COMP 546

Lecture 6

orientation 2: complex cells binocular cells

Tues. Jan. 30, 2018

Recall last lecture: simple Cell

Linear response half wave rectification

Recall last lecture: simple Cell

"Complex Cell" (Hubel and Wiesel)

Responds to preferred orientation of line anywhere in receptive field.

How to construct a complex cell?

(1)

Use several simple cells with common orientation and neighboring receptive field locations. If we sum up their rectified responses then we get a response to image structure of that orientation anywhere in the overlapping receptive fields.

How to construct a complex cell?

(2)

Now suppose these even cell and odd cells have the same receptive field locations (perfect overlap). Again sum up their rectified responses and the result is a response anywhere in the receptive field.

How to construct a complex cell?
 (3)

This is the same as the last model but now we square the positive values. This model is more commonly used than model (2) and so we'll use this one.

Unit circle

Model of a Complex Cell (3)

$$
\begin{aligned}
& (<\operatorname{cosGabor}(x, y), I(x, y)> \\
& \quad<\operatorname{sinGabor}(x, y), I(x, y)>)
\end{aligned}
$$

The response to an image $I(x, y)$ is modelled as the Euclidean length of the vector, i.e. L2 norm
$\|(\langle\cos \operatorname{Gabor}(x, y), I(x, y)\rangle,\langle\operatorname{sinGabor}(x, y), I(x, y)\rangle)\|_{2}$

We can model complex cells of any orientation.

Example: image cross correlated with four complex cells

\otimes

111

日月 ND

I

COMP 546

Lecture 6

orientation 2: complex cells binocular cells

Tues. Jan. 30, 2018

Superimposed left and right eye images

How to estimate binocular disparity ?

Computer vision-ish approach:

For each $\left(x_{0}, y_{0}\right)$, find disparity value d that minimizes:
$\sum_{x, y}\left(I_{l e f t}(x+d, y)-I_{\text {right }}(x, y)\right)^{2}$
where sum is over a neighborhood of $\left(x_{0}, y_{0}\right)$.

How to build 'disparity tuned' binocular cells ?

We use vertically oriented cells only.

Left eye
$\operatorname{Gabor}\left(x-x_{0}-d, y-y_{0}\right)$

Right eye
$\operatorname{Gabor}\left(x-x_{0}, y-y_{0}\right)$

$\left(x_{0}, y_{0}\right)$

$\left(x_{0}, y_{0}\right)$

Idea 1: (analogous to computer vision)
To compute disparity at $\left(x_{0}, y_{0}\right)$, find the d that minimizes:

$$
\begin{array}{r}
\left(<\operatorname{cosGabor}\left(x-x_{0}-d, y-y_{0}\right), I_{\text {left }}(x, y)>\right. \\
\left.-\quad<\operatorname{cosGabor}\left(x-x_{0}, y-y_{0}\right), I_{\text {right }}(x, y)>\right)^{2} \\
+ \\
-\quad<\operatorname{sinGabor}\left(x-x_{0}-d, y-y_{0}\right), I_{\text {left }}(x, y)> \\
\left.-\quad \operatorname{sinGabor}\left(x-x_{0}, y-y_{0}\right), I_{\text {right }}(x, y)>\right)^{2}
\end{array}
$$

Idea 1: (analogous to computer vision)

To compute disparity at (x_{0}, y_{0}), find the d that minimizes:

$$
\begin{array}{r}
\left(<\operatorname{cosGabor}\left(x-x_{0}-d, y-y_{0}\right), I_{\text {left }}(x, y)>\right. \\
\left.-\quad<\operatorname{cosGabor}\left(x-x_{0}, y-y_{0}\right), I_{\text {right }}(x, y)>\right)^{2} \\
+ \\
\left(<\operatorname{sinGabor}\left(x-x_{0}-d, y-y_{0}\right), I_{\text {left }}(x, y)>\right. \\
\left.-\quad<\operatorname{sinGabor}\left(x-x_{0}, y-y_{0}\right), I_{\text {right }}(x, y)>\right)^{2}
\end{array}
$$

If $I_{\text {left }}(x+d, y)=I_{\text {right }}(x, y)$ for all (x, y) in receptive fields, then the minimum should be 0 .

Idea 1 (computer vision):
find the disparity d that minimizes the squared differences:

$$
\begin{aligned}
& \left(c_{l}-c_{r}\right)^{2}+\left(s_{l}-s_{r}\right)^{2} \\
= & c_{l}^{2}+{c_{r}}^{2}+s_{l}^{2}+s_{r}^{2}-2\left(c_{l} c_{r}+s_{l} s_{r}\right)
\end{aligned}
$$

where c_{l} and s_{l} depend on d.

Idea 2 (biological vision):
find the shift d that maximizes the squared sums :

$$
\begin{aligned}
& \left(c_{l}+c_{r}\right)^{2}+\left(s_{l}+s_{r}\right)^{2} \\
= & c_{l}^{2}+{c_{r}}^{2}+s_{l}^{2}+s_{r}^{2}+2\left(c_{l} c_{r}+s_{l} s_{r}\right)
\end{aligned}
$$

where c_{l} and s_{l} depend on d.

Q: What happens if you close an eye?

A: The cell behaves like a monocular complex cell.

Recall (monocular) complex cell response to white line

Response of complex cell

Response of binocular complex cell tuned to $d=0$ when disparity of white line is 2 pixels.

left eye (cyan) and right (red) images

shift the line

Response of binocular complex cell tuned to $d=0$ when disparity of white line is 10 pixels.

Response of binocular complex cell tuned to $d=0$ when disparity of white line is 18 pixels.

| will finish this next lecture.

Each binocular cell has receptive field location centered at $\left(x_{l}, y_{l}\right)$ and $\left(x_{r}, y_{r}\right)$ in the two eyes.

Q: What disparity is each cell tuned for ?

A: We just discussed this.

Q: How to visualize the set ("population") of cells ?

Disparity Space

Disparity Tuned Cells

$$
d<0 \quad d=0
$$

Disparity Tuned Cells

Disparity Tuned Cells

