
Fast Collision Detection Scheme
by Recursive Decomposition of A Manipulator Workspace

Vincent Hayward *
Computer Vision and Robotics Laboratory

Department of Electrical Engineering
McCill University

IMontre'al, Que'bec, Canada

Abstract

This paper explains a simple method for fast collision
detection in manipulator tasks. We show from examples
taken in the literature that solutions to this problem can
be chosen among a continuumof schemes, according to the
method selected for representing the workspace and the
robot, and the amount of computations performed before
testing a particular trajectory. We then describe a method
based on a recursive decomposition of the workspace, also
referred to as an octree model, as a good tradeoff for a class
of applications.

1. Introduction

The task of programming robots is wi.dely recognized
as a difficult activity, even in the case of the simplest ap-
plications. For this reason, research in robot programming
has been evolving in two distinct directions. The first one is
aimed at constructing entirely automatized robot program-
ming systems such as described in [I,ieberman77" or more
recently in [Lozano85]. Another trend is to design systems
that ease the work of a human programmer of robot ap-
plications by providing a set of programming aids such as
graphics facilities, automatic reporting of performances, in-
terfaces to powerful CAD/CAM systems, and pleasant user
interfaces. These techniques, put together, lead to systems
often called off-line programming systems. Such systems
are described in [Pau183], [Wesley80], or [Ambler82]. The
goal is to allow the design of robot applications without
requiring their physical implementation. This has several
positive consequences on the usefulness of robots. Fast pro-
totyping of robot programs is made possible, provided the
right set of simulation tools, and the integration of robotic
applications within an existing or new manufacturing pro-
cess is made easier.

One of the many reasons that can cause a robot pro-
gram to fail is the collision of moving parts involved in the
robot motion with objects located in the workspace. Among
the tools that a robot off-line programming system should
provide is a collision detector. Such a system takes as input
a geometric description of a workspace and a robot trajec-
tory (manipulator configuration as a function of time) and
reports where and when a collision would occur, should the
trajectory be executed.

* on leave from LIMSI, CNRS, France

2. Methods for Representing Solids

The central component of a collision detector is an in-
terference detector. The design is based o n a scheme for
representing solid ob,jects: the robot and the obstacles. We
will take from IRechiqua80] the terminology that we will use
for discussing various possible schemes. We will review six
schemes, attempting to order them according to how much
of the original structure of a solid is captured in the repre-
sentation, or in other terms, to increasing Levels of enumer-
ation, that is redundancy. Of course, any practical scheme
will probably use a combination of two or several of these
basic schemes. It is important to notice that conversions
from more structurai high-level schemes to more enumera-
tive ones are easier to perform that the reverse conversions.
For example see [Vossler85], or [Tosiyasu85].

Sweep Representations are the most structured schemes
for representing solids. They directly rely on the fact that
volumes can be generated by sweeping a surface. The most
general representation consists of the description of a sur-
face as function of the curvilinear abscissa and the descrip-
tion of the trajectory (position and orientation) of this sur-
face. The generality of this scheme is great and not very
well understood. However, elegant two dimensional algo-
rithms based on similar schemes have been demonstrated
[Brooks83a]. Three dimensional applications seem restricted
to simple cases. This scheme is of primary interest for high-
level descriptions of objects naturally decomposed in elon-
gated elements elements IA4gin76]. Also in a manufacturing
context, they correspond to volumes generated by machine
tools such as lathes or milling machines.

Constructive Solid Geometry are expressions of primi-
tive portion of space and combinatorial (intersection, union,
...). and motional (translate, rotate) operators. These schemes
also lead to varieties of possible choices for the primitive
portions of space. The main varieties are bounded prim-
itive solids or unbounded half-spaces. These schemes are
extensively used in manufacturing systems [WesleyRO].

Boundary Representations are the most familiar meth-
ods because they are mostly used in computer graphics.
Solids are represented by their bounding faces, in turn rep-
resented by their bounding edges, in turn bounded by ver-
tices. Boundary Representations can only represent polyhe-
dra, other solids must then be approximated as polyhedra
with many faces.

1044
CH2282-2/86/0000/1044$01.00 0 1986 IEEE

Proc. IEEE Int. Conf. on Robotics and Automation. Vol. 3. 1986. pp. 1044--1049

Cell Decomposition schemes are a three dimensional
generalization of triangulations. A model consists of a col-
lection of elementary solids, usually tetrahedra, meeting
exactly at a common face, edge, or vertex. This scheme
is generally useful to compute certain topological proper-
ties of represented solids. It is sometimes difficult to con-
struct valid decomposition of arbitrary solids. There are
extensively used in the context of finite element numerical
methods.

