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ABSTRACT 

RCCL is a robot  programming  system  that 
enables  a  user  to specify robot  manipulator 
tasks  employing a set of primitive  system  calls 
similar  in  spirit  to  those of the UNIX input- 
output  system.  The  goals  addressed  in  the 
RCCL  system  are:  manipulator  task descrip- 
tion;  sensor  integration;  updatable  world 
representation;  flexibility;  wide  range of appli- 
cations;  medium level robot  programming; off- 
line  programming; efficiency; manipulator 
independence;  portability;  foreground- 
background  programming;  Cartesian  path pro- 
gramming;  arbitrary  path  specification;  track- 
ing;  force  control. 

1. Introduction 
Most  current  robot  programming  systems  are  based 

on a  dedicated  programming  language.  Quite  a  large 
number of them  exit ( A L ,  A M L ,  HELP, JARS, LM, 
MCL, RAIL, VAL). They  consist of a language  inter- 
preter  running  at low priority  specifying  motion  param- 
eters  to a trajectory  generator.  The  trajectory  genera- 
tor,  running  at  high  priority,  and  usually  interrupt 
driven,  computes  the  sequence of joint varia.bles so as to 
produce  the  desired  motion.  The  sequence of joint  vari- 
ables is in turn  transmitted  to  a  servo  process  capable 
of actuating  the  robot's  joints.  The  execution flow of 
the  robot  program is  synchronized  with  the  actual 
motion of the  manipulator.  Most  language  based sys- 
tems, if not all, are  strongly  tied  to  the  computer 
hardware  on  which  they  run, as well as to the  type of 
manipulator  they  control.  The  more  sophisticated 
robot  programming  languages  become,  the  more  they 
resemble  high level computer  programming  languages 
(ALGOL,  PASCAL,  etc.)  augmented  with  the  data 
structures  and  operators  necessary  to  control  robots. 
Some  languages  can  handle  concurrent  processing. 

RCCL is  not  a  language  but a set of system  calls 
suitable for the  control of robot  manipulators.  Manipn- 
lator  programs  become  ordinary  computer  programs, 
and  the  manipulator is considered as a peripheral dev- 
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ice. Since  manipulator  control  primitives  are  defined  at 
the  system level,  a  program  written  in  any  language 
which is able  to  provide  the  proper  list of arguments 
can use the  manipulator  primitives. 

Instead of designing  yet  another  robot  program- 
ming  language,  we  use  the C language  to  write  manipu- 
lators  programs.  The  RCCL  system is  itself written  the 
C language. C is a high  level structured  language  suit- 
able  for  projects of any  size,  which  allows us to  deal 
with low level  implementation  details.  Programs  are 
easily portable,  and  yet  can  be efficiently implemented. 
Two criticisms  are  often  made of compiled  languages 
based  systems.  The  compila.tion  time  increases  the 
edit-test  cycle  time. If a program  fails  either  because  it 
is wrong  from  the  manipulation  point of view, or from 
the  programming  point of view,  the  whole  task bas t o  
be stopped.  Practice  has  shown  that  these  limitations 
are largely  offset  by the  gain  in  flexibility  and  general- 
ity. If for some  applications,  an  interpreted  language is 
needed,  the  interpreter of a general  purpose or a  dedi- 
cated  language  can  also  make  use of RCCL system 
calls. We  would  obtain  ,in  that  case, a large  gain  in 
modularity.  The  RCCL  design  approach  has  advan- 
tages in modularity,  flexibility  and  hardware  indepen- 
dence. 

2. Overview 

2.1. Manipulator  task  description 
The  location of an  object is described by its posi- 

tion  and  oricntation  with  respect  to  some  reference 
coordinate  frame.  In  the  remaining, the word  'position' 
will implicitly  stand  to  'position  and  orientation'. 
Tasks  are  described  in  terms of positions  to  be  reached 
in space  to  grasp,  displace or exert  forces on objects 
1oca.ted in the  robot  work  space.  Tasks  are  also 
described by the  sequence  and  the  type of motions 
necessary  to  carry  out  the  work.  Position  descriptions 
require  special data  structures  and  sequential  operations 
of a  robot  require  special  primitives.  Both  can  however 
be  implemented  with  the  tools  provided  by  high  level 
langmges,  namely,  data  structures,  functions  ,and 
structured flow of control.  (The e language  does  not 
know  anything  about  a file, for example.  Users  wishing 
to  manipulate files in their  programs  have to include  a 
system file called  "stdi0.h".  This file contains a descrip- 
tion of the  necessary  data  structures.  Files  can  be 
manipulated  by  system  primitive  fucctions  like read, 
write, flbuf, or, fzsbuf [I]). 

