Lecture 8

More Hidden Surface Removal

Efficient Painter
- binary space partition (BSP) tree

Efficient Ray Casting
- spatial partitioning (uniform, octrees)
- bounding volumes

Recall last lecture ...

>

front face back face

Also last lecture: Painter's Algorithm

Sort polygons in depth. Use the farthest vertex in each
polygon as the sorting key.

Then draw polygons from "farthest"
to "nearest" (back to front).

Split polygons when necessary. a

More general problem:
moving observer, static scene

AR
/R

We want to quickly find the back-to-front depth
ordering AND avoid the problems of the Painter's
alaarithm

Recall: binary search tree (comp 250, 251)

/@Q/\‘:D

(<
@/e/j%

&

(4 @)

How to build? How to use ?
http://www.cim.mcqill.ca/~langer/250.html

Binary space partition (BSP) tree.
Itis a binary tree.

Each node has a polygon P.
(Number of nodes = number of polygons.)

Left descendents of P are in front of P.

Right descendents of P are in back of P.

/

How to define/build a BSP tree ?

A

Pick a polygon P. This is the root node of the tree.

Three cases for each remaining polygon:

1) is entirely "in front of" P

2) is entirely "in back of" P, i.e. behind P

3) intersects P's plane... in which case, split into two
polygons which gives cases 1) and 2).

Example: pick a for the root

V/Lo
0\7/
a

b intersects a's plane, so split b.
cis in front of a.

Convention:
Left subtree is in front.
Right subtree is in back.

b/ /
{ o
c V/ N
@ ]
// C'/\a
b1 is in front of a. ? \0[\,01 ZL’ZIS

b2 is in back of a.




S /
Y Y
/ b3
/
a
BSP tree
/
/ o
y;
;‘,/ \ Lz
cisin front of b1. C

= /
AN T
‘ /
b 2 Convention:
i Left subtree is in front.
c Right subtree is in back.
a

/ /

O
/ H \ L2

ofe

Space is partitioned into
five regions.

How are they numbered ?

' © AN

makeBSPtree( list of polygons X
if list is empty
return(NULL)
else {
select and remove a polygon P from list
backlist := NULL
frontlist := NULL
for each polygon Q in list of polygons
if all vertices of Q are in front of plane of P
add Q to frontlist
else if all vertices of Q are behind plane of P
add Q to backlist
else /I plane P splits Q
split Q into two polygons and add them to
frontlist and backlist, respectively
return combine( makeBSPtree(frontlist), P,
makeBSPtree(backlist) )

Use BSP tree to draw back-to-front

Traverse the BST tree doing depth-first-search,
such that:

- draw every polygon (node).

- draw far surfaces before near surfaces. How ?

A

displayBSPtree(root, viewer){

if

}

(root !'= NULL)

if (viewer is on the front side of root plane){
displayBSPtree(backchild, viewer)
drawPolygon(root)
displayBSPtree(frontchild, viewer)

else { // viewer is behind the root note
displayBSPtree(frontchild,viewer)
drawPolygon(root) // back faced culled,
SO not necesssary
displayBSPtree(backchild,viewer)

}

SE® Le

Q: What is the order of
the leaves visited ?

o
“ \ L

5L

A 2,3,41,5

Main advantage of BSP tree method
(over Painter or Depth Buffer ) ?

If scene is static, then we can precompute the BSP
tree.

We can then quickly find back-to-front ordering from any
viewer position.

Lecture 8

More Hidden Surface Removal

Efficient Painter
- binary space partition (BSP) tree

Efficient Ray Casting
- spatial partitioning (uniform, octrees)
- bounding volumes




Recall general ray casting

7

0
t_intersect = infinity
p = NULL
for each polygon { // inefficient

FZ‘L} {)o *(?,—?o){

if (ray intersects the polygon
and t_intersect <t_min)
t_min =t_intersect

Uniform spatial partition

) :F,/\ For each spatial cell, maintain
/5« e a list of objects that intersect
e W it.