Spatial Occupancy Enumeration schemes embody in a
data structure the exhaustive list of voxels (volume ele-
ments), usually cubes lying on a square grid, that belong
to the solid to be represented. These schemes has the ad-
vantage of the simplicity, but plainly applied lead to un-
realistics amounts of storage in most of the cases. Spatial
Occupancy Enumeration schemes are a special case of Cell
Decomposition in which the cells are of identical size and
shape.

Octree Representations'are a special case of Spatial Oc-
cupancy Enumeration schemes. An octree is a hierarchical
data-structure [Samet84] aiming at reducing the amount of
redundancy inherent to the Spatial Occupancy Enumeration
schemes. A cubic reference portion of three-dimensional
space is divided into eight octants. Each octant can re-
cursively divided into octants leading to a tree structure of
order eight. Each node of the tree is labeled according to
its position with respect to the solid to represent: exterior,
interior, or recursively decomposed. Octrees have a number
of properties and have led to many applications, including
cartography, tomography, computer graphics, computer vi-
sion, robotics, computer aided design, etc.. . .

3. Solid Modeling Schemes and
Interference Detection

We will now review the kind of computation involved in
computing the interference of solids using the six schemes
described above.

Sweep Representations are particularly suited to the
creation of objects and high-level structured representation,
but the analytical geometry associated with them can be
arbitrarily complex, rendering difficult the task of deter-
mining if a point is inside a body, let alone determining the
intersection of two solids. If the initial model is available
under the form of a Sweep Representation the solution to
the problem of interference detection will usually involve
the conversion of this type of representation to a more enu-
merative one. Very degenerated cases could be used, but
then, the advantages of Sweep Representations cease to be
clear.

Constructive Geometry Schemes are conceptually at-
tractive representations for computing interferences since
there are based on the very prhciple of having primitive ob-
jects interfering to create specific solids. However, the prob-
lem of interference computation, equivalent to the problem
of connectivity determination, leads to non trivial and com-
putationally expensive algorithms.

Boundary representations have been first used for the

specific problem of interference detection, because interfer-
ence criteria can be easily established using the relations of
edges to faces [Boyse79]. As we will see below, computa-
tional problems can be alleviated in restricted cases.

Cell Decomposition schemes in their generality have no
advantage over Boundary Representations, however, assum-
ing that the cells are sorted according to some spatial order,
can lead to interference algorithms similar to those used for
Boundary Representations.

Spatial Occupancy Enumeration schemes are the rep-
resentation of choice for interference problems, spatial ad-
dressing is easy and determining if a point is inside a solid
is trivial.

Octree Encoding will provide a solution for the storage
of representation models with a sufficient accuracy. Inter-
ference detection with octrees is trivial, because the cells
are sorted in a double way: there are sorted by spatial oc-
cupancy (characterized by the path, or address of the cell
in the tree) and by hierarchy of size (characterized by the
depth). Octrees lead to naturally dichotomic algorithms
growing with the logarithm of the resolution. Several meth-
ods for encoding octrees are available according to the prop-
erties that need to be emphasized.

4. The Computational Problem of
Interference Detection

Using Boundary Representations, the basic method is
introduced in [Boyse79]. It is shown that interference deter-
mination, in the general case, is quite computationally in-
tensive because of the large number of possible cases. Boyse
explains that collision checking of a moving polyhedral solid
is a restricted case because it is only necessary to detect the
change from a non-intersecting to an intersecting condition.
The collision of two solids can only occur when an edge col-
lides a face interior or a face boundary. Assuming that the
trajectory of vertices can be analytically described, the two
basic tests can be analytically characterized. If a robot and
its environment are represented by polyhedra, if R e and
R f are the numbers of edges and faces of the robot, and
E e and E f these numbers for the environment, an interfer-
ence test costs : R e E e + E e R f + E f R e basic tests. This
leads to quite large figures in practical cases and they grow
quickly with the complexity of the scene. In Boyse's paper,
analytical tests are developed in the case of pure uniform
translation or rotations. A recent further improvement of
this test can be found in [Canny84], it concerns the case
of combined uniform translation and rotation. This is far
from the test required by the moving parts of a robot hav-
ing revolute joints. The motions of robot links actuated by
more than two revolute joint are highly non-linear and very
difficult to characterize analytically. Piecewise approxima-
tions will remain very computationally expensive. So far,
analytical methods suffer a lack of generality.

that lend themselves to fast intersection detection algo-
rithms. We might think taking advantage of their efficiency
to apply them along sampled tra.jectories. Unfortunately,

Now, we turn our attention to more enumerativeschemes

1045

such an approach implies that a new representation is con-
structed for each sample of trajectory for all the moving
parts. Considering the computations involved in such a
construction, again we encounter a computational problem.

