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Abstract: A time-free, drift-free, multi-dimensional model of friction is
introduced. A discrete implementation is developed which exhibits four
solution regimes: sticking, creeping, oscillating, and sliding. Its computa-
tional solution is efficient to compute online and is robust to noise. It is
applied to haptic rendering.

1. Introduction
Friction occurs almost everywhere. Many things, including human acts, depend
on it. It is almost always present in machines. Usually friction is not wanted,
so a great deal has been done to reduce it by design, or by control. In the
present case, we want to synthesize it, so it can be presented under computer
control to a subject using a haptic device [1]. The model introduced in this
paper is also a possible contribution to the existing model-based compensation
techniques. The model has the following properties:

1. It is time free (autonomous), only displacements enter in the formulation.
2. It neither drifts, nor relaxes.
3. It is robust to noise, input is not assumed to be noise-free.
4. A discrete formulation exists which is online and computationally efficient.
5. It has four regimes, one of them is a quasi-periodic oscillation.
6. It accounts for vector motions and forces (2D or 3D).
7. Its parameters have a simple physical interpretation.
8. It has a continuous counterpart.

2. Previous Models
Friction refers to the production of force as a result of relative movement be-
tween two objects in contact. The force must oppose motion when there is
sliding (i.e. macroscopic motion). This forms the physical basis of dissipation.
When there is adherence, microscopic motions can arise with contact compli-
ance. To good approximation, the contact force must balance the net external
forces. The force of adhesion in is not literally friction, but must be considered
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as part of a static friction model. Below a threshold of micro-displacement
(or equivalently of force), the net macroscopic motion is truly identically zero.
This forms the basis of energy storage. We can then speak of several states:
relaxed, tense adhesion, and sliding. This basic model can be enhanced with
the addition of dynamic friction effects which depend on time (rising static
friction, frictional memory), or on state (friction irregularities, or dependencies
as a function of space or of velocity as in hydrodynamic dependencies). For
a complete survey, see [2]. In this paper, these model enhancements are not
considered.

2.1. Presliding Displacement and Static Friction

Accounting for static friction and the transition to sliding motion is a consid-
erable challenge for friction models, both in terms of the surface physics—the
origin of adhesion was long debated and still cannot be predicted accurately—
and in terms of modeling and simulation. Bodies in contact exhibit “presliding
displacement” even when there is no true sliding. This motion arises with sur-
face deformation in the contact. Over a small elastic regime energy is stored
and a mass-spring behavior can be observed [3].

Dahl was the first to systematically study and model presliding displace-
ment [4]. His model is further described below. A point addressed here is that
Dahl’s model, and more recent models based on it, exhibits drift when sub-
jected to an arbitrarily small bias force and arbitrarily small vibrations. This
drift is spurious: objects set on a slope and subjected to small vibrations do
not continuously creep down the slope. Drift in the friction model is important
for haptic interfaces because small vibrations originate from involuntary hand
tremors, even in healthy individuals.

To define terms for modeling presliding displacement, consider first the
one dimensional case of two objects with point contact, see the figure be-
low. One object is termed the fixed object, the other is the moving object.

Friction is best understood by considering two
points. One of them belongs to the moving object,
call it x. The other defines an adhesion point, call it
w. During adhesion, w is attached to the fixed ob-
ject, so z = x−w, a signed quantity, describes micro-
movements between the two objects. Most models,
including Dahl’s, define the friction force to be pro-
portional to the strain z as if the two objects were
attached by a spring. The quantity |z| is not allowed
to exceed a small value called the breakaway distance
(equivalently, the breakaway force), that we call here
zmax > 0.

When |z| reaches zmax while x monotonically increases (or decreases), the
contact becomes fully tense and w relocates so that at all times |z| = zmax.
While the contact is fully tense, necessarily ẋ = ẇ and ż = 0. This is called
sliding. The magnitude of the friction force varies with the normal force, but
this relationship is not considered here.
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2.2. Computational Models
Karnopp considers computer simulations of friction using a model that switches
from one dynamic equation to another [5]. It has been applied by Salcudean
and Vlaar to haptic rendering [6]. It is similar in concept to the model just
described but must use a velocity threshold to switch from sliding to adhesion.
When sliding, the friction force is replaced by a viscous force.

