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Abstract 

This  paper  explains a simple  method  for  fast collision 
detection  in  manipulator  tasks. We show from  examples 
taken in the  literature  that  solutions  to  this problem can 
be  chosen  among a continuumof  schemes,  according  to  the 
method  selected for representing  the workspace and  the 
robot,  and  the  amount of computations  performed before 
testing a particular  trajectory. We then  describe a method 
based on a recursive  decomposition of the  workspace, also 
referred to as an octree  model, as a good  tradeoff  for a class 
of applications. 

1. Introduction 

The  task of programming robots is  wi.dely recognized 
as a difficult  activity,  even  in the case of the  simplest  ap- 
plications. For this  reason,  research  in  robot  programming 
has  been  evolving  in two distinct  directions. The first one is 
aimed  at  constructing  entirely  automatized  robot  program- 
ming  systems  such as described in [I,ieberman77" or more 
recently  in  [Lozano85].  Another  trend is to design systems 
that ease the work of a human  programmer of robot  ap- 
plications by providing  a  set of programming  aids  such as 
graphics  facilities,  automatic  reporting of performances, in- 
terfaces to  powerful CAD/CAM systems,  and  pleasant user 
interfaces.  These  techniques,  put  together, lead to  systems 
often  called off-line  programming  systems. Such  systems 
are described in [Pau183], [Wesley80], or [Ambler82]. The 
goal is to allow the  design of robot  applications  without 
requiring  their physical implementation.  This  has  several 
positive consequences on  the usefulness of robots.  Fast pro- 
totyping of robot  programs is made  possible,  provided  the 
right  set of simulation  tools,  and  the  integration of robotic 
applications  within  an  existing  or new manufacturing pro- 
cess is made  easier. 

One of the  many  reasons  that  can  cause a robot pro- 
gram  to fail is the collision of moving parts involved in the 
robot  motion  with  objects  located in the  workspace. Among 
the tools that a robot off-line programming  system  should 
provide is a collision detector.  Such a system  takes  as  input 
a geometric  description of a workspace and a robot trajec- 
tory  (manipulator  configuration  as a  function of time)  and 
reports  where  and when a collision  would occur,  should  the 
trajectory  be  executed. 

* on leave from LIMSI, CNRS, France 

2. Methods for Representing Solids 

The central  component of a collision detector is an in- 
terference  detector. The design is based o n  a scheme for 
representing solid ob,jects: the  robot  and  the  obstacles. We 
will take from IRechiqua80]  the  terminology  that we  will use 
for discussing various  possible  schemes. We  will  review six 
schemes,  attempting  to  order  them  according  to how much 
of the original  structure of a solid is captured in the repre- 
sentation, or in other  terms,  to  increasing Levels  of enumer- 
ation,  that is redundancy. Of course,  any  practical scheme 
will probably  use a combination of two or several of these 
basic  schemes. It is important  to  notice  that conversions 
from  more structurai high-level schemes to more enumera- 
tive  ones  are  easier  to  perform  that  the reverse conversions. 
For example see [Vossler85], or [Tosiyasu85]. 

Sweep  Representations are  the most structured  schemes 
for representing  solids.  They  directly  rely on the  fact  that 
volumes can  be  generated  by  sweeping a surface. The most 
general  representation  consists of the  description of a sur- 
face as  function of the curvilinear  abscissa  and the descrip- 
tion of the  trajectory  (position  and  orientation) of this sur- 
face. The generality of this  scheme is great  and  not very 
well understood. However, elegant  two  dimensional algo- 
rithms  based on similar  schemes  have been demonstrated 
[Brooks83a]. Three dimensional  applications seem restricted 
to simple cases. This scheme is of primary  interest  for high- 
level descriptions of objects  naturally decomposed in elon- 
gated  elements  elements  IA4gin76]. Also in a manufacturing 
context,  they  correspond  to volumes  generated by machine 
tools such as lathes or milling machines. 

