
 Lecture 8

More Hidden Surface Removal

Efficient Painter
- binary space partition (BSP) tree

Efficient Ray Casting
- spatial partitioning (uniform, octrees)
- bounding volumes

Recall last lecture ...

front face back face

Also last lecture: Painter's Algorithm

Sort polygons in depth. Use the farthest vertex in each
polygon as the sorting key.

Then draw polygons from "farthest"
to "nearest" (back to front).

Split polygons when necessary.

 More general problem:
moving observer, static scene

We want to quickly find the back-to-front depth
ordering AND avoid the problems of the Painter's
algorithm.

Recall: binary search tree (COMP 250, 251)

How to build? How to use ?
http://www.cim.mcgill.ca/~langer/250.html

Binary space partition (BSP) tree.

It is a binary tree.

Each node has a polygon P.
(Number of nodes = number of polygons.)

Left descendents of P are in front of P.

Right descendents of P are in back of P.

Pick a polygon P. This is the root node of the tree.

Three cases for each remaining polygon:
1) is entirely "in front of" P
2) is entirely "in back of" P, i.e. behind P
3) intersects P's plane... in which case, split into two
 polygons which gives cases 1) and 2).

How to define/build a BSP tree ? Example: pick a for the root

b intersects a's plane, so split b.
c is in front of a.

Convention:
Left subtree is in front.
Right subtree is in back.

b1 is in front of a.
b2 is in back of a.

BSP tree

c is in front of b1.

Space is partitioned into
five regions.

How are they numbered ?

Convention:
Left subtree is in front.
Right subtree is in back.

makeBSPtree(list of polygons){
 if list is empty
 return(NULL)
 else {

select and remove a polygon P from list
backlist := NULL
frontlist := NULL
for each polygon Q in list of polygons

if all vertices of Q are in front of plane of P
 add Q to frontlist
 else if all vertices of Q are behind plane of P
 add Q to backlist
 else // plane P splits Q
 split Q into two polygons and add them to

frontlist and backlist, respectively
 return combine(makeBSPtree(frontlist), P,

makeBSPtree(backlist))
 }
}

Use BSP tree to draw back-to-front

Traverse the BST tree doing depth-first-search,
such that:

- draw every polygon (node).

- draw far surfaces before near surfaces. How ?

displayBSPtree(root, viewer){
 if (root != NULL)

if (viewer is on the front side of root plane){
displayBSPtree(backchild, viewer)

 drawPolygon(root)
displayBSPtree(frontchild, viewer)

 }
else { // viewer is behind the root note

displayBSPtree(frontchild,viewer)
 drawPolygon(root) // back faced culled,
 so not necesssary

displayBSPtree(backchild,viewer)
 }
}

Q: What is the order of
 the leaves visited ?

A: 2, 3, 4, 1, 5

Main advantage of BSP tree method
(over Painter or Depth Buffer) ?

If scene is static, then we can precompute the BSP
tree.

We can then quickly find back-to-front ordering from any
viewer position.

 Lecture 8

More Hidden Surface Removal

Efficient Painter
- binary space partition (BSP) tree

Efficient Ray Casting
- spatial partitioning (uniform, octrees)
- bounding volumes

Recall general ray casting

t_intersect = infinity
p = NULL
for each polygon { // inefficient

 if (ray intersects the polygon
 and t_intersect < t_min)
 t_min = t_intersect
 p = polygon
}

http://www.cs.princeton.edu/courses/archive/spring14/cos426/lectures/12-ray.pdf
starting at slide 56

For each spatial cell, maintain
a list of objects that intersect
it.

Each object may intersect
multiple cells.

Uniform spatial partition Ray casting

Examine only cells that the ray intersects.

t = infinity
p = NULL

current_voxel = voxel containing the starting point of ray
while (t == infinity)

for each surface in current voxel {
 t_intersect = distance to surface along ray

 // infinite if no intersection

 if (t_intersect < t) {
 t = t_intersect
 p = surface
 }
 }
 current voxel = next voxel hit by the ray
}

t = infinity
p = NULL

current_voxel = voxel containing the starting point of ray
while (t == infinity)
 for each surface in current voxel {
 t_intersect = distance to surface along ray
 // infinite if no intersection

 if (t_intersect < t) and
 (intersection point belongs to current voxel) {
 t = t_intersect
 p = surface
 }
 }
 current voxel = next voxel hit by the ray
}

ASIDE: In the lecture, I doubted the stopping
condition of the algorithm. But everything was fine.
The "while loop" condition is that t == infinity. As
soon as you find an intersection point that is within
the current voxel, t will get assigned a finite value
and the algorithm will stop.

Using a coarser grid means there are typically more
surfaces per voxel (bad), but fewer voxels (good).

2D - "quadtree"

 Non-uniform spatial partition

2D - "quadtree"

Again, for each spatial cell, maintain a list of
objects that intersect it.

The same ray casting algorithm works fine.
But we need to specify how to compute next
voxel.
(Not obvious -- Exercise.)

3D - "octree"

3D - "octree" Octrees can be an unstable representation
when surfaces move e.g. animation.

e.g. what happens when the
red surface moves to the right
?

 Lecture 8

More Hidden Surface Removal

Efficient Painter
- binary space partition (BSP) tree

Efficient Ray Casting
- spatial partitioning (uniform, octrees)
- bounding volumes

Bounding Volumes

Does the ray intersect the chair ?

Bounding Volumes

IF the ray intersects the chair,
THEN it intersects the bounding volume.

IF the ray intersects the chair,
THEN it intersects the bounding volume.

IF the ray intersects the bounding volume
THEN the ray intersects the chair.

[Second statement is false]

IF the ray intersects the chair,
THEN it intersects the bounding volume.

IF the ray doesn't intersect the bounding
volume
THEN the ray doesn't intersect the chair.

Note the analogy to Cohen Sutherland line
clipping.

A quick test can be used for trivial rejection.

Bounding Volume Hierarchy

Internal nodes represent bounding volumes
Leaves represent bounding volume of a single polygon.

Q: What is the BV relationship between child and parent
?
A: The child's BV is contained in the parent's BV.

Q: What is the BV relationship between siblings ?
A: none

To cast a ray and find the closest object, we traverse
the bounding volume hierarchy tree of the whole
scene.

Use depth first search.

Q: What are we searching for?

Q: What does it mean to visit a node?

p = NULL // pointer to polygon
t = infinity // closest point on ray

void traverseBVH(ray, node){
intersect ray with node's bounding volume

 if 0 <= t_intersect < t {

if (node is a leaf)
 compute t_intersect
 if (0 <= t_intersect < t)
 update p and t

else // node is a bounding volume
 for each child of node

traverseBVH(ray, child)
 }
}

Q: How to make this more efficient ?

A: "for each child of node" loop should test closest
 child nodes first. (See Exercises.)

Reminder:

A1 is due Monday at 11:59 PM.

