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Abstract— The stabilization of a double inverted pendulum
moving in a three dimensional space may be considered to
be a model of a human — and of other animals — postural
control. Here, we show that postural control is possible by
on-line minimization of the system Lagrangian. An stochastic
programming procedure proves to be able to find oscillatory
inputs that bring the system close to the unstable upright
equilibrium position. In conclusion, our study demonstrates that
steering complex mechanical systems may in certain cases be
actually be simpler than expected.

I. INTRODUCTION
Some apparently simple systems, upon study, reveal sur-

prinsingly complicated properties and are hard to control.
Such is the case of the double inverted pendulum in the
plane, see for example [1]. Conversely, complex behaviors
of some complicated systems can be controlled relatively
simply [2], or behave in a complex manner with no control
at all [3].

We hypothesized that the maintenance of the standing
posture on a small footprint, observed in many animals
(such as birds, viverridae, and hominids, see Fig. 1), is such
an example of complex systems which can be controlled
relatively simply. Finding effective control strategies that are
applicable to this type of systems would contribute to the art
of humanoid design and control.

In the robotic literature, stabilization of the standing pos-
ture has received virtually no attention, presumably because
it is viewed as a limiting case of walking, and hence is seen
as a solved problem. For instance, if one adopts the Zero
Moment Point (ZMP) control strategy, standing resembles the
control of an inverted pendulum-type machine [4], [5]. A
simple standing strategy is to maintain the projection of the
machine’s center of mass in a supporting polygon. However,
the stabilization of a multiple inverted pendulum in space is
an open control problem, therefore this strategy must rely on
static self-stabilization with feet, which makes it non-robust.
Robustifying approaches include the use of non-linear model
predictive control to resist unpredictable disturbances, but
these approaches have been applied in the plane only [6].

Postural stability has been studied extensively in humans,
but it is tempting to think that similar control strategies exist
across species. Classically, it is believed that postural stability
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is achieved through a combination of seamlessly integrated
strategies, roughly organized in a hierarchical manner to
resist increasingly strong disturbances, namely, body move-
ments involving the hip (cyclical or transient), larger move-
ments involving the upper limbs, ankle torque production,
and finally complete readjustments though steps [8], [9],
[10]. This coarse picture would not be complete without
mentioning the sensing aspects of standing (which we ig-
nored in the present study). A standing individual is thought
to collect information through vision [11], touch [12], pro-
prioception [13], and vestibular inputs [14], in order to
activate hundreds of muscles resulting in a formidable sensor
integration and motor coordination problem.

Fig. 1. Birds, viverridea, and people, among several other species, master
standing behaviors on a small footprint. The poor crippled pigeon has no
difficulties standing quietly on single stump; the tails of the meerkat and of
the pigeon seem to play a sensing rather than a mechanical stabilization role
(something analogous is well documented in humans [7].); the single-leg
posture of the flamingo and of the crane is highly unstable. Examples such
as these abound.

A literature search on studies of the control of the standing
posture reveals literally thousands of entries, and yet, while
a number of models have been proposed in the plane, both in
the biological and in the robotics literature, to the knowledge
the authors, no model, save one [15], consider stabilization in
space of a standing animal or machine, which is the subject
of this article.
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II. A MODEL FOR THE STUDY OF STANDING IN
MACHINES AND ANIMALS

We propose that any adequate model for studying the
stabilization of the standing stabilization problem should be
spatial. The underlying motivation being that if the forces due
to acceleration (including gravity) in a multibody system do
generalize plausibly from two to three dimensions, such is
not the case of centrifugal and Coriolis forces, the later being
constructed out of vector products that have no equivalent in
the plane. We suggest that, as far as postural stabilization is
concerned, these terms, far from being mere ‘additional com-
plexities’ actually are fundamental to stabilization strategies
and are, of course, nonlinear in essence. Eliminating them
by considering planar models (or ignoring them in spatial
movements) would profundly modify the very nature of the
stance stabilization problem.

The simplest multibody system which can account for
these terms and yet can represent the postural control
problem is the double spatial inverted pendulum which is
described next.
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Fig. 2. The model has two main links to represent the legs and the body
which are articulated at the hip and at the ankle. Addtional masses at the
head at the hip are considered to provide a plausible mass distribution. Only
the hip is actuated.

