
Introduction to RCCL : A Robot Control " C" Library

Vincent Hayward
Richard P. Paul

School of Electrical Engineering, Purdue University
West Lafayette, Indiana 47907, USA

ABSTRACT

RCCL is a robot programming system that
enables a user to specify robot manipulator
tasks employing a set of primitive system calls
similar in spirit to those of the UNIX input-
output system. The goals addressed in the
RCCL system are: manipulator task descrip-
tion; sensor integration; updatable world
representation; flexibility; wide range of appli-
cations; medium level robot programming; off-
line programming; efficiency; manipulator
independence; portability; foreground-
background programming; Cartesian path pro-
gramming; arbitrary path specification; track-
ing; force control.

1. Introduction
Most current robot programming systems are based

on a dedicated programming language. Quite a large
number of them exit (A L , A M L , HELP, JARS, LM,
MCL, RAIL, VAL). They consist of a language inter-
preter running at low priority specifying motion param-
eters to a trajectory generator. The trajectory genera-
tor, running at high priority, and usually interrupt
driven, computes the sequence of joint varia.bles so as to
produce the desired motion. The sequence of joint vari-
ables is in turn transmitted to a servo process capable
of actuating the robot's joints. The execution flow of
the robot program is synchronized with the actual
motion of the manipulator. Most language based sys-
tems, if not all, are strongly tied to the computer
hardware on which they run, as well as to the type of
manipulator they control. The more sophisticated
robot programming languages become, the more they
resemble high level computer programming languages
(ALGOL, PASCAL, etc.) augmented with the data
structures and operators necessary to control robots.
Some languages can handle concurrent processing.

RCCL is not a language but a set of system calls
suitable for the control of robot manipulators. Manipn-
lator programs become ordinary computer programs,
and the manipulator is considered as a peripheral dev-

This work is partially supported by a Grant from the CNRS project
ARA (Automatique et Robotique Avanctk), France. Facilities to
perform this researcb are provided by the Purdue University CID-
MAC project. Richard Paul is the Ransburg Professor of Robotics.
This material is also based on work supported by the National Sci-
ence Foundation under Grant. No. MEA-8119884. Any opinions,
findings, conclusions, or recommendations expressed in this publica-
tion are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

ice. Since manipulator control primitives are defined at
the system level, a program written in any language
which is able to provide the proper list of arguments
can use the manipulator primitives.

Instead of designing yet another robot program-
ming language, we use the C language to write manipu-
lators programs. The RCCL system is itself written the
C language. C is a high level structured language suit-
able for projects of any size, which allows us to deal
with low level implementation details. Programs are
easily portable, and yet can be efficiently implemented.
Two criticisms are often made of compiled languages
based systems. The compila.tion time increases the
edit-test cycle time. If a program fails either because it
is wrong from the manipulation point of view, or from
the programming point of view, the whole task bas t o
be stopped. Practice has shown that these limitations
are largely offset by the gain in flexibility and general-
ity. If for some applications, an interpreted language is
needed, the interpreter of a general purpose or a dedi-
cated language can also make use of RCCL system
calls. We would obtain ,in that case, a large gain in
modularity. The RCCL design approach has advan-
tages in modularity, flexibility and hardware indepen-
dence.

2. Overview

2.1. Manipulator task description
The location of an object is described by its posi-

tion and oricntation with respect to some reference
coordinate frame. In the remaining, the word 'position'
will implicitly stand to 'position and orientation'.
Tasks are described in terms of positions to be reached
in space to grasp, displace or exert forces on objects
1oca.ted in the robot work space. Tasks are also
described by the sequence and the type of motions
necessary to carry out the work. Position descriptions
require special data structures and sequential operations
of a robot require special primitives. Both can however
be implemented with the tools provided by high level
langmges, namely, data structures, functions ,and
structured flow of control. (The e language does not
know anything about a file, for example. Users wishing
to manipulate files in their programs have to include a
system file called "stdi0.h". This file contains a descrip-
tion of the necessary data structures. Files can be
manipulated by system primitive fucctions like read,
write, flbuf, or, fzsbuf [I]).

