as

the original image is almost always needed in the memory

for practical applications, hence its memory consumption is

typically not considered part of the segmentation algorithm

overhead.

During the coarsening stage, a sequence of smaller im-

ages {I0, I1, ..., IK}, are constructed from the original im-

age I0 such that the size constraint Mk
n ≤ Mk−1

n is sat-

isfied for each dimension n = 1, · · · , N and each level

k = 1, · · · , K , respectively. Note that our constraint does

not require the size in each dimension to be reduced si-

multaneously. In additional to image coarsening, the lo-

cation of the object and background seeds identified by O
and B are also coarsened as well. However, extra care is

required when coarsening the seeds, the seed coarsening

operator must satisfy the causality constraint that the dis-

crete topology [7] of both object and background seed re-

gions is preserved throughout all levels, i.e., the number of

connected object and background seed regions must be pre-

served. As a result, different coarsening operators should

be separately chosen for coarsening image and seeds, re-
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Figure 2. Speed and memory usage compared to standard graph cuts. The processing time and
memory usage are shown in (a) and (b) for 2D images, and (c) and (d) for 3D volumes. Our approach
significantly reduces the processing time and memory consumption.

spectively. In this paper, we coarsen an image using either

a simple weighted mean filter followed by a downsampling

of 2 operation or simply a downsampling of 2 operation,

which has been found to yield good empirical results. An

ad-hoc seed location coarsening operator is chosen such that

the causality constraint is satisfied.

The second stage is the initial segmentation of the coars-

est image IK . We first construct a coarse graph GK =
(V K , EK , WK) for IK according to Section 2.1 and then

solve the minimum cut CK quickly on the coarse graph

GK . This minimum cut yields a segmentation on the im-

age IK .

During the uncoarsening stage, we construct a binary

boundary image Jk to represent all the image points that

are identified by the nodes in the cut Ck, k ∈ {1, · · · , K},

and project them onto a higher resolution boundary image

Jk−1 at level k−1 using an image uncoarsening operator. It

is worth noting that the uncoarsening operator need not be

the dual operator of the image coarsening operator used in

the first stage due to the binary nature of the boundary im-

age. In this paper, we use the uncoarsening operator defined

as follows:

Jk−1(p) = Jk(α(p)), (3)

where p = (p1, p2, · · · , pN ) is an N -D point and α(p) =
(α1(p1), α2(p2), · · · , αN (pN )) is the reduction mapping

used in the coarsening phase to reduce the dimension size

under the size constraint.

The resulting boundary image Jk−1 contains a narrow

band that bounds the candidate boundaries of objects to be

extracted from Ik−1. The width of the band could be con-

trolled by an optional dilation of the band by a distance

d ≥ 0. The dilation distance parameter plays an impor-

tant role in practice. If d is small, the algorithm may not

be able to recover the full details of objects with high shape

complexity or high curvature. On the other hand, if d is

large, the computational benefits of banded graph cuts will

be reduced and the wider band may also introduce potential

outliers far away from the desired object boundaries. In our

implementation, we found that choosing d = 1 gives good

compromise between accuracy and performance for most

of the real-world 2D and 3D images. The graph Gk−1 is

constructed as follows:

• Construct a banded graph Gk−1 using only nodes in-

side the band from the boundary image Jk−1,

• Use the band’s outer layer as the new background

seeds B and the band’s inner layer as the new object

seeds O. In the degenerated case, where the band con-

tains no inner layer due to either segmenting small ob-

jects or using large band width, we choose to use the

coarsened object seeds at level k−1 as the object seeds

O. It can be shown that coarsened object seeds are

guaranteed to lie inside objects to be segmented due to

the way our algorithm is constructed, and

• Assign the weights of all edges according to (2).

Once the graph Gk−1 is constructed, we can solve the mini-

mum cut Ck−1 on Gk−1 and then repeat the same uncoars-

ening procedure recursively at the next level until the mini-

mum cut C0 is solved on the banded graph G0, yielding the

final segmentation result.