A. A Spatial Double Inverted Pendulum Model

This simple model captures the essential kinematic and
dynamic features of standing in the upright position. Refering
to Fig. 2, the model has two main rigid cylindrical links of
lengths lj , and radii rj , with masses mj , j = 1, 2, represent-
ing the upper body and legs, respectively. Additional point
masses m̄1 and m̄2 are attributed to the head and to the hip,
and the motion of the links is restrained by two universal
joints: at the hip and at the ankle. The model is easily seen to

be equivalent with a 4-revolute-joint serial manipulator, with
kinematics that can be described in terms of the Denavit-
Hartenberg (DH) parameters: θi, i = 1, ..., 4 joint angles
in the DH notation. It is assumed that the balancing act is
implemented by two actuating torques at the hip while the
ankle is unactuated.

Taking the joints angles as generalized coordinates, q ,
[q1, · · · , q4]> = [θ1, · · · , θ4]>, in the absence of dissipation,
the model is a simple Lagrangian system,

L(q, q̇) = K(q, q̇)− V (q) = 1
2 q̇
>M(q)q̇ − V (q), (1)

where q is the configuration vector, S2 × S2 3 q is the
configuration manifold, L is the Lagrangian function, and
K(q, q̇) and V (q) are the kinetic and potential energies of
the system, respectively. Let sin qi = si and cos qi = ci, for
i = 1, · · · , 4, then M(q), the symmetric, positive definite
inertia matrix, has entries

M1,1 = 1
2m1r1

2 + 1
2m2r2

2 +
(
G− 1

4 m1r1
2
)
c22

+A[1− (c2s4 + s2c3c4)2] + 2Bc2(c2c3c4 − s2s4), (2)
M1,2 = s3c4[Bs2 +A(c2s4 + s2c3c4)], (3)

M1,3 = c4[Bc2c3 +A(c2c4 − s2c3s4)] + 1
2m2r2

2c2, (4)

M1,4 = s3[−2Bc2s4 + (A+ 1
2m2r2

2)s2], (5)

M2,2 = G+ 1
4m1r1

2+ 1
2m2r2

2+A[1−s23c24]+2Bc3c4, (6)
M2,3 = As3s4c4, (7)

M2,4 = (A+ 1
2m2r2

2)c3 +Bc4, (8)

M3,3 = Ac24 + 1
2M2r2

2, (9)
M3,4 = 0, (10)

M4,4 = A+ 1
2m2r2

2. (11)

where A,B,G,E, F are constants,

A = 1
3m2l2

2 + m̄2l2
2 − 1

4m2r2
2, (12)

B = ( 1
2m2 + m̄2)l1l2, (13)

G = (m̄1 + m̄2 + 1
3m1 +m2)l12, (14)

E = ( 1
2m1 + m̄1 +m2 + m̄2)g l1, (15)

F = ( 1
2m2 + m̄2)g l2. (16)

with g denoting the acceleration of gravity. The potential
energy is

V = Ec1c2 + F (c1c2c3c4 − s1s3c4 − c1s2s4). (17)

If fi(q) : S2 × S2 7→ R4, i = 3, 4, represent the
external forces applied to the system then the Euler-Lagrange
equations for the system are

d
dt
∂L

∂q̇
− ∂L

∂q
= F (q)τ , (18)

where τ , [τ3, τ3]> ∈ R2 and F (q) = [f3(q), f4(q)], with
f1 = [0, 0, 1, 0]> , f2 = [0, 0, 0, 1]>, denotes the matrix
of external forces. Hence, for k = 1, · · · , 4, the system is
governed by∑

j

mkj(q)q̈j +
∑
i,j

Γk
ij(q)q̇iq̇j + gk(q) = e>k F (q)τ , (19)



where ek is the k-th standard basis vector in R4, and where
the gravity terms and the Christoffel symbols are given by

gk(q) =
∂

∂qk
V (q), (20)

Γk
ij(q) =

1
2

(
∂Mkj(q)
∂qi

+
∂Mki(q)
∂qj

− ∂Mij(q)
∂qk

)
(21)

In vector form,

M(q)q̈ + q̇>Q(q)q̇ +G(q) = F (q)τ , (22)

where Q is a matrix such that C(q, q̇)q̇ , q̇>Q(q)q̇ ∈ R4,
the later definition being standard in the literature. The terms
involving q̇iq̇i represent the centrifugal forces and the terms
involving q̇iq̇j , i 6= j, stand for Coriolis forces. Also, G(q) =
[g1(q), ..., g4(q)]> contains the gravity terms.