~

The first implementation runs on a VAX 111780 computer under
UNM. It has been used to control a PUMA manipulator and a
Stanford Arm.

29 3
CM2008-1/84/0~/0293$01.000 1984 IEEE.

Proc. IEEE International Conference on Robotics, pp. 293-297.

2.1.1. Structured position description
RC:CI, handles what is referred to as structured

position descript,ion [2] . The basic const.ruct is the
homogeneous tnnsformation that is a mathematical
construct describing the position of coordinate frames.
A homogeneous transformation can either be int,er-
preted as the descript,ion of the position of a coordinate
frame with respect, to another, or as a transformation
performed on the first coordinate frame. Homogeneous
transformations are a very general tool 131, however in
manipul:lt.ion we will restrict them t,o orthogonal
transformations, built in terms of a 3 by 3 rotation
matrix const,ructed with three orthogonal vectors n? 0,
and a, and a position vector p.

Relative positions of objects can be described with
transformations products. For example, let, OBJ, a
transformation, describe the position of an object rela-
tive to a. reference coordinat,e .fra.me. Let HOLE
reprcrient the position of a hole with respect to the
frame ODJ. The matrix product OBJ IIOLE which is
a.1~0 n llonqoneous trnnsformat,ion, describes the posi-
t.ion of i.he hole relative to the reference coordinate
framr. One important property of orthogonal home+
geneous transformation is that the inverse transforms-
tion can be obtained at reduced computational costs.

One dedicated transformation T6, represents the
position of the end-effector with respect to the reference
coordinate frame located at the base of the manipula-
t,or. A given mnnipulat,or podion can be specified in
base coordmates by writing:

T6 = PQS
Howcvcr: such a description is nsualiy insufficient. For
inst,ance, one might need to express that a tool att.aehed
to the arm end-effector must reach the position F'QS.
This is achieved by writing:

T 6 TOOL = POS
A more complete description of a motion to a goal posi-
tion might be written as:

REF T6 TOOL = C O W OB9 PG
Where:

REF

T6

TOOL

C O W

OB J

PG

is the position of the manipulator with respect
to reference coordinate frame.

describes the position of the manipulator end-
effector with respect to the reference coordi-
nate frame attached to the shoulder or to the
base of the manipulator.

expresses the position of a too% attached to the
end-effector.

represents a conveyor belt, defined as a coordi-
nate frame moving with respect to the reter-
ence coordinate frame.

is the position of the object to be grasped lying
on the conveyor belt.

is the position of the end-effector, relative to
OBJ, where the object is to be grasped.

Posibion equations are solved for T 6 to obtain the
desired position of the manipulator with respect to the

reference coordinate frame:
T 6 = REF-' C O W OBJ PG TOOL-'

One RCCL system call directly implements position
equations in terms of dynamic data structures. The
positions can be modified a t the level of the move state-
ment in terms of small translations and rotations
described in the tool frame. This provides a convenient
short hand for specifying approach and deproach posi-
tions, or for specifying motions which purposely over
shoot the described osition when the arm is to perform
guarded motions [2lr

2.1.2. Motion description
A task is made up of a number path segments

between successive positions. There are many ways for
generating trajectories for a manipulator[4](5]. RCCL
provides two types of motions. The first one, called
joint mode , consists of computing the set of joint values
for each end of path segment and generating all inter-
mediate values by linear interpolation. The second
type, that we will call Cartesian mode, requires the sys-
tem to solve a modified position equation each sample
interval and to compute the corresponding joint coordi-
nates. The position equation is internally modified in
such a way that one frame, called the tool frame, moves
along straight lines and rotates around fixed axis.
These motion types are discussed elsewhere [3][6]. Here,
we will assume that we are dealing with a manipulator
for which an analytical solution exists, relating a Carte-
sian position to a set of joints coordinates [7][8][9][10].
In the current implementation, manipulator motions are
obtained by specifying a sequence of desired joint values
to the servo processes controlling the manipulat,or
joints. IIowever, most of what follows does not assume
a particular cont,rol method.