~ 

The first implementation runs on a VAX 111780 computer under 
UNM. It has been  used to control a PUMA manipulator and a 
Stanford Arm. 
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2.1.1. Structured  position description 
RC:CI, handles  what is referred to as structured 

position  descript,ion [ 2 ] .  The  basic  const.ruct is the 
homogeneous  tnnsformation  that is a  mathematical 
construct  describing  the  position of coordinate  frames. 
A homogeneous  transformation  can  either  be  int,er- 
preted as  the descript,ion of the  position of a coordinate 
frame  with  respect,  to  another, or as a transformation 
performed  on  the  first  coordinate  frame.  Homogeneous 
transformations  are  a  very  general  tool 131, however  in 
manipul:lt.ion we will restrict  them t,o orthogonal 
transformations,  built in terms of a 3 by 3 rotation 
matrix  const,ructed  with  three  orthogonal  vectors  n? 0, 
and a, and a position  vector  p. 

Relative  positions of objects  can  be  described  with 
transformations  products.  For  example, let, OBJ, a 
transformation,  describe  the  position of an  object rela- 
tive  to a. reference  coordinat,e .fra.me. Let HOLE 
reprcrient the  position of a hole with  respect to the 
frame ODJ. The  matrix  product OBJ IIOLE which is 
a.1~0 n llonqoneous  trnnsformat,ion, describes the posi- 
t.ion of i.he  hole relative  to  the  reference  coordinate 
framr.  One  important  property of orthogonal home+ 
geneous  transformation is that   the inverse  transforms- 
tion  can be obtained  at  reduced  computational  costs. 

One  dedicated  transformation  T6,  represents  the 
position of the end-effector  with  respect to  the  reference 
coordinate  frame  located  at  the  base of the  manipula- 
t,or. A given  mnnipulat,or podion  can  be specified  in 
base  coordmates by writing: 

T6 = PQS 
Howcvcr:  such  a  description is nsualiy  insufficient. For 
inst,ance, one  might  need  to  express  that a tool att.aehed 
to the  arm end-effector must  reach  the  position F'QS. 
This is achieved by writing: 

T 6  TOOL = POS 
A more  complete  description of a motion to a goal posi- 
tion  might  be  written as: 

REF T6 TOOL = C O W  OB9 PG 
Where: 

REF 

T6 

TOOL 

C O W  

OB J 

PG 

is the position of the  manipulator  with  respect 
to  reference  coordinate  frame. 

describes  the  position of the  manipulator  end- 
effector  with  respect to  the  reference coordi- 
nate  frame  attached  to  the  shoulder or to  the 
base of the  manipulator. 

expresses the  position of a too%  attached to the 
end-effector. 

represents a conveyor  belt,  defined as a coordi- 
nate  frame  moving  with  respect to the reter- 
ence  coordinate  frame. 

is the position of the  object to be  grasped  lying 
on  the  conveyor  belt. 

is the position of the end-effector,  relative to 
OBJ, where  the  object is to  be  grasped. 

