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ABSTRACT  

The  hippocampus  is  a  prominent  subcortical  feature  of  interest  in  many  neuroscience  studies.  Its  subtle
morphological  changes often predicate illnesses,  including Alzheimer’s,  schizophrenia or epilepsy.   The precise
location of structural  differences requires a reliable correspondence between shapes across a population. In  this
paper,  we  propose  an  automated  method  for  groupwise  hippocampal  shape  analysis  based  on  a  spectral
decomposition of a group of shapes to solve the correspondence problem between sets of meshes. The framework
generates  diffeomorphic  correspondence  maps  across  a  population,  which  enables  us  to  create  a  mean  shape.
Morphological changes are then located between two groups of subjects. The performance of the proposed method
was evaluated on a dataset of 42 hippocampus shapes and compared with a state-of-the-art structural shape analysis
approach, using spherical harmonics. Difference maps between mean shapes of two test groups demonstrates that
the two approaches showed results with insignificant differences,  while Gaussian curvature measures  calculated
between matched vertices showed a better fit and reduced variability with spectral matching. 
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1. INTRODUCTION 

The  hippocampus  is  the  main  target  of  deformation  in  many  neurodegenerative  diseases  [1].  Extracting  its
morphological  characteristics  is  an  important  and  challenging  problem  in  medical  image  analysis.  Early
morphological  studies  on  the  hippocampus  were  based  on  volumetric  analysis,  which  had  the  advantage  of
simplicity [2, 3]. However, structural changes at specific locations were not accurately detected using volumetric
frameworks.  Thus,  hippocampal  shape  analysis  has  emerged  as  a  way of  evaluating  morphology location  and
magnitude in the brain anatomy.

Several  works  have  proposed  hippocampal  shape  analysis  via  deformable  registration  to  a  template,  where
population-wise comparisons are performed by analyzing the individual deformable transformations [4, 5]. Another
type of shape analysis method is based on medial surface descriptions, which allows for the quantification of local
positional changes by assessing morphological variation of the skeleton extracted from a given object [6, 7]. Besides
these,  some methods  use  spherical  harmonics  description  combined  with  Point  Distribution  Models  (PDM) to
discover  structural  differences  across  a population [8,  9].  However,  these surface-based frameworks  depend on
establishing vertex correspondence across subjects, which are prone to inter-subject variability and are more adapted
to sphere-like shapes. 

SPHARM-PDM is a popular groupwise shape analysis method based on spherical harmonic combined with point
distribution  models.  This  method  solves  the  correspondence  problem  by  the  alignment  of  the  spherical
parametrization  using  a  first  order  ellipsoid  [9].  In  this  method the  spherical  description  of  surface  meshes  is
sampled into triangulated surfaces via icosahedron subdivision. These surfaces are then spatially aligned using rigid
Procrustes  alignment.  However,  as  this  method  establishes  correspondence  on  simplified  spherical  models  of
surfaces, it is restricted to surfaces with spherical topology and is computationally expensive.

In this work we propose an alternative groupwise hippocampal shape analysis approach based on spectral matching
in which the correspondence  maps are computed using a new surface  matching approach  presented in [10].  In
spectral matching relationships are modeled as graphs and an eigendecomposition of these graphs enables us to
match similar features.  The objective of this work is to investigate whether  a  shape analysis  method based on



spectral matching could produce similar shape geometries on hippocampus and identify groupwise differences to
SPHARM-PDM method.

2. METHODS

The  inputs  to  the  proposed  method  include  two  groups  of  hippocampus  meshes.  Our  framework  establishes
correspondences across  surface points for each group using spectral  matching and creates  two mean shapes as
outputs. The workflow for the procedure is illustrated in Fig. 1.

In the proposed method, an initial reference is randomly selected and all vertices of all other surfaces are matched to
the reference image. A spectral matching approach presented in [10] is used to find the correspondence between
each mesh and the selected reference image. This approach is able to provide a diffeomorphic correspondence map
between two surfaces. Before applying this method, a preliminary correspondence map has to be generated between
two  meshes.  We  used  a  conventional  spectral  matching  method  presented  in  [11]  to  compute  this  initial
correspondence map. In section 2.1,  the spectral  method for matching two surface meshes is  briefly described.
Section 2.2 presents the groupwise hipppocampal  shape analysis  approach,  in which the vertex correspondence
between meshes is established using the spectral matching method described in section 2.1.

2.1. Matching two surfaces using spectral matching 

Given two surface meshes S(1) and S(2 ), the matching between these two shapes is conducted in a two-step process
(Fig 2.a and b). At first, we build the graph  g(i)

={V (i) , E (i)
}from the set of vertices and edges of each surfaceS(i).

