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Abstract: A method is described to estimate velocity from discrete and quantized position sam-
ples via adaptive windowing. It addresses the shortcomings of previously known methods which
necessitate tradeo�s between noise reduction, control delay, estimate accuracy, reliability, com-
putational load, transient preservation, and which cause di�culties with tuning. The method
is optimal in the sense that it minimizes the velocity error variance while maximizes the accu-
racy of the estimates. The design of the estimator requires the selection of only one parameter,
namely a bound on the noise. Simulation and experimental results are presented.
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1 INTRODUCTION

On-line estimation of velocity from discrete time
position signals is of considerable importance
when velocity sensors are not available. Examples
include velocity control of manipulators, visual
servoing (Corke and Good, 1996), implementation
of dissipative terms for force re
ecting interfaces
(Colgate and Brown 1994), and most guidance
problems. In all these examples, velocity is used
in the state feedback.

An adaptive windowing velocity estimation tech-
nique based on simple criteria and e�cient for
real-time applications is proposed in this paper
in Section 3, 4, and 5. It addresses several dif-
�culties associated with previous techniques such
as �nite di�erence and inverse-time methods, �l-
tered derivative, alpha-beta trackers, and Kalman
�ltering, all of which are reviewed �rst.

Finite-di�erence methods use the Euler approxi-
mation to obtain a velocity estimate from discrete
position measurements (Sinha et al. 1971). This
method break down at high sampling rates when
�ne time-resolution is needed for feedback control.
Inverse-time methods estimate of the velocity by
dividing the interpulse angle from an encoder by
the time between successive pulses (Habibullah
et al. 1978). For a given a sampling period,
the �nite-di�erence method breaks down at low

speeds and the inverse-time method breaks down
at high speeds.

Filtering approaches are used to alleviate the di�-
culties associated with the noise ampli�cation re-
sulting from the di�erentiation of a noisy signal.
Fixed low-pass �lters can be applied to improve
the estimates obtained by di�erence methods (Van
Valkenburg 1960). For example, anti-aliasing ana-
log �lters can be applied to the position signal
before it is sampled and quantized; digital �lters
can be used to smooth the velocity estimates, or
both. In all cases, it is assumed that the position
signal can be separated into spectral components:
a low frequency component from which a veloc-
ity estimate can be reliably derived and a noisy
component which must be �ltered out. The de-
sign of �xed causal �lters is constrained by funda-
mental tradeo�s between time lag, phase distor-
sion, attenuation and cuto� precision. Typically,
they need tuning for each application and operat-
ing condition, especially in closed loop since the
�lter becomes part of the system transfer func-
tion. A typical practical di�erentiator of the form
(Lewis et al. 1993): v̂k = �v̂k�1 + (yk � yk�1)=T ,
with � a design parameter, is known to cause res-
onance problems in closed loop. Here yk and v̂k

are position measurement and velocity estimate at
the kth instance, and T is the sampling period.
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Alpha-beta trackers have also been proposed for
optimal estimation of velocity from noisy posi-
tion measurements (Lewis 1986). An alpha-beta
tracker is a specialized form of double integra-
tor Kalman �lter. In (Glad and Ljung 1984), a
Kalman �ltering approach has been proposed for
the velocity estimation based on position measure-
ments obtained at irregular time instants. Fur-
ther investigation has been done along this direc-
tion to optimize the Kalman �lter performance
for some models of signal generation (B�elanger
1992). But Kalman �ltering assumes zero-mean
Gaussian noise which is not always a valid as-
sumption. For instance, the position measurement
noise due to quantization is in fact better repre-
sented by a uniform distribution. Also, the con-
vergence of Kalman �ltering is not always guar-
anteed. The problem is addressed by limiting the
e�ective memory of the �lter using adaptive fad-
ing of past data using forgetting factors (Sorenson
and Sacks 1971, Rao et al. 1993). It should be
noted that the number of computations required
per iteration is of order of n3 for an n-th order
Kalman �lter, which will limit the rate when sim-
ple computational devices are used. Finally, tun-
ing of the process noise covariance matrix is cum-
bersome and di�erent operational conditions re-
quire tunings.