Using (21), it is then possible to show that the matrix
d
dtM(q)−2C(q, q̇) is skew-symmetric. Recalling that M(q)
is positive definite and hence invertible, and introducing the
Legendre transformation with respect to q̇ [16],

p =
∂L

∂q̇
= M(q)q̇, (23)

then allows one to rewrite the model of the system (22) in
the Legendre normal form,

q̇ =M−1(q)p, (24)

ṗ =−G(q)+p>
(
M>

)−1
(q)Q(q)M−1(q)p+F (q)τ . (25)

Stacking up q and p into x , [q;p] allows one to see that
the Legendre normal form of the model takes the form of a
smooth nonlinear system which is affine in the control,[

q̇
ṗ

]
=
[

M−1(q)p
−G(q) + p>Q̃(q)p

]
+
[

0
F (q)

]
τ

, f(x) + g(x)τ = f(x) + f3τ3 + f4τ4, (26)

where Q̃(q) ,
(
M>

)−1
QM−1(q) and where f : x → R8

is the drift vector field that is clearly related to the gravity
field, and where f1, f2 are constant vector fields as defined
in (18).

Although many analytical tools are available for con-
trollability, observability analysis, and control design, for
systems in the form of (26) it is prohibitively difficult, if
not impossible, to use them here directly given the enormous
size of the expression for the system drift. Direct calculation
of the Coriolis and centrifugal forces appearing in C(q, q̇)
which are expressed through the Christoffel symbols (21)
fill very many lines. It is apparent that an exact analysis of
the structure of the controllability Lie algebra for the system
is practically impossible in its present form as it requires
the evaluation of repeated Lie brackets of the vector fields
f(·), f1, f2.

Current efforts are aimed at reducing the size of the
expression through other choices of the generalized coor-
dinates.

B. Model Properties

To further characterize the “simple” system at hand, it
is worth pointing out that (22) is under-actuated with con-
trol deficiency degree two, that is, the difference between
rankF (q) and the dimension of the configuration manifold.
Also, the first two equations in (22) constitute a nonlinear
motion constraint on the accelerations q̈1, q̈2 which can-
not be integrated even partially, i.e., the constraints cannot
be transformed into an equivalent form that contains only
velocities and positions. The relation between integrability
and the presence of the gravity term is discussed in [17]
and [18] where sufficient conditions for integrability of
second order constraints on the system accelerations are
given. For a system to be integrable, the gravity terms need
to be constant, but here they depend nonlinearly on the
configuration variables. Non-integrability of the acceleration
constraints, putting the system in the category of non-
holonomic systems of order two, further signifies that the
dimension of the configuration manifold is not reduced by
invoking the constraints. A further implication is the lack
of existence of diffeomorphic state-feedback transformations
that linearize the system globally over the configuration
manifold.

Notwithstanding this fact, local linearization of the system
in the neighborhood of the unstable equilibrium point, which
corresponds to the upright standing position, is controllable,
again due to the presence of the gravity term; for the latter
association, again refer to [17] and [18]. This allows one
to conjecture about local controllability of the system in
the neighborhood of this equilibrium and make the im-
mediate construction of linear controllers possible, e.g., of
the LQR type. Due to their inherent robustness properties,
the latter also provide for asymptotic stabilization of the
original model. Nevertheless, as verified by simulations, the
region of attraction for this type of stabilizing feedback is
unsatisfactorily small [19], [20].

The presence of the gravity term and associated drift in
the Legendre normal form of the system is hence a prover-
bial “mixed blessing” since small time local controllability
(STLC) of the system at every configuration point away
from the equilibrium, a detailed analysis of the structure of
controllability Lie algebra of the system is required; see [21].

III. PREVIOUS APPROACHES TO BALANCE CONTROL

A cornucopia of analytical techniques have been proposed
to achieve semi-global or global stabilization of systems
of interest. Their common thread is to generate control
inputs that counteract the action of the system drift vector
field. Approaches include control design constructions based
on partial linearization, local transformations, triangular or
chained forms, all of which apply only to systems with
much simpler analytical representations, predominantly in
the plane, and which are valid in a strictly restricted neigh-
borhood of the equilibrium [22], [23], [24].

More global approaches include swing-up control com-
bined with local linear control [15], [25], energy shaping in



the controlled Lagrangian, controlled Hamiltonian formula-
tions [26], [27], [28], or else interconnection and damping
assignment passivity based control [29], [30]. Energy shaping
and involve the solution of complex matching conditions to
insure equivalence of the system Lagrangians or Hamiltoni-
ans with their controlled reduced counterparts and passivity-
based approaches meet with the difficulty of the analytical
construction of dissipation terms. So far, these approaches
have been successfully applied to simple planar systems, or
to systems of degree one of under-actuation.