Note that all other graphs at levels k = 0, · · · , K − 1
have banded graph structure except the graph GK , which is

significantly smaller than the full grid graph constructed for

the image at the same level. Because we use a much smaller

graph in all resolutions, both the run time and the mem-

ory consumption of the algorithm is considerably reduced

compared to the single graph cut algorithm, resulting in a

significantly accelerated segmentation process (typically on

the order of a magnitude in our experiments).

3. Banded vs. Conventional Graph Cuts

This section compares the performance of multilevel

banded graph cuts and conventional graph cuts [3] in terms
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of speed, memory usage, and segmentation accuracy. The

ability of capturing high frequency structures is showed

through an experiment.

3.1. Improvement on Speed and Memory Usage

The experiments are performed by segmenting a set of

2D images and 3D volumes of different sizes using the mul-

tilevel banded graph cuts and the conventional graph cuts.

The tests are performed on a computer with a Pentium 4

2.4GHz CPU with 2GB RAM. In two level banded graph

cuts, we tested different downscaling factors of 2, 4, and 8.

We use the same foreground and background seed positions

by projecting them from the original image to the low res-

olution image. The graph connectivity in this experiment is

4 for a 2D image and 6 for a 3D volume.

Figure 2(a) shows that our approach is 8 times as fast as

the original graph cuts algorithm using a downscaling factor

of 2. Figure 2(b) shows that it consumes 4 times less mem-

ory. This result is expected because the memory allocated

for a low resolution graph is 4 times as small as the origi-

nal graph and the memory is freed before new memory is

allocated for the banded graph. The processing time of the

multilevel banded graph cuts includes standard graph cuts

applied on the low resolution level and the banded graph

cuts. Figures 2(c,d) show similar result performed on 3D

volumes. At a downscaling factor of 2, our approach con-

sumes 8 times less memory than standard graph cuts.

3.2. Segmentation Accuracy

We used a set of real world pictures (5 sample images

of total 15 images are shown in Figure 3) to compare our

segmentation results with standard graph cuts. In each pic-

ture, we randomly place an object seed in the brighter region

and a background seed in the darker region. By brighter re-

gion or darker region we mean that the intensity is higher or

lower than the average intensity of the picture. Considering

the standard graph cuts segmentation results as the ground

truth, the multilevel banded graph cuts obtained the average

under-segmentation and over-segmentation ratios of 1.60%

and 2.64%.

We made an experiment to show how our algorithm per-

forms with different downscaling factors on images with

various shape complexities. A flower-like picture is mod-

ified so that the amplitude of petals are increased and the

original version of the flower is a disk. Multilevel banded

graph cuts with downscaling factors of 2, 4, 8, and 16 are

applied on these images. Table 1 shows the result of this

experiment. The first column of Table 1 is the result of the

standard graph cuts algorithm. In subsequent columns, the

downscaling factor is increased. Even at the highest com-

plexity, both under-segmentation and over-segmentation ra-

tios are low except when the downscaling factor is 16. From

Resolution

1 2 4 8 16

original 0% 0% 0% 0%

0% 0% 0% 0%

original 0% 0% 0% 0%

0% 0% 0% 0%

original 0% 0% 0% 0.02%

0% 0% 0% 0.05%

original 0% 0% 0.01% 0.20%

0% 0% 0.02% 0.33%

original 0% 0.01% 0.07% 34.43%

0.05% 0.31% 1.10% 2.43%

Table 1. Robustness to high complexity
object. Undersegmentation and over
segmentation ratios are listed. Each column
corresponds to a different downscaling factor
of the low resolution graph.

our experiments, a downscaling factor of 2 or 4 is a practical

choice for most images.

4. Segmentation Results

In this section, we show the segmentation results of our

approach for different type of images. Figure 3 shows the

interactive segmentation results of four 2D pictures using

the multilevel banded graph cuts. The first row shows the

original images with the superimposed seed points. Yellow

strokes are for the object and blue strokes are for the back-

ground. The second row shows the segmentation results of

standard graph cuts, where the cuts are displayed in white.

The third rows shows the segmentation results of multilevel

banded graph cuts, which achieves similar results but con-

siderably reduces the processing time and memory usage.

