
 lecture 16

virtual vs. physical memory

- types of physical memory
- paging

 Wed. March 9, 2016

next three lectures

MIPS Memory
virtual address physical address

514 - 398 - 3740

cell tower cell phone

virtual memory physical memory
(program addresses)

virtual memory physical memory
(program addresses)

 "process" (running program)

How do multiple programs share the same
(finite) address space?

How to reconcile different sizes of program
vs. physical memory ?

We would like to access Memory in one clock cycle.
However, there is a tradeoff between the speed and size of
physical memory (can't be large and fast).

Memory Hierarchy

fast and expensive
(thus, small)

slow and cheap
(thus, large)

virtual memory physical memory

size ~MB ~GB ~TB

number of 1 ~10 10^6
clock cycles /
access

 lecture 16

virtual vs. physical memory

- types of physical memory

- paging

 - how to translate (map) virtual to physical ?
 - page tables
 - page fault and page swap

MIPS
Memory

 Paging

There is nothing
significant about
the square tile
geometry in this
sketch.

Q: How to translate a virtual address to a physical
address?

Note that both the user part of Memory and (part of the)
kernel part of Memory is paged.

Example: suppose 1 page = 2^12 bytes

How many pages?

40 / 2^12 = 2^28 pages
Physical Memory

RAM
(e.g. 1 GB = 2^30 bytes)

--> 2^30 / 2^12 = 2^18 pages

HDD
(e.g. 1 TB = 2^40 bytes)

--> 2^40 /2^12 = 2^28 pages

Virtual Memory

(4 GB = 2^32 bytes)

--> 2^32 / 2^12 = 2^20
pages

How to translate (map) a virtual address to a physical
address ?

A virtual address is 32 bits. These are the program
addresses we have been talking about for the last few
weeks.

Again, take example that a page is 2^12 bytes.

virtual page number page offset

31 ... 12 11 ... 0

virtual address

physical address (RAM) e.g. 1 GB = 2^30 bytes

virtual page number

physical page number page offset

page offset

31 ... 12 11 ... 0

table lookup copy

29 ... 12 11 ... 0

virtual address

physical address (HDD) e.g. 1 TB = 2^40 bytes

virtual page number

physical page number page offset

page offset

31 ... 12 11 ...

table lookup copy

39 ... 12 11 ... 0

 "Page table"

Data structure in kernel that translates (maps) a virtual page
number (address) to a physical page number (address)

"Valid bit" says whether page is in RAM (1) or on HDD (0).

physical page
number

valid
bit

virtual page
number (VPN)

Where are the page tables ?

Page tables are in a reserved data region in the kernel part
of MIPS Memory. Note that they have both a virtual and a
physical address. The page table region is not partitioned
into pages. Rather this region has a fixed mapping from
virtual to physical memory.

Page Fault and Page Swap
- When a MIPS program tries to access an address whose physical
page is on disk (HDD), we say that a "page fault" occurs. The page
first must be brought into main memory (RAM) before the program can
access that address.

- If there is no page available in main memory, then some page first
must be moved out of main memory, and then the desired page can
be moved in main memory. This is called a page swap.

- The page table must be updated (regardless of whether a page is
swapped out).

Page swaps are done by a kernel program (OS) called the page fault
handler (return to this in lecture 21 -- interrupts).

 Next week's lectures

- more on page tables (we need a cache for them too !)

- how do caches work ?

replace these virtual memory
boxes by caches