A �nal di�culty is shared by most of these meth-
ods. The signal is �ltered the same way the noise
is: rapid changes in the input signal will be atten-
uated, resulting in a poor transient response. In
some applications such as that discussed in Sec-
tion 5, preserving the transients is important.

In summary, all the existing methods share fun-
damental tradeo�s between:
i. noise reduction and control delay,
ii. accuracy of the estimate and reliability,
iii. computational load,
iv. di�culty of tuning,
v. preserving the transients.

2 VELOCITY ESTIMATION

Suppose a position signal x(t) is sampled with pe-
riod T . The true position at time kT is denoted
by xk. The position is measured with some error
ek such that

yk = xk + ek: (1)

ek can be due to quantization (encoders, digi-
tal converters), calibration (systematic, cyclical),
thermal noise, etc., and is usually assumed zero-
mean white noise. In many situations, it is just as
valid to assume that the error is simply bounded:
�d � ek � d. In the absence of additional in-
formation, the error can be considered to have a
zero mean uniform distribution (in fact the case
of pure quantization):

r = var(ek) = E[e2k] =
d
2

3
(2)

The problem we consider is to produce an esti-
mate v̂k of v(t) = dx(t)=dt from measurements
fysg

k
1 . The online solution of this problem for

closed loop control applications imposes several
requirements. The estimation algorithm has to
reduce the e�ect of noise, and at the same time,
minimize delay to avoid compromising the phase
margin in closed loop control. These objectives
are in con
ict with �xed �lters. In addition to pro-
ducing reliable and accurate estimates, the tech-
nique should be computationally cheap. An e�ec-
tive estimation technique will allow the selection
of larger control gains and hence yield lower track-
ing errors.

Achieving the objectives just stated: reduction of
the e�ect of noise, minimization of delay, and min-
imizing computational cost for closed loop appli-
cations, is the focus of this paper. Conventional
techniques for velocity estimation will be brie
y
discussed �rst in the rest of this section. We will
then compare these algorithms with a newly intro-
duced method via simulations and experiments.

2.1 Finite Di�erence Method

The �nite di�erence method uses the Euler ap-
proximation for velocity estimation:

v̂k =
yk � yk�1

T
=

xk � xk�1

T
+
ek � ek�1

T
(3)

This approach cannot result in accurate estimates
at high sampling rates since the noisy component
becomes correspondingly ampli�ed.

2.2 Butterworth Filter

The e�ect of noise is reduced by a digital low-pass
�lter such as the commonly used Butterworth �l-
ter (Van Valkenburg 1960). The smoothing e�ect
is achieved by forming a weighted sum of �ltered
and raw velocity estimates from the �nite di�er-
ence method, denoted by v̂j and v̂

0

j respectively,

v̂k =

nX
j=0

bj v̂
0

k�j +

nX
j=1

aj v̂k�j ; (4)

where aj and bj are the �lter coe�cients. As the
order n of the �lter increases, the �lter approaches
an ideal low-pass �lter, but this will also cause
larger time delays. Much e�ort must be put into
the tuning of the cut-o� frequency, furthermore
the transients are suppressed.

2.3 Kalman Filter

Another approach is to describe the system by
discrete stochastic dynamical equations and to ap-
ply Kalman �ltering (KF) to these state equations
(Glad and Ljung 1984, B�elanger 1992):

xk+1 = Axk +Gwk; (5)

yk = Hxk + ek; (6)



Here xk = (xk ; vk; ak)
T , where ak is the accelera-

tion which could be dropped if double integrator
model is used. A and H are the state transition
and observation matrices:

A =

2
4

1 T T
2
=2

0 1 T

0 0 1

3
5 ; H =

�
1 0 0

�
:

(7)
G is de�ned as the unity matrix for simplicity.
wk = [w1; w2; w3]

T represents the process noise,
which along with the measurement noise ek is as-
sumed to be zero-mean white Gaussian. The co-
variance matrix of wk, Qk is