Path segment transitions involve three positions.
The manipulator is on its way from position PI, is
about to perform a transition next to P2 in order to
head toward P3. Transition are rendered necessary to
avoid velocity discontinuities, and are computed using a
quartic polynomial. At the time of a transition, the
subsequent path segment is fully described by the goal
position P3, PI and P2 being known from the current
mot.ion, by the time of the transhion, and by the time
of the segment itself. RCCL allows the user to specify
velocities, as well as segment times. If the velocit,y is
specified, the Cartesian distance of each tool frame is
determined to compute t.he segment time automatically.

When the manipulator is to move while exerting
forces or torques on objects, the manipulator must be
controlled in a such a way that forces and torques are
controlled directly in place of positions. The manipnla-
tor is then said to be controlled in a comply mode.
Several methods [lI][l2][13][l4] are proposed for such a
control. RCGL implements a variation of Shimano's
joint matching method [22]. RCCI, provides for com-
pliance specifications in the tool coordinate frame which
is specified in the position equation. Compliance is
specified in terms of forces along, and torques aronnd
the principal axes of the tool frame. The manipulator
looses one if the positional degree of freedom for each
direction along, or around which the manipulator is
complying in force. The trajectory is then constrained
by the geometrical features of the objects in contact. A
more complete discussion of this subject can be found in
1151.

294

2.2. Sensor integration; Updatable world I

representation;
One of the main goals of RCCL is to facilitate the

integration of sensors [M I . Sensors are used to influence
the behavior of the manipulator according to informa-
tion acquired from the manipulator or from its environ-
ment. Sensor information can be classified in many
different ways : according to the data type necessary to
represent it, booleans, scalars, vectors, arrays, tensors,
etc ...; by meaning, touch, limit, distance, position, tem-
perature, vibration, force, etc ...; by the order of magni-
tude of the acquisition time, minutes, seconds, mil-
liseconds) microseconds; by accuracy ;and so on.
Considering this variety, the RCCL approach is to deli-
berately ignore, when possible, the type of information
we ma.y have to deal with, but on the contrary, to pro-
vides means for an efficient utilization of this informa-
tion.

2.2.1. Foreground - background programming
As robot programs will have to interact with the

environment while the manipulator is moving, programs
are not implicitly synchronized with the robot motions.
Each time a motion is required, a motion request is
entered into a ’First-in first-out’ queue. The request
consists of a record containing all the information neces-
sary to perform the corresponding path segment. This
feature allows us to specify ahead a sequence of motions
and to perform input output operations and calculations
as the robot is executing the requests. When the
motion queue becomes empty, the manipulator is
brought bo rest. We will see that it does not neces-
sarely mean that the manipulator is brought to a stop
in absolute coordinat,es. Slow sensors such as computer
vision systems requiring lengthy computations can then
be efficiently used as there is no need to stop the mani-
pulator while the data is acquired and processed. A
’wait’ primitive is provided when it is necessary to syn-
chronize the execution of the program with the
manipulator’s motions. A similar technique to allow for
the simultaneous control of several manipulators or
positioning devices may be implemented in the future.

2.2.2. Influencing positions
End of segment positions can be modified accord-

ing to information acquired at run time. This is
achieved by changing the value of transformations
within position equations. Transformations likely to be
modifird at run time must, be declared as such (hold
transforms). The system makes a copy the transforma-
tion at the time the corresponding moue request is
issued, and enters it in the motion queuc. It is therefore
possible t,o use the same transformation to describe a
co0rdinat.e frame whose value is different from one path
segment to another. Using a copy of the transforma-
tion, makes it possible to change the value at an arbi-
trary inst,ant. even if the corresponding position equation
is currently being evaluated. A typical use of this type
of transformation is the description of an object posi-
tion that is variable and obtained from sensor readings
at discrete time intervals.