Constructive  Solid  Geometry are expressions of primi- 
tive  portion of space  and  combinatorial  (intersection,  union, 
...). and  motional  (translate,  rotate)  operators.  These  schemes 
also  lead to varieties of possible choices for the  primitive 
portions of space. The  main  varieties  are  bounded prim- 
itive  solids or unbounded half-spaces. These  schemes  are 
extensively used in  manufacturing  systems [WesleyRO]. 

Boundary  Representations are  the most  familiar  meth- 
ods  because  they  are  mostly used in computer  graphics. 
Solids are represented by their  bounding faces,  in turn rep- 
resented by their  bounding  edges, in turn bounded by ver- 
tices. Boundary  Representations can only represent polyhe- 
dra,  other solids must  then be approximated as polyhedra 
with many faces. 
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Cell  Decomposition schemes are a three dimensional 
generalization of triangulations. A model  consists of a col- 
lection of elementary solids,  usually tetrahedra, meeting 
exactly at a common  face,  edge, or vertex.  This scheme 
is generally useful to  compute  certain topological proper- 
ties of represented solids. It is sometimes difficult to con- 
struct valid decomposition of arbitrary solids. There  are 
extensively used in the  context of finite element  numerical 
methods. 

Spatial  Occupancy  Enumeration schemes embody in a 
data  structure  the  exhaustive list of voxels (volume ele- 
ments), usually cubes lying on  a  square  grid,  that belong 
to  the solid  to be represented. These  schemes  has the  ad- 
vantage of the simplicity, but plainly applied lead to un- 
realistics amounts of storage in most of the cases. Spatial 
Occupancy  Enumeration schemes are  a  special case of Cell 
Decomposition in which the cells are of identical size and 
shape. 

Octree  Representations'are a special  case of Spatial Oc- 
cupancy  Enumeration schemes. An octree is a hierarchical 
data-structure  [Samet84]  aiming  at  reducing  the  amount of 
redundancy  inherent  to  the Spatial  Occupancy  Enumeration 
schemes. A cubic reference portion of three-dimensional 
space is divided into eight octants.  Each  octant  can re- 
cursively  divided into  octants leading to a tree  structure of 
order  eight.  Each node of the  tree is labeled  according to 
its position  with respect to  the solid to  represent:  exterior, 
interior, or recursively  decomposed. Octrees  have a number 
of properties  and have led to  many  applications, including 
cartography,  tomography,  computer  graphics,  computer vi- 
sion,  robotics,  computer  aided design, etc.. . . 

3. Solid  Modeling  Schemes  and 
Interference Detection 

We will  now review the kind of computation involved in 
computing  the interference of solids using the  six schemes 
described  above. 

Sweep  Representations are  particularly  suited  to  the 
creation of objects and high-level structured  representation, 
but  the  analytical geometry  associated with  them  can be 
arbitrarily complex, rendering difficult the  task of deter- 
mining if a  point is inside a  body, let alone  determining  the 
intersection of two solids. If the initial model is available 
under  the form of a Sweep  Representation the  solution  to 
the  problem of interference detection will usually involve 
the conversion of this  type of representation  to  a more  enu- 
merative one. Very degenerated cases could be used,  but 
then,  the  advantages of Sweep  Representations cease to be 
clear. 

Constructive  Geometry  Schemes are  conceptually  at- 
tractive  representations for computing interferences  since 
there are based on the very prhciple of having  primitive ob- 
jects  interfering  to  create specific solids. However, the prob- 
lem of interference computation, equivalent to  the problem 
of connectivity determination, leads to non trivial  and com- 
putationally expensive algorithms. 

Boundary  representations have been first used for the 

specific problem of interference detection, because  interfer- 
ence criteria  can be easily established using the  relations of 
edges to faces [Boyse79]. As we will see below, computa- 
tional problems can be alleviated in restricted cases. 

Cell  Decomposition schemes in their  generality  have no 
advantage over Boundary  Representations, however,  assum- 
ing that  the cells are  sorted  according  to  some  spatial  order, 
can lead to interference algorithms  similar  to  those used for 
Boundary  Representations. 

