COMP 557 6 Clipping, windowing, rasterization Jan. 22, 2015

Lecture 6

Last lecture I introduced the view volume and mentioned how it is used to limit the set of points,
lines, objects, etc that need to be drawn in an image. We might have a very complicated model of
a scene, for example, an architectural model of many buildings, each of which contain many rooms.
But at a given time, the view volume only requires us to consider a small part of the scene. In
the next few lectures, we will discuss methods for discarding parts of the scene that we know won’t
appear in the image. These methods are called clipping or culling. (The two terms are sometimes
used interchangably but there are distinctions which I'll mention as we go.)

Line Clipping

If we just want to know if a vertex lies in the view volume or not, then we apply the inequalities that
we discussed last lecture. There’s no more to be said. Today we’ll look at the problem of clipping
a line. This problem is more difficult because we need to do more than understand whether the
endpoints are in the view volume; we have all the points along the line as well to consider.

There are three cases to think about this. One is if both end points of the line belong to the
view volume. In this case, the whole line does too. A second case if the entire line lies outside the
view volume. In this case, the line can be discarded or culled. The third case is that part of the
line lies outside the view volume and part lies in it. In this case, we only want to keep the part
that lies within. We clip off the parts of the line that lie outside the view volume. Imagine we take
scissors and cut off parts of the line that poke outside the view volume. In the discussion below, I
won’t bother using different terminology for the second and third cases. I'll refer to them both as
clipping.

AsTmentioned at the end of last lecture, vertex clipping is done in clip coordinates (wx, wy, wz, w)
by requiring that all the inequalities hold:

w >0
—w <wr<w
—w < wy <w
—w <wz <w.

Indeed the same is true for line clipping and for clipping of other objects as well (triangle, etc). How-
ever, for the purposes of simplicity, we will follow tradition and ezplain a basic clipping algorithm
in normalized device coordinates (x,y, z), so

—-1<z<1

-1<y<I1
-1 <2< 1.

last updated: 18" Feb, 2015 at 12:38 1

COMP 557 6 Clipping, windowing, rasterization Jan. 22, 2015

Cohen-Sutherland

Several line clipping algorithms have been proposed over the years. I'll present one of the earliest
which is from 1965 and was invented by Cohen and Sutherland]]

We also start by considering the 2D case since it captures the main ideas and it is easier to
illustrate. Suppose we have a line segment that is defined by two endpoints (xg,yo) and (x1,91).
We only want to draw the part of the line segment that lies within the window [—1,1] x [—1,1].
How can we “clip” the line to this window? One idea is to check whether the line intersects each of
the four edges of the square. A parametric representation of the line segment is

x(t) = xo + t(x1 — 0)

y(t) = yo +t(y1 — yo),

where ¢ € [0,1]. To see if the line segment intersects an edge of the square, we could set z(t) and
y(t) to the values at the edges of the square, e.g. we could check the intersection with the edge
x = —1 (assuming xy # z7), and solve for ¢ which requires a division. If we find that ¢ € [0, 1],
then the line segment would intersect the edge and hence would need to be clipped. To find the
clipping point, we substitute this value of ¢ back into (z(t), y(¢)) which requires a multiplication.

Although having to compute several divisions or multiplications per line segment might not seem
like a problem (since computers these days are very fast), it could slow us down unnecessarily if we
have many line segments. Let’s look at a classical method (by Cohen and Sutherland) for how to
clip line segments in a more efficient way.

To motivate, note that if xg and x; are both greater than 1 or both less than -1, or if yy and
are both greater than 1 or less than -1 then the line segment from (z¢,y0) to (x1,y1) cannot intersect
the square. This is called trivially rejecting the line segment. It is possible to trivially accept the
line segment as well: if zq and z; are both in [—1,1] and yo and y; are both in [—1, 1], the line
segment lies entirely within the square and does not need to be clipped.

trivially accept]
trivially reject

needs to be clipped

Tvan Sutherland, in particular, has made many enormous contributions to computer science
http://en.wikipedia.org/wiki/Ivan_Sutherland.

last updated: 18" Feb, 2015 at 12:38 2

http://en.wikipedia.org/wiki/Ivan_Sutherland

COMP 557 6 Clipping, windowing, rasterization Jan. 22, 2015

Cohen and Sutherland’s method is a way to organize the test for trivial reject/accept. Let (z,y)
be a point in the plane, namely an endpoint of a line segment. Define a 4 bit binary string - called
an “outcode” - to represent (x,y) relative to the clipping square.

by = (y>1)
by = (y<-—-1)
by = (x>1)
by = (r<-1)

Note the outcode b3 by by by denotes the position in the order “top, bottom, right, left.”
The 3 x 3 grid of regions showed in the sketch on the previous page have a corresponding 3 x 3
grid of outcodes:

1001 1000 1010
0001 0000 0010
0101 0100 0110

We “trivially accept” a line segment if the bitwise or of the outcodes of the endpoints (xg, yo)
and (z1,y1) is 0000. We “trivially reject” a line segment if the bitwise and of the two outcodes of
the two points is other than 0000.