User interaction and slow sensors like computer
vision require the use of hold transformations. Position
data can be acquired ahead at time in a completely
asynchronous manner.

2.2.3. Influencing trajectories
Fast sensors can provide for direct synchronous

sensory feedback. This corresponds to the class of func-
tionally defined transformations. In this case, a
transformation is attached to a function that will be
evaluated each sample time. The purpose of the func-
tion is to calculate the value of the transformation as a
function of sensor readings. The position equation in
section 2.1.1. makes use of such a functionally defined
transform to describe a position with respect to a con-
veyor belt. If the motion is performed in Cartesian
mode, the tracking is perfectly accurate, since the posi-
tion equation is evaluated at sample time intervals.
When the motion is performed in joint mode, the sys-
tem estimates the expected position at the end of the
segment by linear extrapolation. If the functionally
defined transform is computed as a function of time, we
can obtain mathematically described motions (circles,
ellipses etc ...).

The transitions to, or from path segments involv-
ing moving coordinate frames must deal with unpredict-
able velocity changes. Smooth transitions are obtained
by adding a third order polynomial trajectory
modification during the transition time. We have seen
that manipulator stops are obtain by repeating a move
to the same position. When the position involves mov-
ing coordinate frames, the stop will be relative to those
moving coordinate frames. If a stop in absolute coordi-
nates is required, a move to a fixed position must be
performed before specifying the stop. The system inter-
nally maintains a position equation which always
reflects t.he current position of the manipulator. It is
therefore possible to have the manipulator stop at an
arbitrary instant at the position it currently occupies.
Functionally described transformations can be used
anywhere in a position equation. Trajectories can be
affected with respect to any coordinate frame which
provides unlimited applications.

2.2.4. Influencing path segment times
The second way to influence the manipulator

behavior is t o modify the length of the path segments,
to start, and to stop the manipulator according to exter-
nal events. The RCCL system allows to interrupt the
execution and cause a transition to the next path seg-
ment at any moment by merely setting a global flag. A
motion termination code enables the user to determine
the cause of the path segment termination. For exam-
ple, the system internally checks for joint limits and
brings the manipulator to an absolute stop when one of
them is reached. The termination code allows us to
check for the proper termination of the motions that
may cause a joint limit and to take an appropriate
action. For any motion terminated on a condition, a
meaningful1 termination code is returned. An arbitrary
monitoring function can be specified as part of a motion
request, the termination code is then chosen by the
user. Start, stop, motion interruption and resumption
are achieved using the same mechanism.

2.2.5. Internal sensing
Internal information is acquired from the manipu-

lator itself. Two particularly useful kinds of informa-
tions are internally maintained in RCCL: position and
force.

295

2.2.5.1. Position
For any motion terminated on a condition, the

world model may have to be updated to account for the
actual position where the manipulator stopped. The
system is then asked to update a transformation in a
position equation. The equation is solved for requested
transformation using the actual value of T 6 when the
path segment ends. This new position information
might be very useful in any subsequent, motion related
to this location. For example, consider the case of a
manipulator picking up an object which it had previ-
ously placed on a surface whose height is only approxi-
mntively known. The manipulator is able to retrieve
the object immediately if the final position of the object
was updated.

2.2.5.2. Force
Joint torques are also obtained from the manipula-

tor stat.e. The complete determination of the forces and
torques exerted on an object based on the joint torques
leads to lengthy computations [IT], RCCL, however
provides a mechanism t,hat compares the actual forces
and torques against expected values. This information
may be used to cause a path segment termination when
some specified limit is reached. The subsequent path
segment will usually contain compliance specifications.

3. The RCCE implementation
When a manipulator in under RCCL control, four

processes are concurrently running. At the lower level a
servo process controls the position or the torque of each
manipulat.or joint as input parameters. The setpoint
process, running at interrupt level, computes the Carte-
sian trajectories and determines the corresponding joint
parameters. A real time communication channel swaps
informat,ion bct,ween the seruo process and the setpoint
process. The user process running under time sha.ring
contains the RCCE system calls. The setpoint process
communicates with the user process via a motion
request queue containing all the necessary information.