Qk�kj = E[wkw
T
k ] (8)

where �kj is the Kronecker delta. The white noise
wk is viewed as a surrogate for either acceleration
a (double integrator) or its derivative _a (triple in-
tegrator) and therefore can be written as

Qk = diag[0; 0; q] (9)

The wider the band of a or of _a is, the better
the stochastic model will represent the system.
Since actual motions cannot be well character-
ized by a stationary random process, q must be
taken as a parameter to be adjusted. The vari-
ance for the measurement error ek is given by (2).
The covariance matrix of measurement noise is a
scalar r. The equations describing the discrete
time Kalman �lter are then

Pred.: x̂k;k�1 = Ax̂k�1;k�1
Pk;k�1 = APk�1;k�1A

T +Qk

Gain: Kk = Pk;k�1H
T
k [r +HkPk;k�1H

T
k ]
�1

Update: x̂k;k = x̂k;k�1 +K[yk �Hkx̂k;k�1]
Pk;k = Pk;k�1 �KHkPk;k�1

(10)
In (B�elanger 1992), it is shown that the standard
deviation of the velocity estimation error is 2-4
times better when the triple integrator model is
used. The Kalman �lter provides optimal (mini-
mum variance, unbiased) estimation of state when
the model is perfect. When the model is based on
erroneous assumptions, however, the estimation
might diverge. Adaptive fading Kalman �lters
have been proposed to help convergence (Fagin
1964, Rao et al 1993). A forgetting factor �k � 1
is introduced in the error covariance equation:

Pk;k�1 = �kAPk�1;k�1A
T +Qk: (11)

Since the performance critically depends on the
selection of �k , an optimal and e�cient algorithm
for computing �k is used (Rao et al. 1993). The
optimal forgetting factor can be computed as

�k = maxf1; trace[NkM
�1

k ]g (12)

where

Mk = HkAPk�1;k�1A
T
H

T
k

Nk = HkPk;k�1H
T
k �HkQkH

T
k

(13)

3 ADAPTIVE WINDOWING

We now propose adaptive windowing techniques
to address the issues raised by velocity estimation.
To reduce the noise e�ect and hence to increase
the accuracy, it was seen that the Euler approx-
imation applied to two position samples is more
precise if they are far apart. This observation is
graphically conveyed by Fig. 1.

Figure 1: E�ect of window length on the variance
of velocity.

The larger the window length, the smaller the vari-
ance of the velocity will be. This is in fact equiv-
alent to averaging the last n velocity estimates
obtained from the �nite di�erence method (3):

v̂k =
1

n

n�1X
j=0

v̂k�j =
yk � yk�n

nT
(14)

Increasing the window size is equivalent to de-
creasing the sampling rate. A large window means
larger delay and reduces the reliability of the esti-
mation since it could miss intra-sample details.

In order to trade precision against reliability, the
window size should be selected adaptively depend-
ing on the signal itself. The window size should be
short when the velocity is high, yielding more reli-
able estimates and faster calculation; it should be
large when the velocity is low so producing more
precise estimates with negligible delays. The selec-
tion of the window size should be based on as little
information as possible to preserve transients.

Noise reduction and accuracy put a lower bound
on the window size, while reliability provides an
upper limit for the window length. A reliabil-
ity criterion is established to determine whether
the slope of a straight line approximates reliably
the derivative of the signal between two samples
xk ; � � � ; xk�n, it is then used to �nd the longest
window which satis�es the accuracy requirement,
solving a min-max problem.

A simple test is to check that the straight line be-
tween yk; � � � ; yk�n passes through all intermediate
samples given an uncertainty band de�ned by the
peak norm of the noise

d = jjekjj18k: (15)

Estimates in the set [
xk�xk�n

nT
�

2d
nT

;
xk�xk�n

nT
+ 2d

nT
]

are all possible, so a method must be found to
select one optimally, since its existence is ensured
constructively. How probable is any one of them?
Combine (1) with (14):

v̂k �
2d

nT
� vk � v̂k +

2d

nT
: (16)



For a uniform noise distribution, this implies a
triangular probability density function (PDF) for
the velocity as on Fig. 2, with

�
2
vk

=
2d2

3n2T 2
(17)

Hence, the slope of the line passing through yk and
yk�n is the estimate of maximum likelihood. The
maximum possible window size n will minimize
the variance for the velocity error.
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Figure 2: PDF of velocity for window of length n.