Then, the weighted adjacency matrix  W (i ) is defined in terms of node affinities. The diagonal node degree matrix
D(i ) is determined as the sum of all point affinities. The general Laplacian operator on a graph g(i) is formulated with
L(i )

=G−1
(D(i)

−W (i)
) where  G is  a  diagonal  node weighting  matrix  (G=D(i )).  The  eigendecomposition of  each

graph’s Laplacian matrix  L(i)reveals its spectral components. After reordering the spectral components by finding
the optimal permutation of components between the pair of meshes, regularization is performed by matching the
spectral embeddings. The correspondence map c between each pair of vertices on  S(1) and S(2 ) is established with a
simple nearest-neighbor search between spectral representation of  S(1) and  S(2 ).  An overview of the procedure of
finding the correspondence map c is shown in Fig 2.a.

In the next step, the final map (diffeomorphic match) between two surfaces S(1) and  S(2 ) is obtained as shown in
Fig2.b. In this procedure, an association graph  g a={V 1,2 , E1,2, c} is defined as the union of the set of vertices and

edges of two surfaces S(1) and S(2 ) with an initial set of correspondence links c between both surfaces. The spectral
decomposition of this unique association graph creates a shared set of eigenvectors that enables a direct mapping 
φ1→2 between two meshes (see [10] for more details). 

2.2.  Morphological Analysis
Let {S (i)}i=0,. .. , n be a set of n+1 surface meshes. We would like to compute the mean shape S̄ as the geometric mean

of all surface meshes in the set. For that purpose, at first an initial reference mesh S(0 ) is selected randomly. Then, all
vertices of all meshes S(i)are matched to the reference mesh S(0 ), using the spectral mapping {φi→0 }i=0,. .. , n described
in section 2.1. In the next step, the mean surface  S̄ is defined by averaging the 3D coordinates of corresponding
surface points across the group. The position of point x̄ j on mean surface S̄ is defined as follows: 
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Where ́x j
(i) is the interpolated position of point i on surface S(i) computed using the mapping φi→0. 



Figure 1. Hippocampal shape analysis between two groups of subjects (group A and B) using spectral matching. At first, an

initial reference image is selected randomly in each group (A(0 )
and  B(0 )

 in top row). Then, all vertices of all meshes are mapped
to the reference image using the spectral matching algorithm (second and third rows).  Finally, the mean surface of each group is

created (bottom row).
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Figure 2. (a) Initial matching of two meshes using the algorithm proposed in [11]. (b) Final correspondence mapping
between two surfaces based on diffeomorphic spectral matching approach in [10].

By applying the proposed approach to two groups of surface meshes (A and B) and obtaining a mean shape for both
groups (Fig.1), the local shape differences between groups can be detected by computing a difference map between
two mean shapes after registering them together.

3. RESULTS

To evaluate the performance of the proposed spectral  matching method, we  used a dataset  of 42 hippocampus
shapes  obtained  from  schizophrenic  patients  [12].  The  hippocampi  were  segmented  from  IR-Prepped  SPGR
(Inversion  Recovery-Prepared Spoiled  Gradient  Echo)  data  segmented  originally  at  0.9375x0.9375x1.5mm
resolution  as  part  of  an  adult  schizophrenia  study (mean  age  32,  all  male  gender).  All  cases  have  been  fully
randomized and group association has been performed to create two different groups (group A and group B) with 21
subjects (42 subjects in total).  We compared the performance of the spectral matching approach with a state-of-the-
art method used for groupwise analysis of anatomical shapes, namely SPHARM-PDM [9].

We generated mean shapes, for both groups of subjects, using our spectral groupwise framework and SPHARM-
PDM.  The distance maps between the mean shapes produced by both methods are illustrated in Fig. 3. Dice volume
difference measures, Hausdorff distance, and average absolute distance between the mean shapes of group A and B
are listed in Table 1. These results suggest that the proposed spectral framework produces similar groupwise shape
differences as SPHARM-PDM.

Figure 3. (a) Distance map between group A and B using SPHARM-PDM. (b) Distance map between group A and B
with spectral matching. The proposed framework based on spectral matching yield similar results as the state-of-the-art

method.



Table 1. Shape differences between mean shape A and mean shape B.

Spectral Matching SPHARM-PDM

Dice Coefficient 0.92 0.92

Hausdorff Distance (mm) 1.20 1.18

Mean Absolute Distance (mm) 0.03 ± 0.39 0.03 ± 0.38

Fig. 4 presents the comparison between mean shapes computed using spectral matching and SPHARM-PDM.  The
Dice coefficient, Hausdorff distance, and average absolute distance are reported in Table 2.  This shows that our
method yields similar accuracy than the method based on spherical harmonics .

Figure 4. (a) Difference map for mean shape A. (b) Difference map for mean shape B. There is a small difference
between mean shapes computed using spectral matching and SPHARM-PDM.

Table 2. Shape differences obtained with spectral matching and SPHARM-PDM.