Spatial Occupancy  Enumeration schemes are  the rep- 
resentation of choice for interference  problems, spatial ad- 
dressing is easy and  determining if a  point is inside a solid 
is trivial. 

Octree  Encoding will provide a solution for the  storage 
of representation models with a sufficient accuracy.  Inter- 
ference detection  with octrees is trivial, because the cells 
are  sorted in a double way: there  are  sorted by spatial oc- 
cupancy  (characterized by the  path, or address of the cell 
in the  tree)  and by hierarchy of size (characterized by the 
depth). Octrees lead to  naturally dichotomic algorithms 
growing with  the logarithm of the resolution.  Several  meth- 
ods for encoding  octrees are available according  to  the prop- 
erties that need to be emphasized. 

4. The  Computational  Problem of 
Interference Detection 

Using Boundary  Representations, the basic method is 
introduced in [Boyse79]. It is shown  that interference  deter- 
mination, in the general  case, is quite  computationally in- 
tensive  because of the large number of possible cases. Boyse 
explains that collision checking of a moving polyhedral solid 
is a restricted case  because  it is only necessary to  detect  the 
change  from a non-intersecting  to  an  intersecting  condition. 
The collision of two solids can only  occur when an edge col- 
lides a face interior or a face boundary. Assuming that  the 
trajectory of vertices can  be  analytically  described,  the  two 
basic tests  can  be analytically characterized. If a  robot  and 
its  environment  are  represented by polyhedra, if R e  and 
R f are  the  numbers of edges and faces of the  robot,  and 
E e  and E f these numbers for the  environment,  an interfer- 
ence test  costs : R e E e  + E e R f  + E f R e  basic tests.  This 
leads to  quite large figures in practical cases and  they grow 
quickly with  the complexity of the scene. In Boyse's paper, 
analytical  tests  are developed in the case of pure uniform 
translation or rotations. A recent  further  improvement of 
this  test  can be found in [Canny84], it  concerns the case 
of combined  uniform translation  and  rotation.  This is far 
from  the  test  required by the moving parts of a  robot hav- 
ing  revolute joints.  The  motions of robot links actuated by 
more than  two  revolute  joint  are highly  non-linear and very 
difficult to  characterize analytically. Piecewise approxima- 
tions will remain very computationally expensive. So far, 
analytical  methods suffer a lack of generality. 

that lend themselves to  fast  intersection  detection algo- 
rithms. We might  think  taking  advantage of their efficiency 
to apply them along sampled tra.jectories. Unfortunately, 

Now,  we turn  our  attention  to more enumerativeschemes 
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such an approach implies that a new representation is con- 
structed for each sample of trajectory for all the moving 
parts. Considering the  computations involved in such  a 
construction,  again we encounter  a  computational  problem. 

In [AhujaSO],  a method  based  on  planar projections of 
the three-dimensional  scene is developed.  It relies on  the 
fact  that  intersecting  polyhedra will always  be  projected  as 
overlapping  polygons.  However, the reverse is not neces- 
sarily true  and overlapping  projected  polygons  can  be  gen- 
erated  by non  intersecting  polyhedra.  It is a conservative 
method,  but not practical for arbitrarily complex  environ- 
ments.  The  probability of false alarms  can  be decreased  by 
augmenting  the  number of projections,  but  then  again,  a 
computational  problem  can  be  encountered. 