In [AhujaSO], a method based on planar projections of
the three-dimensional scene is developed. It relies on the
fact that intersecting polyhedra will always be projected as
overlapping polygons. However, the reverse is not neces-
sarily true and overlapping projected polygons can be gen-
erated by non intersecting polyhedra. It is a conservative
method, but not practical for arbitrarily complex environ-
ments. The probability of false alarms can be decreased by
augmenting the number of projections, but then again, a
computational problem can be encountered.

5. Using the Joint Space of the Robot

These methods have been developed for the purpose of
planning collision free robot trajectories. The basic method
has been pioneered by Udupa [Udupa77] for planning colli-
sion free motions for the Sheinman arm. Taking advantage
of the spherical kinematic family of the robot, Udupa shows
how to relatively simply build representations of polyhe-
dral obstacles in the ‘joint space’ of the robot. The joint
space methods apply well when the manipulator is kine-
matically simple. In order to counteract the combinatorial
explosion of a six dimensional joint space, reported prac-
tical algorithms always involve some sort of decomposition
based on the kinematic properties of particular robots, as
well as simplifications of the environment representations
[Brooks83b, Luh84, Lozano811. An overview and a discus-
sion of these methods can be found in [Gouz&ne84]. In
[Park83], is reported a method to build a joint space colli-
sion map for two robots sharing a workspace. Albus’s Cere-
belar Model Arithmetic Computer or CMAC algorithm [Al-
bus811 is used as a data-compression device. Although, in
theory, the dimension of the space in which to represent the
map is twelve, only a four dimensional map is reported to
have been tested. Finally, a practical algorithm concern-
ing three joints of a anthropomorphic robot is detailed in
[Faverjon84]. The joint space is regularly tessellated and
an octree is used as the data compression device. However,
adding one dimension to the transformed space (one extra
degree of freedom) would render the method impractical.

To summarize, joint space methods suffer the problem
of a combinatorial explosion in the general case, although
when they are applicable, they lead to the fastest collision
detection algorithms since a large part, if not all the re-
quired computations are performed ahead of time, through
the process of mapping obstacle in joint space. However,
changes occurring in the manipulator workspace will be dif-
ficult to reflect in the transformed representation.

6. A Fast Scheme

For the purpose of our application, we had to develop

sometimes called, the ‘configuration space’, or the ‘state space’ of
the robot.

a scheme that would allow collision checking along a given
trajectories applied to a robot moving in an arbitrarily com-
plex environment. Furthermore, in the context of our a p
plication, it was not possible to ignore links of the robot,
and there were, at least, four elongated limbs actuated by
seven joints. The goal was to design an interactive collision
detector, implementable on a small computer based, say on
a 68000 microprocessor.

Because the environments in which the robot was to
operate were potentially very complex, thus not decompos-
able into simpler entities such as walls or pillars, and be-
cause the system was not to depend on the kinematic family
of the robot, any joint space method had to be discarded.
Sschemes based on collision detection of moving polyhedra
using Boundary Representations were a reasonable alterna-
tive, but were likely to lead to complex algorithms growing
quickly with the complexity of the description. Further-
more, floating point operations were preferably avoided.
Consequently, we turned our attention toward a purely enu-
merative scheme.

6.1 Octree Free Space Representation

The method relies on the representation of the free
space by an octree. Because of the regularity, octrees are
likely to provide the simplest and fastest algorithms among
purely enumerative schemes. A survey of octree encoding
techniques and applications can be found in [Meagher82].

Many octree conversion algorithms are available in the
literature, see [DyerBO, Samet80, Tosiyasu85, Yau841, for
example. Octrees are easily derived from other representa-
tion schemes. They can be constructed from sensory data as
described in [Connolly84] using ray tracing methods, which
is quite an interesting property in a robotic context. Con-
versely, octrees lend themselves to be displayed by similar
methods [Doctor81].

6.2 Storing the Octree

The main disadvantage of this scheme is the amount
of storage required for storing the representation. Among
the available schemes for storing octrees, in the framework
of our application, we must choose a scheme that conserves
the advantage of pre-sorting the cells. There are three main
possible schemes.