A
- “Ch Each object may intersect
A;;. h multiple cells.
/_._B‘_\\

Ray casting

s,

.\L,/\
2

B

)
A
BN,

Examine only cells that the ray intersects.

p = p0|y90n http:/Awww.cs.princeton.edu/courses/archive/spring14/cos426/lectures/12-ray.pdf
} starting at slide 56
e t = infinity
L=

current_voxel = voxel containing the starting point of ray
while (t == infinity)
for each surface in current voxel {
t_intersect = distance to surface along ray
/I infinite if no intersection

if (t_intersect<t) {
=t _intersect
= surface

—T |

current voxel = next voxel hit by the ray

current_voxel = voxel containing the starting point of ray
while (t == infinity)
for each surface in current voxel {
t_intersect = distance to surface along ray
[l infinite if no intersection

if (t_intersect < t) and
(intersection point belongs to current voxel) {
t =1t intersect
p = surface

}

current voxel = next voxel hit by the ray

ASIDE: In the lecture, | doubted the stopping
condition of the algorithm.  But everything was fine.
The "while loop" condition is that t == infinity. As
soon as you find an intersection point that is within
the current voxel, twill get assigned a finite value
and the algorithm will stop.

E) E)
A \~E'- ?/-"f‘;' i
/__D /F// % _|__3l : 7 B
N ey
Iﬁh C 5 /._hf“
K\; / R ALy 2
LB i AL BA
! | o~ i

Using a coarser grid means there are typically more
surfaces per voxel (bad), but fewer voxels (good).

Non-uniform spatial partition

2D - "quadtree"




2D - "quadtree"

(’E N o7
i O 1
A p— i
i L O bR
(i.x \\ /‘ /r-:/ zf_lr--
-~ i
\\CM\\
N
®. | v
Rz 2N
i

Again, for each spatial cell, maintain a list of
objects that intersect it.

The same ray casting algorithm works fine.
But we need to specify how to compute next
voxel.

(Not obvious -- Exercise.)

3D - "octree"

3D - "octree"

Octrees can be an unstable representation
when surfaces move e.g. animation.

e.g. what happens when the

red surface moves to the right
?

Lecture 8

More Hidden Surface Removal

Efficient Painter

- binary space partition (BSP) tree

Efficient Ray Casting
- spatial partitioning (uniform, octrees)
- bounding volumes

Bounding Volumes

Does the ray intersect the chair ?

Bounding Volumes

e

IF the ray intersects the chair,
THEN it intersects the bounding volume.

IF the ray intersects the chair,
THEN it intersects the bounding volume.

5):

IF the ray intersects the bounding volume
THEN the ray intersects the chair.

[Second statement is false]




IF the ray intersects the chair,
THEN it intersects the bounding volume.

—
—

IF  the ray doesn't intersect the bounding
volume
THEN the ray doesn't intersect the chair.

Note the analogy to Cohen Sutherland line
clipping.

A quick test can be used for trivial rejection.

Bounding Volume Hierarchy

i A)

A

Internal nodes represent bounding volumes
Leaves represent bounding volume of a single polygon.

Q: What is the BV relationship between child and parent
?

The child's BV is contained in the parent's BV.

A
Q: What is the BV relationship between siblings ?
A: none

To cast a ray and find the closest object, we traverse
the bounding volume hierarchy tree of the whole
scene.

Use depth first search.
Q: What are we searching for?

O: What does it mean to visit a node?

NULL  // pointer to polygon

p
t infinity  // closest point on ray

void traverseBVH(ray, node){

intersect ray with node's bounding volume

if 0<= tintersect<t {

if (node is a leaf)
compute t_intersect
if (0 <= t_intersect <t)
update p and t

else // node is a bounding volume
for each child of node
traverseBVH( ray, child)

Q: How to make this more efficient ?

A: "for each child of node" loop should test closest
child nodes first.  (See Exercises.)




Reminder:

Al is due Monday at 11:59 PM.