Posibion equations  are solved  for T 6  to obtain  the 
desired  position of the  manipulator  with  respect to the 

reference  coordinate  frame: 
T 6  = REF-' C O W  OBJ PG TOOL-' 

One RCCL system  call  directly  implements  position 
equations in terms of dynamic  data  structures.  The 
positions  can  be  modified a t   the  level of the move  state- 
ment in terms of small  translations  and  rotations 
described in the tool  frame.  This  provides a convenient 
short  hand for specifying approach  and  deproach posi- 
tions, or for  specifying  motions  which  purposely  over 
shoot  the  described  osition  when  the  arm is to  perform 
guarded  motions [2lr  

2.1.2. Motion description 
A task is made  up of a number path segments 

between  successive  positions.  There  are  many  ways  for 
generating  trajectories  for a manipulator[4](5]. RCCL 
provides  two  types of motions. The  first  one,  called 
joint mode ,  consists of computing  the  set of joint  values 
for  each  end of path  segment  and  generating  all  inter- 
mediate  values  by  linear  interpolation.  The  second 
type,  that  we will  call Cartesian mode, requires  the sys- 
tem to solve  a  modified  position  equation  each  sample 
interval  and  to  compute  the  corresponding  joint coordi- 
nates.  The  position  equation is internally modified  in 
such a way that  one  frame, called the tool frame,  moves 
along  straight  lines  and  rotates  around fixed  axis. 
These  motion  types  are  discussed  elsewhere  [3][6].  Here, 
we  will assume  that  we  are  dealing  with a manipulator 
for  which an  analytical  solution  exists,  relating a Carte- 
sian  position to a set of joints  coordinates  [7][8][9][10]. 
In the  current  implementation,  manipulator  motions  are 
obtained by specifying a sequence of desired joint  values 
to the  servo processes  controlling the  manipulat,or 
joints.  IIowever,  most of what follows does  not  assume 
a particular  cont,rol  method. 

Path  segment  transitions involve three positions. 
The  manipulator is on  its  way  from  position PI, is 
about to perform a transition  next to P2 in order  to 
head  toward P3. Transition  are  rendered necessary to  
avoid  velocity  discontinuities,  and  are  computed  using a 
quartic  polynomial. At the  time of a transition,  the 
subsequent path segment is fully  described  by  the  goal 
position P3, PI and P2 being  known  from  the  current 
mot.ion,  by the  time of the  transhion,  and by the  time 
of the  segment itself. RCCL allows the user to specify 
velocities,  as  well as segment  times. If the velocit,y is 
specified, the  Cartesian  distance of each  tool  frame is 
determined  to  compute t.he segment  time  automatically. 

When  the  manipulator is to move  while  exerting 
forces or torques  on  objects,  the  manipulator  must be 
controlled in a such  a  way  that  forces  and  torques  are 
controlled  directly in place of positions. The  manipnla- 
tor is then  said to  be  controlled  in a comply mode. 
Several  methods  [lI][l2][13][l4]  are  proposed for  such a 
control. RCGL implements a variation of Shimano's 
joint  matching  method [22]. RCCI, provides  for com- 
pliance  specifications in the tool coordinate  frame  which 
is specified  in the  position  equation.  Compliance is 
specified  in terms of forces  along,  and  torques  aronnd 
the  principal  axes of the tool frame.  The  manipulator 
looses one if the  positional  degree of freedom for each 
direction  along, or around  which  the  manipulator is 
complying in  force. The  trajectory is then  constrained 
by  the  geometrical  features of the  objects in contact. A 
more  complete  discussion of this  subject  can  be  found in 
1151. 
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2.2. Sensor  integration;  Updatable  world I 

representation; 
One of the main  goals of RCCL is to facilitate  the 

integration of sensors [ M I .  Sensors  are used to  influence 
the  behavior of the  manipulator  according  to  informa- 
tion  acquired  from  the  manipulator  or  from  its  environ- 
ment.  Sensor  information  can  be classified  in many 
different  ways : according to the  data  type  necessary  to 
represent  it,  booleans,  scalars,  vectors,  arrays,  tensors, 
etc ...; by  meaning,  touch,  limit,  distance,  position,  tem- 
perature,  vibration,  force,  etc ...; by the  order of magni- 
tude of the  acquisition  time,  minutes,  seconds, mil- 
liseconds)  microseconds;  by  accuracy  ;and so on. 
Considering  this  variety,  the  RCCL  approach is to deli- 
berately  ignore,  when  possible, the  type of information 
we ma.y have  to  deal  with,  but  on  the  contrary, to pro- 
vides  means  for an efficient utilization of this  informa- 
tion. 