Nodes can be listed according to some determined tree
traversal method, preorder, postorder, etc.. . [Knuth73]. In
that case only 2 bits exactly can be allocated per node.
These are the most compact representations of octrees,
however, traversing the tree in any other order than the un-
derlying ‘order, as well as dynamically modifying the tree,
is very inefficient. For these reason, we used this method
for the external storage of the representations.

With pointer representations, the simplest solution is to
allocate an array of eight pointers per node. This method
of storage is the fastest for the present collision detection
algorithm. However, the storage requirements might reveal
to be a problem for small computers. There are various

1046

ways for reducing the amount of redundancy inherent to a
pointer scheme with the cost of some processing overhead.
But since there is little hope to obtain a storage reduction
better than by an order of magnitude, we will not detail
them here. Another problem is that it is difficult to predict
how much memory will be required.

Another possible scheme is to use a pyrurnid of three-
dimensional arrays. Given a Zn by Zn by Zn array, a pyramid
is a sequence of arrays at half resolution of one to the next.
If 2 bits are allocated per cell, some computations are saved
over a 1 bit allocation scheme. The storage requirements
in the latter cases are uniquely dependent on the resolution
t. At an extreme, it is perfectly possible to represent the
workspace of the robot by the simplest data-structure: a
three-dimensional array of bits. But in that case, we loose
the hierarchical nature of the representation.

6.3 Building the Octree

A set of functions have been written to allow the conver-
sion from a Boundary Representation of the robot workspace
to an octree. For experimentation, the simplest set of func-
tions have been implemented. Primitive solids are build by
a sweeping method. The most internal function adds a cell
located in {x, y, z } to an existing octree. Such a cell repre-
sents the smallest entity. Segments are built by cumulative
sweeping of a cell. Parallelograms are derived from seg-
ments, and rhombohedrons from parallelograms. Adjacent
cells are coalesced as the tree is built to prevent the storage
to grow out of control. All these functions use recursive
divisions by two of the entity to be built. Of course, the
method outlined above are not very efficient because all the
elementary cells inside the solids to be represented are vis-
ited, and the tree is built starting from the leaves. However,
experience shows that the construction of a 10,000 cells tree
is a matter of minutes using a 68000 cpu.

Alternative methods would require the use of a test to
decide if a cube is contained inside the solid to represent.
In that case, trees could be built in a optimal top-down
fashion.

The set of functions to perform the Set operations (In-
tersection, Union, and Complement) on octrees have also
been implemented and thus complex solids can be con-
structed from simpler ones.

6.4 Interference Detection

Once the representation of the free space (or of the ob-
stacles, it is equivalent) is obtained, the task of determining
if a given point belongs to free space (repectively an obsta-
cle) is simple. Starting from the coordinates of the point,
recursive divisions by two determine in which octant the
point belongs and if this portion of space is labeled ‘free’,
‘occupied’ or ‘subdivided’ by simple inspection of the cor-
responding octree node.

t if r is the resolution, we have: xf2tr(2”)3 = 192 Kbytes, with

the 1 bit scheme and r = 128.

Transformations on octrees such as translations, rota-
tions (even multiples of goo), erosions, growths, etc.. . are
computationally intensive because they involve re-arranging
all the nodes of the tree. This is an important justification
for special purpose hardware.

If we would represent the moving parts of the robot by
an octree, it would require either to re-build a new octree
at each trajectory sample, or apply transformations, none
of these methods being practical. We have experimented
two alternative methods:

(1) The robot is approximated by bounding volumes
made of cylinders ended by hemispheres. For each of
these volumes a new octree is built from the original
obstacle representation, grown by the corresponding
radii. Growing the obstacles (respectively shrinking
the free space) involves visiting all the leaves cells of
the tree and adding (respectively removing) all the
cells within a given distance. This is also a rather
lengthy operation, but done only once. The major
drawback is that the system must maintain more than
one octree in memory, but collision checks can then be
performed at optimal speed. They consist of deter-
mining the interference of segments with an octree.
Once again, this is done by dichotomic subdivision,
starting with the ends, because they are more likely
to interfere first. Given a trajectory, the positions of
the segment ends are determined very simply using
the classical robot kinematics [Paul81].

(2) If we cannot afford maintaining several octrees, we
can make use of Boyse’s idea as collisions occur only
when boundaries intersect. Control points are al-
located on the boundary surface of the robot, and
their list kept on a joint per joint basis. Each trajec-
tory sample, the position of all the control points is
transformed in absolute coordinates and interference
checked.