The estimator works as follows: at each time step,
the maximum size of the window n which satis-
�es the reliability criterion is found and returns
the slope of the line passing through yk and yk�n.
We call this method End-Fit First Order Adap-

tive Windowing (End-�t-FOAW). From the above
discussion, it follows that:

Proposition 1 If a position trajectory has a

piece-wise continuous and bounded derivative, and

if the measurement noise is uniformly distributed,

the proposed method minimizes the velocity error

variance and maximizes the accuracy of the esti-

mate.

One way to introduce additional smoothing with-
out loosing the advantages of the method is to
produce a best �t estimate using all the samples
in a window rather than an end �t based only yk

and yk�n leading to a Best-�t-FOAW estimator.
We could think of approaches similar to FOAW
using higher order interpolations between samples
(parabolic or higher), but these fall outside the
scope of this paper.

The reliability criterion can be relaxed to account
for the e�ects of outliers. An outlier is a rare event
in the signal. Suppose that, for a given uncer-
tainty band, an outlier occurs with probability p

in a given time interval. Its e�ect on the estimator
is to reset the window size, producing an inaccu-
rate estimate with the same probability. A simple
method to make the �lter more robust is to stop
the window growth only if two consecutive sample
fall out of the �t. The probability for two outliers
to occur in two consecutive samples is nearly p

2

which should be a very small number.

4 SIMULATION RESULTS

The comparison of performance between the pro-
posed method and conventional techniques was
undertaken. Evenly distributed noise (�5%) was
added to a signal sampled at 100 Hz. The ef-
fect of a second order Butterworth �lter with a
20 Hz cuto� frequency can be observed on Fig. 3
by comparison to plain FDM, where the noise is
attenuated but the estimation lag is clearly seen.
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Figure 3: Comparison of exact velocity pro�le and
FDM without and with Butterworth �lter.

The End-�t-FOAW method was applied to the
same position signal and its performance was com-
pared with the FDM (Fig. 4). FOAW removes
the velocity noise considerably with almost no
time delay while preserving the transient parts of
the signal. However, overshoot and undershoot is
present in the estimated velocity signal.
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Figure 4: Comparison of �nite di�erence method
with End-�t-FOAW.

The Best-�t-FOAW improves the quality of the
velocity estimation further as seen in Fig. 5.

0 0.1 0.2 0.3 0.4 0.5 0.6
−120

−100

−80

−60

−40

−20

0

20

40

60
first type vs second type FOAW

time (sec)

Ve
lo

cit
y 

(u
ni

t/s
ec

)

−    FOAW: the best fit

− − FOAW: the ends fit

Figure 5: Comparison of the types of FOAW.



The performance of FOAW then was compared
to that of adaptive fading Kalman �ltering. The
triple integrator model of (6), (7) was used and
the system states were predicted and updated by
equations (10). The variance r was calculated
from (2). The velocity estimations are shown in
Fig. 6, along with the FOAW-based estimations.
q tuned for the best to tradeo� between delay and
overshoot. It is seen that FOAW gives superior
estimations in terms of delay and accuracy. Also,
it should be noted that the Kalman �lter tuned
for this trajectory would not give equally good es-
timations for another trajectory.
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Figure 6: Comparison of the Best-�t-FOAW with
Adaptive Fading Kalman Filtering.

5 EXPERIMENTAL RESULTS

One instance of the problem at hand is found in
the rendering of virtual walls in the area of hap-
tics. Minsky et al. (1990) found empirically that
for virtual wall implementations (which is equiva-
lent to high gain discrete PD control Kx + B _x,
applied to an inertia) the stability condition s
B=(KT ) > c, where c is a constant found to be
about 0.5. In (Bonneton, Hayward 1994), it was
found using the Pad�e approximation that this con-
stant is 2/3 if the digital loop has one delay and
a zero-order-hold. This shows that if K is large,
B must be large too. A noisy estimate of the ve-
locity will limit B and therefore K as well. The
generality of a haptic interface will depend largely
on the freedom to select combinations of K and B
gains.