5. Using the Joint Space of the Robot 

These  methods  have  been  developed for the purpose of 
planning collision free robot  trajectories. The basic method 
has  been pioneered by Udupa  [Udupa77] for planning colli- 
sion  free  motions for the  Sheinman  arm.  Taking  advantage 
of the  spherical  kinematic family of the  robot,  Udupa shows 
how to relatively  simply  build representations of polyhe- 
dral  obstacles in the  ‘joint  space’ of the  robot.  The  joint 
space  methods  apply well when the  manipulator is kine- 
matically  simple.  In  order to  counteract  the  combinatorial 
explosion of a six dimensional  joint  space,  reported  prac- 
tical  algorithms  always involve some sort of decomposition 
based on  the  kinematic  properties of particular  robots,  as 
well as  simplifications of the  environment  representations 
[Brooks83b,  Luh84, Lozano811.  An overview and  a discus- 
sion of these  methods  can  be  found in [Gouz&ne84]. In 
[Park83], is reported a method  to  build  a  joint  space colli- 
sion  map for two robots  sharing  a  workspace. Albus’s  Cere- 
belar  Model Arithmetic  Computer or  CMAC  algorithm [Al- 
bus811  is used  as a data-compression  device.  Although, in 
theory,  the  dimension of the  space in which to represent  the 
map is twelve,  only  a  four  dimensional map is reported  to 
have  been  tested.  Finally,  a  practical  algorithm  concern- 
ing three  joints of a  anthropomorphic  robot is detailed in 
[Faverjon84]. The  joint  space is regularly  tessellated  and 
an  octree is used  as the  data compression  device.  However, 
adding  one  dimension  to  the  transformed  space  (one  extra 
degree of freedom)  would  render the  method  impractical. 

To  summarize,  joint  space  methods suffer the  problem 
of a combinatorial  explosion  in  the  general  case,  although 
when they  are  applicable,  they  lead to  the fastest collision 
detection  algorithms  since a large part, if not all the re- 
quired  computations  are  performed  ahead of time,  through 
the process of mapping  obstacle in joint  space.  However, 
changes  occurring  in the  manipulator  workspace will be dif- 
ficult to reflect in the  transformed  representation. 

6. A Fast Scheme 

For the purpose of our  application, we had  to develop 

sometimes called, the ‘configuration space’, or the ‘state space’ of 
the robot. 

a scheme that would allow collision checking  along  a  given 
trajectories  applied to a  robot  moving in an  arbitrarily com- 
plex  environment.  Furthermore, in the  context of our a p  
plication, it was  not  possible to ignore links of the  robot, 
and  there were, at least,  four  elongated  limbs  actuated  by 
seven joints.  The goal  was to design an interactive collision 
detector,  implementable on a  small  computer  based,  say on 
a 68000 microprocessor. 

Because the  environments in which the  robot was to 
operate were potentially very  complex, thus  not decompos- 
able  into  simpler  entities  such  as  walls or pillars,  and be- 
cause  the  system  was  not  to  depend on the kinematic  family 
of the  robot,  any  joint  space  method  had  to  be  discarded. 
Sschemes  based on collision detection of moving  polyhedra 
using Boundary  Representations were a reasonable  alterna- 
tive,  but  were likely to lead to complex algorithms growing 
quickly with  the  complexity of the  description.  Further- 
more,  floating point  operations were preferably  avoided. 
Consequently, we turned  our  attention  toward  a purely  enu- 
merative  scheme. 

6.1 Octree  Free Space Representation 

The  method relies on the  representation of the free 
space  by an  octree. Because of the regularity,  octrees  are 
likely to provide the simplest and fastest  algorithms  among 
purely  enumerative schemes.  A  survey of octree  encoding 
techniques  and  applications  can  be  found in [Meagher82]. 

Many octree conversion  algorithms are  available  in the 
literature, see [DyerBO, Samet80,  Tosiyasu85, Yau841, for 
example.  Octrees  are  easily  derived  from  other  representa- 
tion schemes. They  can  be  constructed  from  sensory  data as 
described  in  [Connolly84]  using ray  tracing  methods, which 
is quite an  interesting  property in a  robotic  context.  Con- 
versely,  octrees  lend  themselves to be displayed  by  similar 
methods  [Doctor81]. 

6.2 Storing the Octree 

The main  disadvantage of this scheme is the  amount 
of storage  required  for  storing the  representation. Among 
the available  schemes for storing  octrees, in the framework 
of our  application, we must  choose  a  scheme that conserves 
the  advantage of pre-sorting the cells. There  are  three  main 
possible  schemes. 