In either case, for the test to be valid, trajectories need
to sampled in such a way that no part of the robot travels
more that the resolution step. Since the trajectoies were
provided in Cartesian space, the determinant of the Jaco-
bian of the robot was used as an indication of the sample
step to choose.

7. Experimental Results and Conclusion

The amount of nodes required for representing realistic
environments is difficult to characterize. Furthermore, it
depends on how the principle frame axes are assigned with
respect to the scene. However, it has been shown that the
amount of nodes is of the order of the surface of the ob-
jects. Also, the amount of nodes is not multiplied by eigth
whenever the resolution is doubled. The example we used
grew from aproximately 3000 cells for a 64 by 64 by 64 grid,
to 10,000 cells for a 128 by 128 by 128 grid. This finding
is in favor of a pointer-based implementation, over a pyra-
mid scheme if high resolutions are needed. Of course, the

1047

length of the algorithms hardly changed by doubling the
resolution.

It has been found that, on the average, collision or not
could be determined at half of the depth the tree. That
made, on a processor such as the 68000 with fast memory,
the cost for the test of a single point be 200 microseconds
on the average, the internal loop being coded in a high
level-language (C).

For method (l), considering that no more that 100
points are representing the stick model with the desired
accuracy, and that only half of them need to be checked on
the average, the check of sample of trajectory could be per-
formed in 10 milliseconds for the complete robot. This fig-
ure is very little dependent on the complexity of the scene.

For method (2), considering that the three-dimensional
geometrical transformation of a vector performed in fixed
point arithmetic on the same processor costs approximately
300 microseconds, it is possible to perform one check per
second of a robot bounded by 2000 points. This remains
within acceptable limits for interactivity.

For a pyramid coding of the octrees, assuming a fast,
multiplication-less addressing of a three-dimensional bit ar-
ray, the reported times are equivalent.

The collision detector has been interfaced to the output
of the RCCL Robot programming system [Haywardsill, al-
lowing the user to check ahead robot programs. Interfaces
to CAD systems need to be implemented as well as means
for constructing the representations from sensory data.

8. References

[Agin76] Agin, G. J., Binford, T. O., “Computer De-
scription of curved objects,” IEEE Trans. Computer,
Vol 25, No 4, April 1976, pp 439-449.

[AhujaBO] Ahuja, N, et AI., “Interference Detection and
Collision Avoidance among Three Dimensional Ob-
jects,” First Ann. Nat. Conf. on Artificial Intelli-
gence, Stanford, 1980.

[Ahuja84] Ahuja, N., Nash, C., “Octree Representation
of moving objects,” Computer Vision, Graphics, and
Image Processing, Vol 26, No 2, May 1984.

[Albus81] Albus, J., “Brains, Behavior, & Robotics,”
McGraw-Hill, 1981.

[Ambler821 Ambler, A. P., Popplestone, R. J., Kempf
K. G., L‘An Experiment In the OfFline Programming
of Robots,“ 12th ISRR, Paris, June 1982.

[Baer79] Baer, A., Eastman, C., Henrion, M., “Geomet-
ric Modeling: A Survey,” Computer Aided-Design,
Vol 11, No 5 , September 1979.

[Boyse79] Boyse, J. W., “Interference Detection Among
Solids and Surfaces,” Communications of the ACM,
Vol 22, No 1, 1979.

[Brooks83a] Brooks, R. A., “Solving the Find-Path Prob-
lem by Good Representation of Free Space,” IEEE

Trans. on Systems, Man, and Cybernetics, Vol 13,
No 3, April 1983.

[Brooks83b] Brooks, R. A., “Planning Collision-Free Mo-
tions for Pick-and-Place Operations,” International
Journal of Robotics Research, Vol 2, No 4, Winter
1983.

[Canny841 Canny, J., “Collision Detection for Moving
Polyhedra,” AI Memo No 806, MIT, October 1984.

IConnolly84] Connolly, C., “Cumulative Generation of
Octree Model from Range Data,” IEEE First Inter-
national Conference on Robotics, Atlanta, June 1984.

jDoctor81] Doctor L. J., Torborg J. G., “Display Tech-
niques for octree-encoded Objects,” IEEE Computer
Graphics and Applications, July 1981.