The above-mentionned approaches, relying on the con-
struction of nonlinear transformations, of matching condi-
tions, or of suitable dissipation terms, do not seem to be
applicable to our standing model due to the formidably
complex expressions for the system drift vector field.

IV. STEERING THE LAGRANGIAN BY OSCILLATORY
INPUTS

Confronting the stabilization problem requires either pow-
erful approximation/reduction of the representation of the
drift vector field, or the construction of a time-varying, piece-
wise open-loop, feedback control akin to swing-up control.
While the vector field approximation strategies are still in a
theoretical fog, time-varying feedback with direct, geomet-
rical constructions to steering, provides a firm foundation.
Counteracting the effect of the drift vector field requires the
generation of system motions along Lie-bracket directions
that point approximately towards an increase of the potential
energy of the system. In other words, we would like to search
for inputs that non-instantaneously steer the system along
the “good” Lie-bracket vector fields in the Lie algebraic
extension of the system, see [31]. These directions cannot
be evaluated exactly, but can be delivered by a “learning”
procedure able to steer the system Lagrangian towards its
global minimum. More precisely, if TM(S2 × S2) is the
tangent bundle to the configuration manifold, the global
solution to the minimization problem,

min
(q,q̇)∈TM(S2×S2)

L(q, q̇), (27)

delivers the point 0 , [0, 0, 0, 0]> at which the system
is at an unstable equilibrium. To see this, proceed by
contradiction. Suppose that 0 is not the global optimum
in (27). There must then exists a point (q∗, q̇∗) such that
L(q∗, q̇∗) < L(0). But K(q∗, q̇∗) > K(q∗, 0) for any q∗

and any q̇∗ 6= 0, and V (q∗) < V (0) for any q∗ 6= 0
by the physical meaning of the generalized coordinates and
the expressions for the potential and kinetic energies of the
system. Hence, L(q∗, q̇∗) > K(0,0) − V (0) = L(0,0)
which contradicts the premise.

The principles for the construction of controls that steer
the system along selected Lie-bracket directions are now well
established; see [32], [31]. These principles permit a smooth
parametrization in terms of linear combinations of complex
exponentials characterized by different frequencies which,
we hoped, could be found by a “learning” strategy.

A. Lagrangian Minimization by Stochastic Programming

The notion of a “good” direction will henceforth be
replaced by any direction for which there exists a sinusoidal
input of the form

τi =
N∑

k=1

Ai
ksin(ωi

kt+ φi
k), i = 1, 2, (28)

such that when the latter is applied to the system over a
time horizon [0, T ], it brings the system to a configuration
at which the value of the Lagrangian is reduced. Finding
the values of P = {T,N,Ai

k, ω
i
k, φ

i
k}, i = 1, 2; k = 1, .., N

can be attempted by global optimization procedure aimed
at the solution of (27). Although the latter optimization
problem is smooth, its nature is global hence justifying
stochastic programming approaches such as simulated
annealing. Such a procedure is described by the pseudo
code below, whererein (q, q̇) is the tangent bundle, Lmin

is the Lagrangian value in the upright posture, ε is the
tolerance, Lagrangian() returns the value of Lagrangian,
neighbor() randomly generates (with uniform distribution)
a tentative set of parameters values in a neighborhood,
and dynamics() displaces the robot given an input
and initial conditions. The parameters α and β determine
the cooling and reheating schedule and C is the temperature.

(q, q̇)← (q0, q̇0)
L0 ← Lagrangian(q0, q̇0)
Pepoch ← P0

C ← C0

while L0 − Lmin > ε
Improvement ← false
while ¬Improvement and limited number of epochs

L← Lagrangian(q, q̇) — Current Lagrangian
Lepoch ← L — Initialize epoch
Cepoch ← C — Initialize temperature
for [1, · · · ,Epoch] and not too many rejects

Ptent ← neighbor(Pepoch)
(qtent, q̇tent)← dynamics(Ptent, (q, q̇))
Ltent ← Lagrangian(qtent, q̇tent)
if Ltent < Lepoch

or exp
[
−
(

Ltent−Lepoch
Cepoch

)]
> Rand(0, 1)