If we can neither trivially reject nor trivially accept the line segment, then we need to carry out
further computation to determine whether the line overlaps the square and, if so, to clip it to the
square. We sequentially clip the line segment according to the bits bg by by bg. If we cannot trivially
reject or accept, then at least one of these bits must have the value 0 for one endpoint and 1 for
the other endpoint, which means that the line segment crosses the boundary edge that corresponds
to that bit. We proceed arbitrarily from b3 to by and examine the bits, clipping the line segment to
the edge for that bit. Each such clip requires computing ¢ and the new (z,y) endpoint.

The example below on the left shows that four clips might be needed using this method. The
initial outcodes are 1001 and 0110. At each clip, exactly one of the 1 bits is flipped to a 0. For the
example on the right, the outcodes are 1010 for the upper and 0100 for the lower vertex. After the
first clip, the outcode of the upper vertex switches from 1010 to 0010. After the second clip, the
bottom vertex switches from 0100 to 0010 (note the flip in the b; bit). Then, the line segment can
be trivially rejected since the by bit is 1 for both endpoints.

. /

I\ 1

4

last updated: 18" Feb, 2015 at 12:38 3

COMP 557 6 Clipping, windowing, rasterization Jan. 22, 2015

The Cohen Sutherland method can be applied in 3D to clip a line segment to a 3D view volume
in normalized projection coordinates. One uses six bits instead of four, i.e. one needs the two
additional bits

bs = (Z > 1)
by = (z2<-1)
A few technical issues are worth noting. First, recall that in OpenGL one doesn’t clip in

normalized device coordinates but rather one clips in clip coordinates (wz, wy, wz,w). If w > 0,
then assigning the bitcodes is done as follows:

bs = (wz>w)
by = (wz < —w)
by = (wy > w)
by = (wy < —w)
by = (wz>w)
bo = (wr < —w)

What about if w < 07 Think about it, and then see the Exercises.

Another issue arises when using clip coordinates for clipping. While the tests for outcodes are
straightforward, it is not obvious how to do the clipping itself. Recall the parametric equation of the
line from page 2 which you need to solve on page 2. In clipping coordinates, you don’t have the x or
y values but rather you have the wx or wy values. To solve for the intersection with the boundary
of the view volume, you might think that you need to divide by the w coordinate, which essentially
takes you to normalized device coordinates. It turns out you don’t need to do this division. You
can find the intersection in clip coordinates. Think about it, and see the Exercises.

Windows and viewports

We are almost done with our transformations. The last step concerns mapping to pixels on the
screen i.e. in pixel space. That is, we need to talk about screen coordinates, also known as display
coordinates.

A few points to mention before we discuss these coordinates. First, the display coordinates of
a point are computed by mapping the normalized device coordinates (z,y, z) to a pixel position.
However, only the (z,y) components are used in this mapping. The z component matters, as we’ll
see in the next few lectures when we discuss which points are visible. But for the discussion here,
the z values don’t matter.

Second, there is some inevitable confusion about terminology here, so heads up! The term
window will be used in a number of different ways. The most familiar usage for you is the rectangular
area of the screen where your image will be drawn. We'll call this the screen window or display
window. This is the same usage as you are familiar with from other applications: a web browser, an
X terminal, MS Office, etc. You can resize this window, drag it around, etc. Because this is most
familar, let’s consider it first.

last updated: 18" Feb, 2015 at 12:38 4

COMP 557 6 Clipping, windowing, rasterization Jan. 22, 2015

The OpenGL glut commands

glutInitWindowPosition(x,y)
glutInitWindowSize (width,height)

specify this display window where your image will be drawn | Typically, you can drag this window
around. One often defines code to allow a user to resize the window (using the mouse), which is
why the function has Init as part of its name. Note that this is not core OpenGL, but rather it is
glut.

Note that a ”display window” is different from the ”viewing window” which we discussed in the
previous two lectures, namely a window defined by (left, right, bottom, top) boundaries in
the plane z = -near. We have to use the term window in both cases and keep in mind they are not
the same thing.

OpenGL distinguishes a display window from a viewport. A wiewport is a 2D region within a
display window. At any given time, OpenGL draws images within the current viewport. You can
define a viewport using

glViewport(left,bottom,width,height) .

The parameters left and bottom are offsets relative to the bottom left corner of the display window.
Of course, they are different values from the parameters with the same name that are used to define
the display window in a glFrustum call.