2.2.1. Foreground - background  programming 
As robot  programs will have  to  interact  with  the 

environment  while  the  manipulator is moving,  programs 
are  not  implicitly  synchronized  with  the  robot  motions. 
Each  time a motion is required, a motion request is 
entered  into a ’First-in  first-out’  queue. The  request 
consists of a  record  containing  all  the  information neces- 
sary  to  perform  the  corresponding  path  segment.  This 
feature allows  us to specify  ahead a sequence of motions 
and to perform  input  output  operations  and  calculations 
as the  robot is executing  the  requests.  When  the 
motion  queue  becomes  empty,  the  manipulator is 
brought bo rest.  We will  see that  it   does  not neces- 
sarely  mean  that  the  manipulator is brought  to a stop 
in  absolute  coordinat,es.  Slow  sensors  such as computer 
vision systems  requiring  lengthy  computations  can  then 
be efficiently  used as there is no  need  to  stop  the  mani- 
pulator  while  the  data is acquired  and  processed. A 
’wait’  primitive is provided  when  it is necessary to syn- 
chronize  the  execution of the  program  with  the 
manipulator’s  motions. A similar  technique  to allow for 
the  simultaneous  control of several  manipulators  or 
positioning  devices  may  be  implemented in the  future. 

2.2.2. Influencing  positions 
End of segment  positions  can  be modified accord- 

ing  to  information  acquired at run  time.  This is 
achieved  by  changing  the  value of transformations 
within  position  equations.  Transformations likely to  be 
modifird at  run  time  must,  be  declared  as  such ( hold 
transforms).  The  system  makes a copy  the  transforma- 
tion at  the  time  the  corresponding moue  request is 
issued,  and  enters  it in the  motion  queuc. It is therefore 
possible t,o use  the  same  transformation to describe a 
co0rdinat.e  frame  whose  value is different  from  one  path 
segment  to  another.  Using a copy of the  transforma- 
tion,  makes it possible  to  change  the  value at an  arbi- 
trary inst,ant.  even if the  corresponding position  equation 
is currently  being  evaluated. A typical  use of this  type 
of transformation is the  description of an  object posi- 
tion  that is variable  and  obtained  from  sensor  readings 
at discrete  time  intervals. 

User  interaction  and slow sensors  like  computer 
vision require  the  use of hold transformations.  Position 
data  can  be  acquired  ahead at time  in a completely 
asynchronous  manner. 

2.2.3.  Influencing  trajectories 
Fast sensors  can  provide  for  direct  synchronous 

sensory  feedback.  This  corresponds to the class of func- 
tionally defined  transformations.  In  this  case, a 
transformation is attached  to a function  that will be 
evaluated  each  sample  time.  The  purpose of the  func- 
tion is to  calculate  the  value of the  transformation as a 
function of sensor  readings. The  position  equation  in 
section 2.1.1. makes  use of such a functionally  defined 
transform to describe a position  with  respect to a con- 
veyor  belt. If the  motion is performed  in Cartesian 
mode,  the  tracking is perfectly  accurate,  since  the posi- 
tion  equation is evaluated at sample  time  intervals. 
When  the  motion is performed  in joint  mode,  the sys- 
tem  estimates  the  expected  position at the  end of the 
segment  by  linear  extrapolation. If the  functionally 
defined transform is computed as a function of time,  we 
can  obtain  mathematically  described  motions  (circles, 
ellipses etc ...). 

The  transitions to, or from  path  segments involv- 
ing  moving  coordinate  frames  must  deal  with  unpredict- 
able  velocity  changes.  Smooth  transitions  are  obtained 
by adding a third  order  polynomial  trajectory 
modification  during  the  transition  time.  We  have  seen 
that  manipulator  stops  are  obtain by  repeating a move 
to the  same  position.  When  the  position involves  mov- 
ing  coordinate  frames,  the  stop will be  relative to those 
moving  coordinate  frames. If a stop in absolute coordi- 
nates is required, a move  to a fixed position  must  be 
performed  before  specifying  the  stop.  The  system  inter- 
nally maintains a position  equation  which  always 
reflects t.he current  position of the  manipulator.  It is 
therefore  possible  to  have  the  manipulator  stop at an 
arbitrary  instant at the position it  currently  occupies. 
Functionally  described  transformations  can  be  used 
anywhere in a position  equation.  Trajectories  can  be 
affected  with  respect  to  any  coordinate  frame  which 
provides  unlimited  applications. 