Pepoch ← Ptent — Accept parameters
Lepoch ← Ltent — Update cost
Cepoch ← αCepoch — Cool down

end if
end for
if Lepoch − L < 0

Improvement← True — Improvement found
(q, q̇)← dynamics(Pepoch, (q, q̇))

end if
C ← βC —Reheat at end of epoch

end while
end while



B. Simulation results

Using the values, m1 = m2 = m̄1 = m̄2 = 1.0 kg,
l1 = l2 = 1.0 m, r1 = r2 = 0.1 m, g = 9.81 m/s2, many
instances of sinusoidal inputs that steered the system toward
its unstable equilibrium where found by the algorithm. The
examples were obtained with ε = Lmin/1 000, C0 = 1.6,
with at most 20 epochs of maximum length 1 000, a max-
imum number of rejections of 50, α = 0.9, β = 0.95, and
a frequency range limited to three decades, from 0.01 to
10.0 Hz. Since the model accounts for rigid body dynamics
only, discontinuous torques were perfectly admissible and
the number of sinusoids in each input was N = 3. In the
system dynamics simulations, no term was neglected.

In the first example, q0 = [30◦, 10◦,−145◦,−20◦]>,
q̇0 = 0, see Fig. 3, very far from the unstable equilibrium.
The algorithm found an input with low frequency torque on
τ4 combined with a large input on τ3 creating a powerful
“pelvic” movement that bought all four angles to small values
in a first period of 0.5 s. Then, with a faster input, all four
angles were brought to rest at almost zero, in a second
period lasting 0.25 s. The solution to this difficult acrobatic
recovery was found among 70 acceptabe inputs, while 2117
were rejected. This supports the idea that “good” Lie bracket
motions are not very difficult to find on average. Notice the
“roller-coster” aspect of the potential curve which betrays the
non-holomonic nature of the system, requiring maneuvering.
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Fig. 3. Example 1. Two epochs are sufficient to bring the robot to near
equilibrium from an out-of-balance poistion in two “pelvic” movements.

The second example shows a much less acrobatic recovery
from initial state q0 = [10◦, 10◦,−30◦, 30◦]>, q̇0 = 0. The
robot is initially not far from the equilibrium but in “kinked”
position of 30◦. A rotating hip movement (θ3 and θ4 are
“mechanically 90◦ out of phase”) smoothly brings the robot
to an almost straight up position in 0.2 s. Then, a slow
movement eases it to the target. Not surprinsingly, the easier
nature of this maneuver is reflected by the fact that 249 good
Lie bracket motions were found for 4112 rejected which
means that, here, 6% of the randomly generated motions
decreased the system Lagrangian.
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Fig. 4. Example 2. Two epochs are also sufficient to straighten the robot.

Collectivelly, the results of these experiments indicate that
a relatively large proportion of all reasonable movements,
on average, yield an increase of the Lagrangian, which
vindicates our intuition that despite the complex nature of
the control problem of the double spatial inverted pendulum,
many possible inputs actually drive the Lagrangian in the
“right” direction, among which a good portion counterintu-
itively require the system to initially move in the “wrong”
direction.

V. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

We considered the spatial double inverted pendulum to
be a model that is well fit to study the phenomenon of the
standing postural control because it is simple, yet captures
the key kinematic and dynamics features of a standing animal



or machine. We found this “simple” system to be nonlinear,
under-actuated with control deficiency two, having non-
integrable constraints in acceleration which makes it non-
holonomic of order two, and being associated with drift
forcing small time controllability to rely on the analysis
of its Lie algebra at every configuration. Together with the
enormous size of the expressions that describe its dynamics,
these properties put this “simple” system among the hardest
to control. Yet, a standard simulated annealing procedure
was able to find stabilizing inputs in most of the cases
that we attempted. It is likely that this algorithm could be
vastly improved with proper metaheuristics for which many
candidates exist.

We are encouraged by the fact that the system turns out
to be rather simple to control and that relatively numerous
inputs produce good Lie bracket motions that can be found
by minimizing the system Lagrangian. In its present state, the
algorithm could, with certain adjustements, be implemented
“online” but it is missing one crucial ingredient. The La-
grangian approach is certain to fail in the neighborhood to
the upright equilibrium for the simple reason that its gradient
vanishes there. Of course, the option of switching to a local
linear control is available. In any case, the random search
approach remains highly unsatisfactory. The reason is that,
despite the fact that it seems to work in most cases, we have
gained no insight as to why certain inputs succeed and why
others fail, although it is possible we could work out some
performance guarantees from a probabilitic view point.

For this reasons we intent to explore a number of other
approaches which would be better grounded in the physics
and the mathematics of this kind of systems.
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