The default for the viewport (i.e. no call) is the entire display window and is equivalent to

glViewport(0,0,width,height) .

where width and height are the parameters of the display window.

Why would you want a viewport that is different from the default? You might want to define
multiple non-overlapping viewports within the display window. For example each viewport might
show the same scene from different viewer positions. That is what we will do in Assignment 1.

To map the normalized device coordinates coordinates to pixel coordinates on the display,
OpenGL performs a window-to-viewport transformation. I emphasize: the term ”window” here
does not refer to the display window. Rather, it refers to the (z,y) = [-1,1] x [—1,1] range of
the normalized device coordinates, which corresponded to the viewer’s ”"window” on the 3D world
as specified by the glFrustum() call.) The window-to-viewport mapping involves a scaling and
translation. See the Exercises.

Scan conversion (rasterization)

By mapping to a viewport (or more generally, to a display window), we have finally arrived at the
pixel representation. There will be alot to say about pixels later in the course — and we will need
to use a more general term fragments at that time. For now, let’s just stick to pixels and deal with
a few basic problems.

2This is only a recommendation. You have no guarentee that your window ends up exactly there.

last updated: 18" Feb, 2015 at 12:38 5

COMP 557 6 Clipping, windowing, rasterization Jan. 22, 2015

One basic prolem is how to represent a continuous position or set of positions — a point, a line
segment, a curve — on a rectangular pixel grid. This problem is known as rasterization or scan
CONVersion.

The term “scan” comes from the physical mechanism by which old CRT (cathode ray tube)
televisions and computer screens used to display an image, namely they scanned the image from
left to right, one row at a time. The term “scan conversion” should be interpreted as converting
a continuous (or floating point) description of object image so that it is defined on a pixel grid
(raster) — so that it can be scanned.

Scan converting a line

Consider a line segment joining two positions (zg,yo) and (z1,y;) in the viewport. The slope of the

line is m = L= The line may be represented as
x1—T0

y = yo + m(x — xo).

If the absolute value of the slope is less than 1, then we draw the line by sampling one pixel
per column (one pixel per x value). Although the equation of the line (and in particular, the slope)
doesn’t change if we swap the two points, let’s just assume we have labelled the two points such
that zo < x;. We draw the line segment as follows.

m
y

(y1 - yO)/(x1 - x0)
yO

for x = round(x0) to round(x1)
writepixel(x, Round(y), rgbValue)

y=y+n

Notice that this method still requires a floating point operation for each y assignment since m is
a float. In fact, there is a more clever way to draw the line which do not require floating point
operations, which takes advantage of the fact that the x and y coordinates are integers. This
algorithmﬂ was introduced by Bresenham in the mid 1960s.

The above algorithm assumes that we write one pixel on the line for each x value. This makes
sense if |m| < 1. However, if |m| > 1 then it can lead to gaps where no pixel is written in some
rows. For example, if m = 4 then we would only write a pixel every fourth row! We can avoid
these gaps by changing the algorithm so that we loop over the y variable. We assume (or relabel
the points so) that yo < y;. The line can be written as © = (y — yo)/m + zo. It is easy to see that
the line may be drawn as follows:

x = x0

y = y0;
for y = yO to y1 {

3T am not covering the details because the tricks there (although clever and subtle) are not so interesting when
you first see them and they don’t generalize to anything else we are doing in the course (and take some time to
explain properly). If you are interested, see http://www.cim.mcgill.ca/~langer/557/Bresenham.pdf

last updated: 18" Feb, 2015 at 12:38 6

http://www.cim.mcgill.ca/~langer/557/Bresenham.pdf

COMP 557 6 Clipping, windowing, rasterization Jan. 22, 2015

writepixel(Round(x), y). // RGB color to be determined elsewhere...
x =x + 1/m;

Scan converting a triangle (more generally, a polygon)

Suppose we want to scan convert a simple geometric shape such as a triangle. Obviously we can
scan convert each of the edges using the method described above. But suppose we want to fill in
the interior of the shape too. In the case of a triangle, this is relatively simple to do. Below is a
sketch of the algorithm. For more complicated polygons, the two steps within the loop require a
bit of work to do properly. For example, a data structure needs to be used that keeps a list of the
edges, sorted by position with the current row. I'm omitting the details for brevity’s sake. Please
see the sketches drawn in the slides so you have a basic understanding of what is required here. We
will return to this problem later in the course when we will say much more about what it means to
fill a polygon.

examine vertices of the polygon and find ymin and ymax
// if they don’t have integer coordinates, then round them

for y = ymin to ymax

compute intersection of polygon edges with row y
fill in between adjacent pairs of edge intersections

last updated: 18" Feb, 2015 at 12:38 7