[Dyer801 Dyer, C. R., “Region Representation, Bound-
ary Codes from Quadtree,” Communications of the
ACM, Vol 23, No 3, pp. 171-179, March 1980.

lFaverjon84) Faverjon, B., “Obstacle Avoidance Using
an Octree in the Configuration Space of a Manipu-
lator,” IEEE First Symposium on Robotics, Atlanta,
June 1984.

[Gouzkne84j Gouzkne, L., “Strategies for Solving Collision-
free Trajectories Problems for Mobile and Manipula-
tor Robots,” International Journal of Robotics Re-
search, Vol 3, No 4, Winter 1984.

[Hasegawa79] Hasegawa T., Hirochika I., “Modeling and
Monitoring a Manipulator Environment,” Proceedings
of the Sizth IJCAI, Tokyo, August 1979, Vol 1.

[Hayward841 Hayward, V., Paul R. P., “Introduction to
RCCL: A Robot Control “C” Library,” IEEE First
International Conference on Robotics, Atlanta, June
1984.

[Meagher82] Meagher, D., “Geometric Modeling Using
Octree Encoding,” Computer Graphics and Image Pro-
cessing, Vol 19, No 2, June 1982.

jKnuth731 Knuth, D. E., “The Art of Computer Pro-
gramming, Volume 1 / Fundamental Algorithms” ~ Addison-
Wesley, 1973.

[Lieberman771 Lieberman, L. I., Wesley, M. A, , “AU-
TOPASS: an Automatic Programming System For
Computer Controlled Mechanical Assembly,” I R M .I.
Res. and Develop., No 21, 1977.

[Lozano85.] Lozano-Pkrez, T., “An Approach to Auto-
matic Robot Programming”, USA-France Robotics
Workshop, University of Pennsylvania, November 1984.

[Lozano81] Lozano-PGrez, T., “Automatic Planning of
Manipulator Transfer Movements,” IEEE Transac-
tions on Systems, Man and Cybernetics, Vol SMC11,
~ ~ 6 8 1 - 6 9 8 , 1981.

1048

[Lozano83] Lozano-PL.rez, T., “Spatial-Planning: A Con-
figuration Space Approach,” IEEE Transactions on
Computers, Vol C32, NO 2, February 1983.

[Luh84] Luh, J. Y. S., “A Scheme for Collision Avoid-
ance with Minimum Distance Traveling for Industrial
Robots,” Journal of Robotic Systems, Vol 1, No 1,
Spring 1984.

[Paul811 Paul, R. P., “Robot Manipulators: Mathemat-
ics, Programming and Control,“, MIT Press, 1981.

[Paul831 Paul, R. P., ‘‘SensoFs and the Off-Line Pro-
gramming of Robots,” Proceedings of Advanced Soft-
ware in Robotics, AIM Publishers, Liege Belgium,
May 1983.

[Park831 Park, W. T., “State-Space representation for
Co-ordination of Multiple Manipulators”, Proceed-
ings of Advanced Software in Robotics, AIM Pub-
lishers, Liege Belgium, May 1983.

[Rechiqua80] Rechiqua, A. A. G., “Representations for
Rigid Solids: Theory, Methods, and Systems”, ACM
Computing Surveys, Vol 12, No 4, December 1980.

[Samet80] Samet, H., “Region Representation, Quadtree
from Boundary Codes,” Communicatiom of the ACM,
Vol 23, No 3, pp. 163-170, March 1980.

[Samet84] Samet, H., “The Quadtree and related Hier-
archical Data-Structures,” ACM Computing Surveys,
Vol 16, No 2, pp. 187-260, June 1984.

[Tosiyasu85] Tosiyasu, Kunii L., et ai. “Generation of
Topological Boundary Representations from Octree
Encoding,” IEEE Computer Graphics and Applica-
tions, Vol 5, No 3, March 1985.

[Udupa77] Udupa, S. M., “Collision Detection and Col-
lision Avoidance in Computer Controlled Manipula-
tors,” Proceedings of the Fifth IJCAI, MIT, Cam-
bridge Massachusetts, August 1977.

[Vossler85] Vossler, D. L., “Sweep-to-CSG Conversion
Using Pattern Recognition Techniques,”, Computer
Graphics and Applications, Vol 5 , No 8, August 1985.

[Wesley80] Wesley: M. A., “A Geometric Modeling Sys-
tem for Automated Mechanical Assembly,” IBM J .
Res. Develop., Vol 24, No 1, January 1980.

[Yau84] Yau, M. M., “Generating Quadtrees of Cross
Sections from Octrees,” Computer Vision Graphics
and Image Processing, 27, 211-238, 1984.

1049