Mean shape A Mean shape B

Dice Coefficient 0.99 0.98

Hausdorff Distance (mm) 0.29 0.36

Mean Absolute Distance (mm) 0.0028 ±0.0459 0.0031 ± 0.0636

In order to assess the variability in curvature between matched vertices in spectral matching and in SPHARM-PDM,
the gaussian curvature was computed at  each vertex of  all  meshes in the dataset.  We computed the minimum,
maximum, mean, and the standard deviation across all correspondent vertices, and obtained the average metrics for
vertices  (Table 3).   These show that  the measures  are similar  between both approaches.  More importantly,  the
spectral  matching  approach  shows  a  lower  standard  deviation  compared  to  SPHARM-PDM,  indicated  lesser
variability in the curvature measure for matched vertices.

Table 3. Curvature measures computed with spectral matching and SPHARM-PDM

Group A Group B

Spectral Matching SPHARM-PDM Spectral Matching SPHARM-PDM

Max curvature 5. 35×10−4 5. 46×10−4 5. 47×10−4  5. 5×10−4

Min curvature 2 .9×10−4  2 .89×10−4 2 .51×10−4 2 .42×10−4  

Mean curvature 4 .14×10−4  4 .16×10−4 3.90×10−4 3. 95×10−4  

Std curvature 6 .54×10−5 6 .89×10−5  7 .55×10−5 8. 05×10−5  



In the final experiment, the Euclidean distance was computed between all correspondent vertices using both spectral
matching and SPHARM-PDM. The minimum, maximum, mean,  and the standard deviation across  all  matched
vertices are reported in Table 4. These results show that the distances between matched vertices are similar in both
methods.

Table 4. Distance measures obtained with spectral matching and SPHARM-PDM

Group A Group B

Spectral Matching SPHARM-PDM Spectral Matching SPHARM-PDM

Max distance (mm) 2.61 2.53 3.24 2.91

Min distance (mm) 0.43 0.43 0.57 0.62

Mean  distance
(mm)

1.36 1.37 1.58 1.61

Std distance (mm) 0.57 0.56 0.66 0.62

4. DISCUSSION

In this work, a new approach for groupwise hippocampal shape analysis is proposed in order to detect regional
alterations of hippocampal morphology in neurological conditions such as schizophrenia and epilepsy. The proposed
scheme finds diffeomorphic correspondences among a population of surfaces in the spectral domain. This enables us
to create a  mean shape and locate the morphological  changes  between two groups of  healthy and pathological
subjects.

In  this  paper  the  performance of  the  proposed approach  was  compared  with  a  state-of-the-art method,  namely
SPHARM-PDM [9].  Looking  at  the distance  maps between  mean shapes  created  using  spectral  matching  and
SPHARM-PDM methods,  we  find  that  both  methods  yield  differences  which  are  statistically  insignificant.  In
addition to distance maps, the accuracy of the obtained mean shapes using spectral matching was evaluated using
the Dice volume difference measure. According to the reported Dice coefficient, there is almost a perfect overlap
between the mean shapes computed using spectral matching and SPHARM-PDM.

In order to indicate the variability of correspondent vertices, we computed curvature measures at each vertex of all
meshes in the dataset. Comparing curvature measures obtained from both spectral matching and SPHARM-PDM
method, shows that the matched vertices have close variability in both methods. However,  the average standard
deviation of  curvature  measure  for  spectral  method is lower compared to SPHARM-PDM, which indicates  the
reduced variability and better fit of matched vertices in spectral method.

 In  order  to  achieve  higher  accuracy  in  surface  matching,  additional  information  (e.g.,  texture,  anatomical
information,  or  landmark  positions)  can  be  incorporated  in  extended  spectral  representation.  These  additional
information which can be embedded as weights in graph nodes and as extra coordinates lead to little computational
expenses in the mapping part of our framework. Further improvements of the method lies in enhancing the quality of
input meshes.  The number of vertices, the quality of triangulation, and the smoothing level of the meshes are the
effective factors that play an important role in the accuracy of the result. The more accurate the input surface meshes
are, the more valid the result of hippocampal shape analysis would be. Therefore, further work seek to incorporate
additional features to help improve the matching, and to propose a strategy to provide proper input surfaces.

5. CONCLUSIONS

In this paper, a new approach for groupwise hippocampal shape analysis based on spectral matching is described.
Our proposed scheme finds diffeomorphic correspondences among a population of surfaces in the spectral domain
which could be an alternative to the current hippocampal morphometry analysis methods. The performance of the
proposed approach was compared with the SPHARM-PDM method [9]. According to the experiments,  the two
methods  showed  results  with  insignificant  differences.  In  order  to  improve  the  accuracy  of  our  groupwise



hippocampal shape analysis approach, we need to incorporate additional information in spectral matching, as well as
enhancing the quality of input meshes. 
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