Nodes can  be  listed  according  to some determined  tree 
traversal  method,  preorder,  postorder,  etc.. . [Knuth73]. In 
that case  only 2 bits  exactly  can be  allocated  per  node. 
These  are  the  most  compact  representations of octrees, 
however, traversing  the  tree in any  other  order  than  the un- 
derlying  ‘order,  as well as dynamically  modifying  the  tree, 
is very inefficient. For  these  reason, we used this  method 
for the  external  storage of the  representations. 

With  pointer  representations,  the  simplest  solution is to 
allocate an  array of eight  pointers  per  node.  This  method 
of storage is the  fastest for the present collision detection 
algorithm.  However, the  storage  requirements  might reveal 
to be  a  problem  for  small  computers.  There are various 
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ways for reducing the  amount of redundancy  inherent to a 
pointer  scheme  with  the cost of some  processing  overhead. 
But  since  there is little  hope  to  obtain a storage  reduction 
better  than by an  order of magnitude, we will not detail 
them  here.  Another  problem is that it is difficult to predict 
how much memory will be  required. 

Another possible  scheme is to use  a pyrurnid of three- 
dimensional  arrays.  Given a Zn by Zn by Zn array,  a pyramid 
is a sequence of arrays  at half resolution of one to  the  next. 
If 2 bits  are  allocated  per cell, some  computations  are  saved 
over  a 1 bit  allocation  scheme. The  storage  requirements 
in the  latter cases are uniquely dependent  on  the  resolution 
t. At an extreme,  it is perfectly  possible to represent  the 
workspace of the  robot by the simplest  data-structure:  a 
three-dimensional  array of bits.  But in that case, we  loose 
the hierarchical  nature of the  representation. 

6.3 Building the Octree 

A set of functions  have  been  written to allow the conver- 
sion  from a Boundary  Representation of the  robot workspace 
to  an octree. For experimentation,  the  simplest  set of func- 
tions  have  been  implemented.  Primitive  solids  are  build  by 
a sweeping  method. The most  internal  function  adds a cell 
located in {x, y, z }  to  an existing  octree.  Such a cell repre- 
sents  the  smallest  entity.  Segments  are  built by cumulative 
sweeping of a cell. Parallelograms  are  derived  from  seg- 
ments,  and  rhombohedrons  from  parallelograms.  Adjacent 
cells are coalesced as the  tree is built to  prevent  the  storage 
to grow out of control. All these  functions  use  recursive 
divisions  by  two of the  entity  to  be  built. Of course, the 
method  outlined  above  are  not very efficient because all the 
elementary cells inside the solids to be  represented  are vis- 
ited,  and  the  tree is built  starting  from  the leaves.  However, 
experience  shows that  the  construction of a 10,000 cells tree 
is a matter of minutes using a 68000 cpu. 

Alternative  methods would  require  the use of a test  to 
decide if a cube is contained inside the solid to  represent. 
In  that  case,  trees could  be  built  in  a optimal  top-down 
fashion. 

The  set of functions to perform  the  Set  operations  (In- 
tersection,  Union, and  Complement)  on  octrees  have  also 
been  implemented  and  thus complex solids can  be  con- 
structed  from  simpler ones. 

6.4 Interference  Detection 

Once the  representation of the free space  (or of the  ob- 
stacles,  it is equivalent) is obtained,  the  task of determining 
if a given point belongs to free space  (repectively  an  obsta- 
cle) is simple.  Starting  from  the  coordinates of the  point, 
recursive  divisions  by two  determine in which  octant  the 
point belongs and if this  portion of space is labeled ‘free’, 
‘occupied’ or  ‘subdivided’ by simple  inspection of the cor- 
responding  octree  node. 

t if r is the resolution, we have: xf2tr(2”)3 = 192 Kbytes, with 

the 1 bit scheme and r = 128. 

Transformations on octrees  such as translations,  rota- 
tions  (even  multiples of goo), erosions, growths,  etc.. . are 
computationally  intensive because  they involve re-arranging 
all the nodes of the tree.  This is an  important  justification 
for special  purpose  hardware. 

