
                          lecture 2

-  fixed point

-  IEEE floating point standard

          Wed.  January 13,  2016

For those interested in finding out what research is all about, I
encourage you to participate in studies such as these.                          Fixed point

Fixed point means we have a constant number of bits (or
digits) to the left and right of the binary (or decimal) point.

Examples :

                     23953223.49   (base 10)

           Currency uses a fixed number of digits to the right.

                           10.1101    (base 2)

Two's complement for fixed point numbers

e.g.        0110.1000   which is 6.5 in decimal

 How do we represent -6.5  in fixed point ?

              0110.1000
              1001.0111    <----- invert bits
          + 0000.0001    <----- add  .0001
             0000.0000

             Thus,

        1001.0111    <----- invert bits
     + 0000.0001    <----- add  .0001
        1001.1000    <-----  answer:  -6.5  in (signed) fixed point

Scientific Notation  (floating point)

"Normalized" : one
digit to the left of the
decimal point.

"Normalized"  means one "1" bit to the left of the binary
point. (Note that 0 cannot be represented this way.)

Scientific Notation in binary

"significand"

 (also called
"mantissa")

"exponent"sign

How to represent this information ?

How to represent the number 0 ?

IEEE floating point standard (est.  1985)

case 1: single precision  (32 bits = 4 bytes)

"significand""exponent"sign

You don't encode the "1" to the left of the binary point.

Only encode the first 23 bits to the right of the binary
point.

"significand"

sign               0  for positive,   1 for negative

Let's look at these three parts, and then examples.



exponent code exponent value

00000000
00000001
00000010
00000011
       :
       :
01111111
10000000
10000001
       :
       :
11111110
11111111

reserved  (explained soon)
 -126
 -125
- 124
     :
     :
     0
     1
     2
      :
      :
   127
reserved  (explained soon)

unsigned exponent code =  exponent value + "bias"
(for 8 bits, bias is defined to be 127)

This is not two's
complement !

Q:    What is the largest positive normalized number  ?
(single precision)

A:

Q:    What is the smallest positive normalized number  ?
(single precision)

A:

Exponent code   00000000  reserved for
"denormalized" numbers

belong to

includes 0

Dividing each power of 2 interval into 2^23 equal parts
(same for negative real numbers).

Note the power of 2 intervals themselves are equally
spaced on a log scale.

Exponent code   11111111    also reserved.

if   significand is all 0's

then  value  is +-  infinity (depending on sign bit)

else  value is NaN  ("not a number")
                    e.g.  variable is declared but hasn't been
                            assigned a value

This is the stuff you put on an exam crib sheet.
(Yes, you can bring a crib sheet for the quizzes.)

Example:   write 8.75 a single precision float (IEEE).

First convert to binary. 23 bit significand: 00011000000000000000000

exponent value:  e = 3

exponent code =  exponent value (e) + bias

Thus,  exponent code is  unsigned  3 + 127.

 (130)10 = (10000010)2

So,   the 32 bit representation is :

0  10000010 00011000000000000000000

(8.75)10    =  (1.00011)2    x 2^3

0 10000010 00011000000000000000000

   0 x 4     1       0     c      0      0      0      0



 x = 0;
 ( ct = 0; ct < 20; ct ++) {
  x += 1.0 / 20;
  System..println( x );
}

0.05
0.1
0.15
0.2
0.25
0.3
0.35000002
0.40000004
0.45000005
0.50000006


Recall last lecture:     0.05  cannot be represented exactly. Floating Point Addition

x  =   1.00100100010000010100001   * 2^2

y  =   1.10101000000000000101010   * 2^ {-3}

              x  +  y  =   ?

Floating Point Addition

x  =   1.00100100010000010100001   * 2^2

y  =   1.10101000000000000101010   * 2^ {-3}

              x  +  y  =   ?

x  =   1.0010010001000001010000100000   * 2^2

y  =     .0000110101000000000000101010   * 2^2

   but the result  x+y  has more than 23 bits of significand

How many digits (base 10) of precision can we represent
with 23 bits (base 2)  ? case 2: double precision   (64 bits = 8 bytes)

"significand""exponent"sign

exponent code exponent value

00000000000
00000000001
00000000010
00000000011
       :
       :
01111111111
10000000000
10000000001
       :
       :
11111111110
11111111111

reserved
 -1022
 -1021
- 1020
     :
     :
     0
     1
     2
      :
      :
  1023
reserved

unsigned exponent code   =  exponent value + bias
For 11 bits,  bias is defined to be 2^10 - 1 = 1023.

Example

(8.75)10    =  (1.00011)2    x 2^3

significand (52 bits)
     =   .0001100000000000000000000000000000....

exponent = 3,    code using 11 bits:

                         3 + 1023 = 1026 = (10000000010)2

double precision float (64 bits)

0 10000000010 00011000000000000000000000000...

0 x 4       0       2        1      8      0      0       0     0      0 000000

Q:    What is the largest positive normalized number  ?
        (double precision)

A:



 x = 0;
 ( ct=0; ct < 10; ct ++) {
x += 1.0 / 10;

  System..println( x );
}

0.1
0.2
0.30000000000000004
0.4
0.5
0.6
0.7
0.7999999999999999
0.8999999999999999
0.9999999999999999

Approximation Errors (Java/C/...)

52 bits covers about the same "range" as 16 digits.
That is why the print out on the previous slide had up to
(about) 16 digits to the right of the decimal point.

How many digits of precision can we represent with 52 bits ?
             Announcements

- public web page (Course outline etc)

- corequisite courses:
    COMP 206  (official)
    COMP 250  (unofficial )
    It is not recommended to do 250+206+273 together.
    Rather,  250+206 only,  or 206+273 only.

-  assignments,  there will be 4 (not 3),  logisim,
   each should take ~10 hours  (still worth total of 30%)

-  waiting list issues   (14 x 12 + 10 = 178 seats in room )

-  quiz 1:   may have to sit on stairs and use a book  :/
                (only 15 min)