3.1. Servo process
The present implementation makes use of Unima-

tion PUM.4 robot controllers. These controllers include
six micro processors, one per joint. Each joint servo
micro processor receives position commands specified in
increment,al encoder values. The joint, processors can
also read and transmit the joint position information.
The Stanford arm controller has been modified [E8](19]
so that joint 1, 2, and 3 can be force servoed. The
Puma a rm controller can drive the joints motors with
current specifications. A method for relating joint
torques to motor currents has been developed and
implemented by Zhang Wong [ZO]. The method take
into account the friction effect of the joint drives.

3.2. Joint processor control and hose machine
interface

A LSI l l microprocessor supervises the joint proces-
sors and establishes the communication with the host
machine. At each sample time interval, the microprc-
cessor gathers data from the manipulator, transmits it
to the host machine, accepts commands, and sends the
corresponding values to the joint processors. It also
executes a calibration procedure at startup time.

3.3. Real time channel communication
The real time channel, besides transmitting infor-

mation between the controllers and the host machine
performs several functions such as the conversions of
encoder values to tri.gonometric angles, the conversion
of torque to current,, Joint limits. It also monitors max-
imum velocit.ies and maximum currents and checks for
data integrity. A manual stepping mode and an
automatic rest position return are built in.

3.4. Setpoint process
The setpoint process is interrupt driven. Each time

a path segment terminates, the process attempts to
obtain a new mot,ion request from the queue. If there is
one, the transition parameters are computed according
to the type of path segment and the transition parame-
ters are computed. Many types of transitions occur :
joint mode, Cartesian mode, moving coordinate frames,
constrained motions. The final result is always a set of
joint positions and torques.

3.5. User pracess
The user process consist of the user program cab

ling the RCCL primitives. Memory space is dynami-
cally allocat,ed for each new position equation. This
space can be released when needed no longer needed.
Several functions are provided to handle transforma-
tions: rotations, Euler angles, roll pitch and yaw angles,
transform multiplication, transform inversion, etc ...

48. TQOlS

4.1. Trajectory planning
There exists a version of the RCCL library, which

instead of computing the trajectories in real time, com-
putes them off-line. This is achieved by calling the set-
point function in a loop instead of activating it upon
interrupt. The same manipulator programs, provided
that they do not depend on external events and infor-
mation, can be run in this fashion. Some debugging
took are then provided. The system can be asked to
keep a trace of the motion requests, to store the
sequence of setpoints on file in order to replay them
afterwards, or t o plot them.

4.2. Teaching
A manual control program is included within

RCCL. It consists of a very simple command line
language interpreter enabling an operator to interac-
tively move the manipulator in Cartesian coordinates.
Motions can be specified in world or tool coordinates.
Positions can be recorded via the zpdate primitive. The
manual control program i s implemented entirely in
terms of RCCL primitives.

4.3. Transformabeion data base
A simple data base system has also been developed.

Transformation values can be recorded and read on line
in manipulator programs. The values can be displayed
and modified off-line for maint,enance.

5. Conclusion
The main goal of this project was to show that

manipulator control could be developed in a more gen-
eral context than within the framework of a stand alone

296

robot controller with to it’s own language. The current
RCCL implementation does not yet offer the conveni-
ence of dedicated robot controllers because it requires a
large machine. Ho~wever, as microprocessor based com-
puters become more powerful and can run operating
systems like UNIX, the RCCL approach shows many
advantages over conventional robot controller designs.
The conclusion we wish to draw is that robot control
can be viewed as an addition to an already existing,
tested, and standardized system, rather than the design
from scratch of a system which provides only for robot
control.