2.2.4. Influencing  path  segment  times 
The  second  way to  influence the  manipulator 

behavior is t o  modify the  length of the  path  segments, 
to  start,  and to stop  the  manipulator  according  to  exter- 
nal  events.  The  RCCL  system  allows to interrupt  the 
execution  and  cause a transition to the  next  path seg- 
ment at any  moment by  merely  setting a global flag. A 
motion  termination  code  enables  the  user to determine 
the  cause of the  path  segment  termination.  For  exam- 
ple,  the  system  internally  checks  for  joint  limits  and 
brings  the  manipulator to an  absolute  stop  when  one of 
them is reached.  The  termination  code allows us to 
check  for  the  proper  termination of the  motions  that 
may  cause a joint  limit  and to take  an  appropriate 
action.  For  any  motion  terminated  on a condition, a 
meaningful1  termination  code is returned. An arbitrary 
monitoring  function  can  be  specified as part  of a motion 
request,  the  termination  code is then chosen  by the  
user.  Start,  stop,  motion  interruption  and  resumption 
are  achieved  using  the  same  mechanism. 

2.2.5. Internal  sensing 
Internal  information is acquired  from  the  manipu- 

lator itself. Two  particularly useful  kinds of informa- 
tions  are  internally  maintained in RCCL:  position  and 
force. 
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2.2.5.1.  Position 
For any  motion  terminated  on a condition,  the 

world  model  may  have to  be  updated  to  account  for  the 
actual  position  where  the  manipulator  stopped.  The 
system is then  asked to update a transformation in a 
position  equation. The  equation is solved  for  requested 
transformation  using  the  actual  value of T 6  when  the 
path  segment  ends.  This  new  position  information 
might  be  very useful  in any  subsequent,  motion  related 
to this  location. For example,  consider  the  case of a 
manipulator  picking  up  an  object  which  it  had previ- 
ously  placed on a surface  whose  height is  only  approxi- 
mntively  known. The  manipulator is able to retrieve 
the  object  immediately if the final  position of the  object 
was  updated. 

2.2.5.2. Force 
Joint  torques  are also  obtained  from  the  manipula- 

tor  stat.e.  The  complete  determination of the forces  and 
torques  exerted  on  an  object  based on the  joint  torques 
leads  to  lengthy  computations [IT], RCCL, however 
provides  a  mechanism  t,hat  compares  the  actual  forces 
and  torques  against  expected  values.  This  information 
may be  used to cause a path  segment  termination  when 
some specified limit is reached.  The  subsequent  path 
segment will usually  contain  compliance  specifications. 

3. The RCCE implementation 
When a manipulator in under RCCL control,  four 

processes are  concurrently  running. At the lower  level a 
servo  process controls  the  position or the  torque of each 
manipulat.or  joint as input  parameters.  The setpoint 
process, running at interrupt level,  computes  the  Carte- 
sian  trajectories  and  determines  the  corresponding  joint 
parameters. A real  time  communication  channel  swaps 
informat,ion bct,ween the seruo  process and  the setpoint 
process. The  user  process running  under  time sha.ring 
contains  the RCCE system calls. The  setpoint  process 
communicates  with  the user process  via a motion 
request  queue  containing  all  the  necessary  information. 

3.1. Servo process 
The  present  implementation  makes  use of Unima- 

tion PUM.4 robot  controllers.  These  controllers  include 
six micro  processors,  one  per  joint.  Each  joint  servo 
micro  processor  receives  position  commands  specified  in 
increment,al  encoder  values. The  joint,  processors  can 
also  read  and  transmit  the  joint position  information. 
The  Stanford  arm  controller  has  been modified [E8](19] 
so that  joint 1, 2, and 3 can  be  force  servoed.  The 
Puma   a rm controller  can  drive  the  joints  motors  with 
current  specifications. A method for relating  joint 
torques  to  motor  currents  has  been  developed  and 
implemented  by  Zhang Wong [ZO]. The  method  take 
into  account  the  friction effect of the  joint  drives. 