A two-degree-of-freedom haptic device, the Pan-
tograph (Hayward et al. 1994), is used in the ex-
periment on achievable gains for K and B. The
position signal is fed back to the input of a dis-
crete time controller. The output is a torque com-
mand applied to a device which can be closely ap-
proximated by an inertia (very little friction and
structural dynamics). The signal was purposely
left quite noisy (not more than 8 stable bits out
of 12).

Remember that, because it is a sampled data sys-
tem, there exist several regimes of instability. For
certain values ofK andB, the system enters stable
limit cycles, for other values, the system becomes

unstable. The reported values re
ect the onset of
limit cycles and not diverging instabilities. The
lower bound of the useful region is given by the
amount of damping B that is required for each K
to avoide a limit-cycle oscillatory behavior. The
upper limit indicates the values of B which cause
the noise to exceed a prescribed threshold for each
K too. The interior composite region outlines the
useful region|a region where gain selections are
at the same time free of limit cycles and free of
noise.

In the �rst three plots below, three velocity es-
timation techniques (FDM, End-�t-FOAW, and
Best-�t-FOAW) are compared against each other,
showing the e�ects of the sampling frequency on
the system performance. In the three plots on the
next page, the same data is presented in a di�erent
way. Each algorithm is studied for three di�erent
frequencies (300, 800, 1500 Hz).
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Figure 7: Stability-Noise regions forK and B with
di�erent estimation algorithms at 300 Hz.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9
x 10

−3

K

B

Stability/Noise Margins @ 800 Hz

Finite−Difference: dotted

End−Fit FOAW: dashed

Best−Fit FOAW: solid

Figure 8: Same as above but at 800 Hz.
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Figure 10: Stability-Noise regions for K and B for
FDM at 300, 800, and 1500Hz.
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Figure 11: Stability-Noise regions for K and B

with End-�t-FOAW at 300, 800, and 1500Hz.
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Figure 12: Stability-Noise regions for K and B for
Best-�t-FOAW at 300, 800, and 1500Hz.

Several observations can be made:

1. Both FOAWs perform much better than
FDM, especially when the sampling fre-
quency is high. This is seen from the �rst
three plots 7, 8, 9. FOAW estimators raise
the upper limit of B for all K's with an ex-
ception for some K's at the lowest frequency,
300 Hz. This exception can be explained by
the fact that FDM approximates the true ve-
locity well enough at low sampling rates.

2. For any sampling rate, these regions are en-
larged with the use of FOAW estimators
(with the largest area for the Best-Fit FOAW.
This, in essence, shows the e�ectiveness of the
FOAW algorithms.

3. FOAW estimators yield an e�ective rejection
of noise, and therefore result in a higher up-

per value of B, as compared to FDM. It also
makes the system less susceptible to noise, es-
pecially at high frequencies, as shown in the

attening of upper bound B at 1500 Hz in
the three plots 10, 11, 12.

4. FOAWs do not introduce instabilities due to
delay since the lower limits of the composite
regions remain unchanged at a �xed sampling
frequency as in plots 8, 9.

5. The lower bound of the useful region is low-
ered with increasing sampling rates which
demonstrates the necessity of better estima-
tors to combat the e�ects of noise as seen in
plots 10, 11, 12.

6 CONCLUSION

It was said in the introduction that �nite-di�erent
methods break down at low velocities (resp. high
rates) while inverse-time methods break down at
high velocities (resp. low rates). FOAW adapts
to the signal so at low velocities it resembles the
inverse-time method since it measures the inter-
vals between events which are far apart in time
but close in space, while at high velocities it resem-
bles the �nite-di�erence method since it measures
events which are far apart in space but close in
time. Correspondingly, FOAW can also be viewed
as an adaptive decimation technique. FOAW can
also be considered from the view point of its trans-
fer functions. When the velocity is high it is a �lter
of minimum order and when it is low it is a �lter
of maximum order which is lower pass.
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