lecture 3

Combinational logic 1

- truth tables
- Boolean algebra
- sum of products and product-of-sums
- logic gates

January 18, 2016

Quiz 1

Class should start after ~15 min.

Let A, B be binary variables

$$
\begin{gathered}
\text { ("boolean') } \\
1 \equiv \text { true, } 0 \equiv \text { false }
\end{gathered}
$$

Notation:

$$
\begin{aligned}
& A \cdot B \equiv A \text { and } B \\
& A+B \equiv A \text { or } B \\
& \frac{A}{A} \equiv \text { not } A
\end{aligned}
$$

One uses t_{1}. instead of V, \wedge. which you may have seen else where.

Truth Tables

Notation: $A \cdot B \equiv A$ and B

$$
\begin{aligned}
A+B & \equiv A \text { or } B \\
\bar{A} & \equiv \operatorname{not} A
\end{aligned}
$$

A	B	$A \cdot B$	$A+B$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

A	\bar{A}
0	1
1	0

(exclusive or)
SAND NOR XOR

A	B	$\overline{A \cdot B}$	$\overline{A+B}$	$A \oplus B$
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

There are $2^{\wedge} 4=16$ possible boolean functions.

$$
f:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}
$$

A	B	Y_{1}	Y_{2}	Y_{3}	\ldots	Y_{16}
0	0					
0	1					
1	0					
1	1					

We typically only work with AND, OR, NAND, NOR, XOR.

Laws of Boolean Algebra
identity
inverse
one and zero
commutative
associative $(A+B)+C=A+(B+C)$
distributive

$$
\begin{aligned}
& A \cdot(B+C) \\
& =(A \cdot B)+(A \cdot C)
\end{aligned}
$$

$$
(\overline{A+B})=\bar{A} \cdot \bar{B}
$$

$$
\begin{aligned}
& A \cdot 1=A \\
& A \cdot \bar{A}=0
\end{aligned}
$$

$$
A \cdot O=0
$$

$$
A \cdot B=B \cdot A
$$

$(A \cdot B) \cdot C=A \cdot(B \cdot C)$

$$
A+(B \cdot C)
$$

$$
=(A+B) \cdot(A+C)
$$

de Morgan $(\overline{A+B})=\bar{A} \cdot \bar{B} \quad \overline{A \cdot B}=\bar{A}+\bar{B}$

Laws of Boolean Algebra

distributive

$$
A+(B \cdot C)=(A+B) \cdot(A+C)
$$

Note this one behaves differently from integers or reals.

Example

$$
y=\overline{A \cdot B \cdot C} \cdot(A \cdot B+A \cdot C)
$$

A	B	C	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$
y=\overline{A \cdot B \cdot C} \cdot(A \cdot B+A \cdot C)
$$

A	B	C	$A \cdot B \cdot C$	$\overline{A \cdot B \cdot C}$	$A \cdot B$	$A \cdot C$	$A \cdot B+A \cdot C$	Y
0	0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0	0
0	1	0	0	1	0	0	0	0
0	1	1	0	1	0	0	0	0
1	0	0	0	1	0	0	0	0
1	0	1	0	1	0	1	1	1
1	1	0	0	1	1	0	1	1
1	1	1	1	0	1	1	1	0

Sum of Products

$$
\begin{aligned}
y & =\overline{A \cdot B \cdot C} \cdot(A \cdot B+A \cdot C) \\
& =A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}
\end{aligned}
$$

Q: For 3 variables A, B, C, how many terms can we have in a sum of products representation ?

A: $2^{\wedge} 3=8$ i.e. previous slide

$$
\begin{aligned}
y & =\overline{A \cdot \bar{B} \cdot C+\overline{A \cdot B \cdot \bar{C}}} \\
\bar{Y} & =\overline{A \cdot \bar{B} \cdot C}+\overline{A \cdot B \cdot \bar{C}} \\
& =(\overline{A \cdot \bar{B} \cdot C}) \cdot \overline{(A \cdot B \cdot \bar{C})} \\
& =(\bar{A}+B+\bar{C}) \cdot(\bar{A}+\bar{B}+C)
\end{aligned}
$$

called a "product of sums"

How to write Y as a "product of sums" ?
First, write its complement \bar{Y} as a sum of products.

Because of time constraints, I decided to skip this example in the lecture.

You should go over it on your own.

A	B	C	y	\bar{y}
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

$$
\bar{y}=\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+\bar{A} \cdot \bar{B} \cdot \bar{C}+A \cdot B \cdot C
$$

Then write $Y=\overline{\bar{Y}}$ and apply de Morgan's Law.

$$
\begin{aligned}
\bar{y} & =\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot \bar{C} \\
\overline{\bar{Y}} & =\overline{(\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+\bar{A} \cdot \bar{B} \cdot \bar{C}+A \cdot B \cdot C}) \\
& =\overline{(\bar{A} \cdot \bar{B} \cdot \bar{C})} \cdot(\overline{\bar{A} \cdot \bar{B} \cdot C}) \cdot(\overline{\bar{A} \cdot B \cdot \bar{C}}) \cdot \overline{(\bar{A} \cdot B \cdot C}) \cdot(\overline{A \cdot \bar{B} \cdot \bar{C})}) \cdot(\overline{A \cdot B \cdot C}) \\
& =(A+B+C) \cdot(A+B+\bar{C}) \cdot(\overline{A+\bar{B}+C}) \cdot(A+\bar{B}+\bar{C}) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+\bar{C})
\end{aligned}
$$

Sometimes we have expressions where various combinations of input variables give the same output. In the example below, if A is false then any combination of B and C will give the same output (namely true).

$$
Y=A \cdot \bar{B} \cdot C+\bar{A}
$$

A	B	C	$A \cdot \bar{B} \cdot C$	\bar{A}	Y
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	0	0	0

Don't Care

We can simplify the truth table in such situations.

$$
Y=A \cdot \bar{B} \cdot C+\bar{A}
$$

means we "don't care" what values are there.

What are the 0 's and 1 's in a computer?

A wire can have a voltage difference between two terminals, which drives current.

In a computer, wires can have two voltages: high (1 , current ON) or low (0 , current $\sim \mathrm{OFF}$)

Using circult elements called "transistors" and "resistors", one can built circuits called "gates" that compute logical operations.

$A+B$
(NOR)

For each of the OR, AND, NAND, XOR gates, you would have a different circuit.

Moore's Law

The number of transisters per $\mathrm{mm}^{\wedge} 2$ approximately doubles every two years. (1965)

It is an observation, not a physical law.
It still holds true today, although people think that this cannot continue, because of limits on the size of atom and laws of quantum physics.
http://phys.org/news/2015-07-law-years.html

Logic Gates

$$
A N D
$$

Logic Circuit

Example:

$$
y=\overline{A \cdot B}+A \cdot C
$$

Example: XOR without using an XOR gate

$$
Y=\bar{A} \cdot B+A \cdot \bar{B}=A \oplus B
$$

Multiplexor (selector)

$$
Y=\bar{S} \cdot A+S \cdot B
$$

Notation
Suppose A and B are each 3 bits ($\left.A_{2} A_{1} A_{0}, B_{2} B_{1} B_{0}\right)$

Suppose A and B are each 8 bits ($\left.A_{7} A_{6} \ldots A_{0}, B_{7} B_{6} \ldots B_{0}\right)$ We can define an 8 bit multiplexor (selector).

Notation:

In fact we would build this from 8 separate one-bit multiplexors.

Note that the selector S is a single bit. We are selecting either all the A bits or all the B bits.

Announcement

The enrollment cap will be lifted before DROP/ADD to allow students on the waitlist to register.