Haessig and Friedland, discussing the original Dahl model, develop com-
putational versions including a “bristle model” and a “reset integrator model”
[7]. The bristle model has been applied to haptics by Chen et al. [8].

2.3. Dahl’s Model
Dahl’s formulation may be viewed as an attempt to account for the conceptual
model of Section 2.1 using one single differential equation. The more general
form proposed by Dahl is as follows [9, 10]:

ḟ = σ0v |1 − f/fc sgn v|i sgn(1 − f/fc sgn v), (1)

where v = ẋ = dx/dt, f is the friction force, fc the Coulomb force and σ0

the assumed stiffness relating force to strain. The model may be formulated in
terms of displacements, posing f = σ0z, fc = σ0zmax, and α = 1/zmax:

ż = v |1 − α sgn v z|i sgn(1 − α sgn v z).

This expression conveys that the rate of change of z is zero when (i) v is zero
or when (ii) v and z = ±zmax have the same signs. In both cases the contact
remains tense, otherwise |z| must decrease or increase so that |z| can never
exceed zmax. The exponent i expresses how forcefully z changes when v is not
zero and |z| < zmax. The |.| and sign parts ensure the same behavior for any
integer value of i. Many model enhancements introduce a dependency of α on
time or state, as proposed by Canudas et al. [10].

From now on, we take i = 1 without affecting the discussion:

ż = v (1 − α sgn v z) = ẋ − ẇ.

Figure 1 shows x(t) for a system governed by ẍ+ ẋ = 0.5+0.1 cos t− f(t),
when f(t) is given by Eq. (1), with σ0 = 100 and fc = 1.

Figure 1. Solution obtained with MatlabTM ODE solver

Modeling the contact as a compliance should yield an oscillation for x(t)
as a filtered version of f(t), since the applied force lies in the range [0.4, 0.6],
but a net average velocity of 0.03 meters per second is observed, although the
breakaway force, or Coulomb friction level, is never applied.
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2.3.1. Behavior at reversals
Of particular interest is the behavior of the solution at reversals, that is when
v changes sign. Because of the compliance in the contact, external rapidly
varying applied forces will result in reversals of the microscopic motion.

To gain further insight, it is useful to rewrite the model in autonomous
form, bearing in mind that in our conceptual account (Section 2.1), time was
never needed, except to express that when there is sliding ẋ = ẇ and ż = 0.
The same idea can be expressed without time by writing that during sliding
x = w ± zmax and |z| = zmax. The corresponding autonomous equation is
obtained by eliminating time from Dahl’s model:

dz/dx = 1 − α sgn dx z, (2)

thinking of z as a function of x instead of t. It is now easy to find the possible
values of dz/dx. For a tense contact, this quantity has a value zero when dx
and z have the same sign (as expected) and 2 when they have opposite signs.

2.3.2. The drift and relaxation ladders
When z and dx have opposite signs, z changes up to twice as fast as x does.
In Section 2.1, we imagined z to change at most at the rate of x, to keep w
invariant. Consider first that x oscillates between two values. In Figure 2(a)
the plot of z against x is shown, for all possible paths of z(x) when x varies
between values further apart than 2zmax. z(x) traces closed major hysteresis
loops which return to the point that they left since the ascending and the
descending branches are symmetrical: we may substitute z by −z and dx by
−dx leaving Eq. (2) invariant (a symmetry group). However, for small cycles
around a non null value of z, the symmetry is broken: substitute z by z − a
and Eq. (2) no longer is invariant. The minor paths no longer are symmetrical,
they do not even trace loops but ladders, see Figure 2(b)(c), as shown now.

Suppose that x cycles with a small amplitude n around any location in the
phase portrait. Call {zm} the sequence of extrema of z at each reversal; ∆z+

and ∆z− the increase of z on the ascending and descending paths respectively.

dx > 0 : ∆z+ = n(+1 − αz)
dx < 0 : ∆z− = n(−1 − αz)

}
∆z

z
= −2αn.

{zm} converges (relaxes) to zero geometrically as in Figure 2(b). Now, an
external force causing z to oscillate around a nominal value yields a diverging
drift ladder for x. Call m the amplitude of the oscillation of z around znom.
Posing β = αznom < 1, we find the progress of x between two like signed
extrema of z to be: 2mβ/(1−β2), see Figure 2(c). This is contrary to physical
evidence. For small perturbations (say Brownian motion, permanent small
tremors), a frictional contact neither relaxes nor drifts.