Figures 4(a,b) show a heart segmentation from a 3D
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512×512 320×240 800×600 600×800 900×1200

2.66s, 39MB 0.38s, 9MB 2.70s, 73MB 11.89s, 73MB 12.52s, 165MB

0.24s, 12MB 0.06s, 3MB 0.63s, 21MB 0.84s, 20MB 1.39s, 46MB

Figure 3. Graph cuts vs. multilevel banded graph cuts on 2D images. The first row shows the
original images with superimposed user input (yellow strokes for foreground and blue strokes for
background). The second row shows the standard graph cuts results. The third row shows that
multilevel banded graph cuts provides similar results but with higher speed and less memory usage.

CT volume of size 256×256×185. The graph cuts algo-

rithm requires 192.27s to segment and consumes 1024MB

of memory. With our approach, the segmentation of the

same region with the same inputs requires 11.85s and uses

186MB memory. The results are qualitatively similar to the

standard graph cuts result. Figures 4(c,d) show a pulmonary

artery segmentation from the same CT volume. The graph

cuts algorithm requires 63.78s to segment and consumes

1010MB of memory. With our approach, the segmentation

of the same region with the same seeds requires 8.63s and

uses 165MB memory. Differences occur in high frequency

regions as shown in Figure 4(d) where small vessels of the

pulmonary artery are under-segmented using the multilevel

banded graph cuts. Figures 4(e,f) show a lung segmenta-

tion from a CT volume of size 256×256×216. The graph

cuts algorithm requires 68.46s to segment and consumes

1236MB of memory. With our approach the segmentation

of the same region with the same seeds requires 14.43s and

uses 239MB of memory. The results are almost identical in

both algorithm results as shown in Figure 4(e) and (f).

5. Conclusions

We have presented a heuristic that provides a fast,

memory-efficient, algorithm that produces nearly the same

results as the popular graph cuts segmentation technique.

Time and memory efficiency were compared with conven-

tional graph cuts, as well as a qualitative and quantitative

examination of the segmentation accuracy. We found that

use of even a small number of levels in the hierarchy re-

sulted in an increase in time and memory efficiency of sev-

eral orders of magnitude. Finally, we offer the reader a

characterization of the type of segmentation target that we

expect the heuristic to perform on. Specifically, we find that

our heuristic achieves very similar results compared to con-

ventional graph cuts, unless the boundary of the segmenta-

tion target is “spiky” and the number of levels in the hierar-

chy is large. If either the target has a smooth boundary or

a conservative number of levels are used in the hierarchy, a

near-perfect result is obtained.

Future work includes an attempt to set coarse-level

weights that more accurately reflect the underlying fine-



Proceedings of the ”Tenth IEEE International Conference on Computer Vision”, ICCV 2005 Volume 1, pp. 265

Original Banded (2 levels)

(a) 192.27s, 1024MB (b) 11.85s, 186MB

(c) 63.78s, 1010MB (d) 8.63s, 165MB

(e) 68.46s, 1236MB (f) 14.43s, 239MB

Figure 4. Graph cuts vs. multilevel banded
graph cuts on 3D images. Heart segmenta
tion using standard graph cuts (a) and the
multilevel banded graph cuts (b). Pulmonary
artery segmentation using the graph cuts (c)
and the multilevel banded graph cuts (d).
Lung segmentation using the graph cuts (e)
and the multilevel banded graph cuts (f).

level graph and to explore methods for using the projected

fine-level solution as a starting point for finding the global

optimal of the graph cuts functional.
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[10] P. Pérez and F. Heitz. Restriction of a Markov random

field on a graph and multiresolution statistical image

modeling. IEEE Transactions on Information Theory,

42(1):180–190, January 1996.

[11] C. Rother, V. Kolmogorov, and A. Blake. “Grabcut”:

Interactive foreground extraction using iterated graph

cuts. In Proceedings of ACM SIGGRAPH 2004, vol-

ume 23, pages 309–314. ACM Press, April 2004.

[12] N. Xu, R. Bansal, and N. Ahuja. Object segmentation

using graph cuts based active contours. In IEEE Inter-

national Conference on Computer Vision and Pattern

Recognition, volume 2, pages 46–53, 2003.