If we would  represent the moving parts of the  robot  by 
an octree, it would  require  either to re-build a new octree 
at each  trajectory  sample, or apply  transformations,  none 
of these  methods being  practical. We have  experimented 
two  alternative  methods: 

(1) The robot is approximated  by  bounding volumes 
made of cylinders  ended by hemispheres.  For  each of 
these  volumes a new octree is built  from  the  original 
obstacle  representation, grown  by the corresponding 
radii.  Growing the obstacles  (respectively  shrinking 
the free space)  involves  visiting all the leaves cells of 
the  tree  and  adding (respectively  removing) all the 
cells within  a  given  distance.  This is also a rather 
lengthy  operation,  but done  only  once. The  major 
drawback is that  the system  must  maintain  more  than 
one octree in memory,  but collision  checks can  then  be 
performed at  optimal speed. They  consist of deter- 
mining the interference of segments  with an  octree. 
Once  again,  this is done  by  dichotomic  subdivision, 
starting  with  the  ends, because they  are  more likely 
to interfere  first.  Given a trajectory,  the  positions of 
the  segment  ends  are  determined  very  simply  using 
the classical robot  kinematics [Paul81]. 

(2) If we cannot afford maintaining  several  octrees, we 
can  make use of Boyse’s idea  as  collisions  occur  only 
when boundaries  intersect.  Control  points  are al- 
located  on  the  boundary  surface of the  robot,  and 
their list kept  on  a  joint  per  joint  basis.  Each  trajec- 
tory  sample, the position of all the  control  points is 
transformed in absolute  coordinates  and  interference 
checked. 

In either case,  for the  test  to be  valid,  trajectories  need 
to  sampled in such  a way that  no  part of the  robot  travels 
more that  the  resolution  step. Since the trajectoies  were 
provided  in Cartesian  space,  the  determinant of the  Jaco- 
bian of the  robot was  used as an indication of the  sample 
step  to choose. 

7. Experimental  Results and Conclusion 

The  amount of nodes  required for representing  realistic 
environments is difficult to  characterize.  Furthermore, it 
depends  on how the  principle  frame  axes  are  assigned  with 
respect to the scene.  However, it  has  been  shown that  the 
amount of nodes is  of the  order of the surface of the  ob- 
jects. Also, the  amount of nodes is not  multiplied by eigth 
whenever the resolution is doubled. The  example we used 
grew from  aproximately 3000 cells for a 64 by 64 by 64 grid, 
to 10,000 cells for a 128 by 128 by 128 grid.  This finding 
is in favor of a  pointer-based  implementation,  over  a  pyra- 
mid scheme if high  resolutions are needed. Of course, the 
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length of the  algorithms  hardly  changed by doubling  the 
resolution. 

It  has been  found that,  on  the average, collision or not 
could be  determined  at half of the  depth  the  tree.  That 
made, on a  processor  such as  the 68000 with  fast  memory, 
the  cost for the  test of a single point  be 200 microseconds 
on  the average, the  internal loop being  coded in a  high 
level-language (C). 

For  method (l), considering that no more that 100 
points  are  representing  the stick model  with the desired 
accuracy,  and that only  half of them need to be  checked on 
the  average,  the check of sample of trajectory could  be  per- 
formed in 10 milliseconds for the complete  robot.  This fig- 
ure is very  little  dependent on the complexity of the scene. 

For  method  (2), considering that  the three-dimensional 
geometrical  transformation of a  vector  performed  in fixed 
point  arithmetic on the  same processor  costs  approximately 
300 microseconds, it is possible to perform  one  check  per 
second of a  robot  bounded by 2000 points.  This  remains 
within  acceptable  limits for interactivity. 

For a pyramid coding of the  octrees,  assuming a fast, 
multiplication-less  addressing of a three-dimensional  bit  ar- 
ray, the  reported  times  are  equivalent. 

The collision detector  has  been  interfaced to  the  output 
of the RCCL Robot  programming  system  [Haywardsill, al- 
lowing the user to check ahead  robot  programs.  Interfaces 
to CAD  systems  need to be  implemented as well as  means 
for constructing  the  representations  from sensory data. 
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