A drift-free friction model could either (i) have symmetrical minor hystere-
sis loops (this might not be easy to derive) or (ii) have no minor paths. In other
terms, the ascending branches should overlap the descending ones to preserve
symmetry. Memory would then be solely encoded in the sliding regime as in
Figure 2(d). For the purpose of this paper, we opt for the second possibility.
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Figure 2. (a) Major hysteresis loops traced by Dahl’s model. (1) sliding:
dz/dx = 0: dx > 0, z > 0, (2) start relaxing: dz/dx = 2: dx < 0, z > 0, (3)
relaxed dz/dx = 1: dx < 0, z = 0, (4) finish tensing dz/dx = 0: dx < 0, z < 0.
(b) Converging drift ladder for small oscillations of x around xput. (c) Diverging
ladder for small oscillations of z around znom. (c) Drift free friction.

We now depart from the Dahl model, making α depend on z:

dz/dx = 1 − α(z) sgn dx z. (3)

We call α(z) the adhesion map. It is a nonlinear map which controls the rate of
change of z, so that w is allowed to move only when the contact is sufficiently
tense. In general, α(z) must be identically zero for a range of values around
the origin and have two asymptotes at α(z) = 1/zmax for large values of z.
There are many possible choices for α(z), we explore two in Section 3.2.

3. An Online Discrete Scalar Model
The object is to compute a sequence {zk} given a sequence of position mea-
surements {x̄k}. We first integrate (3) with respect to x over an interval h of
any length between two samples:

z = x −
∫

h

α(z) z |dx| = x − w (4)

A sampled version does not require a clock, samples may arrive irregularly.

zk = x̄k − wk.

Tension at time k is the measured position x̄k, the counterpart of the first term
of the continuous equation (4), minus the discrete version of w. The wk’s are
the successive positions of the adhesion point: wk = wk−1 + ∆wk. ∆wk is
the discrete counterpart of the integrand. Since samples are not necessarily
equally spaced in time, simple filtering methods like discarding samples until
a detectable displacement is found can be applied. Call ȳk = |xk − xk−1| to
emphasize the fact that the magnitude of small movements can be detected
separately from the position measurements x̄k.

∆wk = α(zk) ȳk zk.

3.1. Stick-Slide
We may compute zk based on the desired properties of the solution.

wk =
{

x̄k ± zmax, if |x̄k − wk−1| > zmax;
wk−1, otherwise. (5)
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No integration is needed because we simply chose α(z) = 0 for |z| ≤ zmax

and α(z) = 1/zmax elsewhere. Note that we can choose zmax to be very small,
at the resolution limit of the position measurements. Calculations are indeed
minimal. This formulation exhibits two regimes: stuck and sliding.

This model can be viewed as a filter which responds as shown on Figure
2(d). It can be used to detect extrema and signs of the derivative of x, robustly
with respect to noise without ever estimating a derivative.

3.2. A More General Model
In an effort to find solutions for z(x) which exhibit richer behaviors, we no
longer take the computational shortcut of the previous section. The sequence
of {wk} is now obtained from explicit Euler integration summing a sequence of
estimated incremental displacements.

wk =
{

x̄k ± zmax, if α(x̄k − wk−1) |x̄k − wk−1| > 1;
wk−1 + ȳk α(x̄k − wk−1) (x̄k − wk−1), otherwise.

3.2.1. Stick-slip-slide
We now take α(z) to be 0 for |z| ≤ zstick and α(z) = 1/zmax elsewhere. The
parameter zstick may be chosen to be equal to zmax in which case this more
elaborate model reverts to that of the previous section. Now, consider that
zstick is larger than zmax. When z is below zmax, the model behaves like in the
previous section and does not drift. However, if the external force is sufficient
for z to reach zstick, w slips, the contact becomes stuck and the cycle starts
again, yielding relaxation oscillations akin to a stick-slip behavior. Moreover,
if the motion is sufficiently rapid, z stays at zmax and the oscillations vanish,
yielding a sliding regime.

The sliding regime is entered and sustained when the condition α(zk)zk > 1
is met. It is therefore dependent on sampling rate since zk = x̄k −wk depends
on the interval between two samples. This means that the higher the sampling
rate, the “tighter” a contact can be simulated (further discussed in 3.2.3).