6. Acknowledgments
We would like to thank Bill Fisher for his contri-

bution to this work. Calculations and measurements of
the dynamic and friction parameters of the manipula-
tors have been performed by Zhang Hong who made the
force control implementation possible. The specialized
real-time device driver and the additions to the U N M
kernel code are the work of George Goble whose help
has been most valuable.

7. References
Kcrnigha.n ,B. K., “The C Programming
Language”, Prentice-Hall, 1978.

Paul ,R. P., ”Manipulator Language”, Workshop
On The Research Needed to Advance The State Of
Knowledge In Robotics, April 15-17, 1980, organ-
ized by J. Birk and R. Kelley, supported by N.S.F.

Paul, R. P., ”Robot Manipulators: Mathematics,
Progrsmming, and Control”, MIT Press 1981.

Derby, S., ”Simulating Motion Elements of
General-Purpose Robot Arms”, International Jour-
nal of Robotic Research, Vol. 2, No. 1, Spring
1983.

Casta.in, R. H., Paul, R . P., ”Polynomial Robotic
Trajectories: A New Approac’h”, TR-EE 82-37, Dec
1982.

Hayward, V., Paul, R. P., ”Robot Manipulator
Control Using the C Language Under UNIX’,,
IEEE Workshop on Languages for Automation,
Chicago, Nov. 1983.

Shimano, B. E., ”The Kinematic Design and Force
Control of Computer Controlled Manipulators”,
Stanford Artificial Laboratory, Stanford University,
AIlV 313, 1978.

Paul, R. P., Stevenson, C. N., ”Kinematics of
Robot Wrists”, International Journal of Robotic
Research, Vol. 2, No. I, Spring 1983.

Paul , R . P., Shimano, B. E., Mayer , E. G.,
”Kinematic Control Equations for Simple Manipu-
lator”, IEEE Transactions on Systems, Man, and
Cybernetics, Vol SMC-11, No 6, June 1981.

Fisher, W. D., Private communication.

Inoue, H., ”Force Feedback In Precise Assembly
Tasks”, MIT Artificial Intelligence Laboratory,
Memo 308, Aug 1974.

Raiberg, M. H., Craig J. J., ”Hybrid
Position/Force Control of Manipulators”, Journal
of Energy Resources Technology, Vol. 103, June
1981.

Salisbury, J. K., ”Active Stiffness Control of a
Manipulator In Cartesian Coordinates”, 19th IEEE
Conference on Decision and Control, Dec. 1980,
Albuquerque, New Mexico.

Geschke, C. C., ”A System for Programming and
ConBrolling Sensor-Based Robot Manipulat,ors”,
IEEE Transactions on Pattern Matching and
Machine Intelligence, Vol. PAMl-5, No. 1, Jan
1983.

Mason M. T., ”Compliance and Force Control for
Computer Controllcd Manipulators”, MIT TR-515,
April 1979.

Rosen, C. A., Nitzan: D., ’’ Use of Sensors In Pro-
grammable Automation”, Computer hfaga,zine,
December 1977.

Paul , R. P., ”Computational Requirements of
Third Generation Manipulators”

Fisher, W. D., ”The Modification of a Robotic
Manipulator and Digital Controller to Incorprate
Both Force and Possition Control”, hlSEE Thesis,
Purdue University, May 1981.

Luh, J. Y. S., Fisher W. G., Paul , R. P., ”Joint
Torque Control by Direct Feedback for Industrial
Robots”, IEEE Transaction on Automatic Control,
Voi. AC-28, No. 2, February 1983.

Zhang, H., Paul, R. P., ”Determination of
Simplified Dynamics of Puma Manipulator”, Pur-
due University.

Will, P . M., Grossman D. D., “An Experimental
System for Computer Controlled Mechanical
Assembly”, IEEE Trans. Computers C-24 9, 1975,
879-888.

Shimano, B. E., ”The Kinematic Design and Force
Control of Computer Controlled Manipulators”,
Ph.D. Dissertation, Memo AIM-313, 1978, Stanford
Univ. t

297