3.2. Joint processor control and hose  machine 
interface 

A LSI l l  microprocessor  supervises  the  joint  proces- 
sors and  establishes  the  communication  with  the  host 
machine.  At  each  sample  time  interval,  the microprc- 
cessor gathers  data  from  the  manipulator,  transmits  it 
to the  host  machine,  accepts  commands,  and  sends  the 
corresponding  values  to  the  joint processors. It also 
executes a calibration  procedure at startup  time. 

3.3. Real time  channel  communication 
The  real  time  channel,  besides  transmitting  infor- 

mation  between the  controllers  and  the  host  machine 
performs  several  functions  such  as  the  conversions of 
encoder  values  to  tri.gonometric  angles,  the  conversion 
of torque  to  current,,  Joint  limits.  It also monitors max- 
imum velocit.ies and  maximum  currents  and  checks for 
data  integrity. A manual  stepping  mode  and  an 
automatic  rest  position  return  are  built  in. 

3.4. Setpoint process 
The  setpoint process is interrupt  driven.  Each  time 

a path  segment  terminates,  the  process  attempts  to 
obtain a new  mot,ion request  from  the  queue. If there is 
one,  the  transition  parameters  are  computed  according 
to the  type of path  segment  and  the  transition  parame- 
ters  are  computed.  Many  types of transitions  occur : 
joint  mode,  Cartesian  mode,  moving  coordinate  frames, 
constrained  motions.  The final result is always  a  set of 
joint  positions  and  torques. 

3.5. User pracess 
The user process  consist of the  user  program  cab 

ling the RCCL primitives.  Memory  space is dynami- 
cally  allocat,ed for each  new  position  equation.  This 
space  can  be  released  when  needed no longer  needed. 
Several  functions  are  provided to handle  transforma- 
tions:  rotations, Euler angles,  roll  pitch  and  yaw  angles, 
transform  multiplication,  transform  inversion,  etc ... 

48. TQOlS 

4.1. Trajectory  planning 
There  exists a version of the  RCCL library,  which 

instead of computing  the  trajectories  in  real  time, com- 
putes  them off-line. This is achieved  by  calling  the  set- 
point  function in a loop instead of activating  it upon 
interrupt.  The  same  manipulator  programs,  provided 
that  they  do  not  depend  on  external  events  and infor- 
mation,  can  be run in  this  fashion.  Some  debugging 
took are  then  provided.  The  system  can be  asked to 
keep a trace of the  motion  requests, to store the 
sequence of setpoints  on file in order to replay  them 
afterwards, or t o  plot them. 

4.2. Teaching 
A manual  control  program is included  within 

RCCL. It consists of a very  simple  command  line 
language  interpreter  enabling  an  operator  to  interac- 
tively  move the  manipulator in Cartesian  coordinates. 
Motions  can  be  specified  in  world or tool  coordinates. 
Positions  can  be  recorded  via  the zpdate primitive. The  
manual  control  program i s  implemented  entirely in 
terms of RCCL primitives. 

4.3. Transformabeion data base 
A simple  data  base  system  has  also  been  developed. 

Transformation  values  can  be  recorded  and  read  on  line 
in  manipulator  programs.  The  values  can  be  displayed 
and modified off-line for maint,enance. 

5. Conclusion 
The  main  goal of this  project  was to show that 

manipulator  control could  be  developed in a more gen- 
eral  context  than  within  the  framework of a stand  alone 
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robot  controller  with  to  it’s  own  language.  The  current 
RCCL  implementation  does  not  yet offer the conveni- 
ence of dedicated  robot  controllers  because  it  requires a 
large  machine.  Ho~wever, as microprocessor  based  com- 
puters  become  more  powerful  and  can  run  operating 
systems  like  UNIX,  the  RCCL  approach  shows  many 
advantages  over  conventional  robot  controller  designs. 
The conclusion we wish to  draw is that  robot  control 
can  be  viewed as an  addition  to  an  already  existing, 
tested,  and  standardized  system,  rather  than  the design 
from  scratch of a  system  which  provides  only  for  robot 
control. 
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