3.2.2. Stick-creep-slip-slide
We may instead choose a smooth version of α(z), for example:

α(z) =
1

zmax

z8

z8
stick + z8

which is nearly identical to zero for |(z/zstick)| < 0.5.
When the strain is sufficiently high, the model simulates an additional

pre-sliding behavior because the model has a drift component (see discussion
in [2], section 2.1.b.i). Let us call that creep to distinguish it from drift. If the
motion of x is sufficiently slow with respect to the drift and relaxation rates,
the drift component consumes all of it so that z remains below zstick. On the
other hand, if the motion of x exceeds the drift rate, z increases until it reaches
zstick. At this point, the behavior is the same as in the previous section. In
summary, we have: stick, creep, oscillatory, and sliding regimes. See Figure 3.
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Figure 3. Trajectories when zmax < zstick. Labels: (1) stuck, (2) slow motion,
the model creeps along, (3) a faster motion, z changes like x does minus the
creep, (4) oscillatory regime, (5) motion reversal, (7) motion cannot be fast
immediately after a reversal, (8) fast motions slide.

3.2.3. Discussion

The reader will notice that implicitly, time was reintroduced in the discussion.
The rates are function of time: the drift and relaxation rates depends on noise
(which in turn depend on time), the motion rate, the rate of the unforced
dynamics of the system during the return to zmax, and the sampling rate.

Additional care must be taken to determine the regime transition to sliding
when z is near zmax and to determine the creep rate when z is near zstick,
independently from the sampling rate. It is a balance between these rates that
determines the regime, but each regime is time-free.

Convergence is guaranteed for any value of α and any value of ȳk since
zk = xk − wk is never allowed to exceed zstick.

4. A Discrete Vectorial Model

We now turn our attention to a multi-dimension friction model. Points x and
w are now associated to two or three coordinates, we denote them X and W ;
z is now a vector Z = X −W . In 3-D, we may think of X as a particle and W
as the contact point with the ambient milieu.

It is helpful to look at Figure 4 to imagine the 2D counterpart of the scalar
model just described.

Figure 4. (a) Sliding: X and W move. (b) Stuck: X moves, W is invariant.

4.1. A Simple Model

The counterpart of (5) is straightforward since there is no integration:

Wk =

{
X̄k − X̄k−Wk−1

|X̄k−Wk−1|zmax, if |X̄k − Wk−1| > zmax;
Wk−1, otherwise.
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This implements a robust motion direction detector, whereas the scalar version
implements a sign detector. Since it is time-free, it is applicable to event-based
input devices.

4.2. A More General Model
The most recent measurement X̄k indicates the direction of movement, and
Ȳk = |Xk − Xk−1|. There are two choices for performing the integration.

∆Wk = α ȲkZk−1 Zk = X̄k − Wk−1

Zk = X̄k − Wk ∆Wk = α ȲkZk

The second form is the only one that converges: the direction must be updated
before the progress of W (in the scalar case, the choice does not matter). This
gives rise to the following discrete update law:

Wk =

{
X̄k − X̄k−Wk−1

|X̄k−Wk−1|zmax, if α(X̄k − Wk−1)|X̄k − Wk−1| > 1;
Wk−1 + Ȳkα(X̄k − Wk−1)(X̄k − Wk−1), otherwise.

5. Experimental Results
Experiment were performed using the PenCattm haptic device marketed by
Haptic Technologies Inc.1 It is hooked up to a host personal computer via a
serial line which permits update rates up to 400 Hz, thanks to an embedded
microprocessor.

In a first experiment, the friction model of Section 4.1 is used The thick
line shows the trace of the “virtual pointer” on the screen as guided by the
subject’s hand, see Figure 5. The set of straight lines show Z every 100 ms.
In (1) and (2), Z is in the direction of motion and approximates closely the
tangent to the trace. In (3), the subject’s hand applies a force low enough
so that adhesion occurs, and W becomes stationary. Z is no longer tangent
to the trace (which is a point) but is guided through a 360o counterclockwise
sweep. In (4), motion stops also but Z sweeps 90o clockwise before the motion
resumes. The same maneuver is carried out in (5), counterclockwise this time.
The experiment terminates in (6), where the pointer is driven around a fixed
point. To indicate how slow the movement is, consider that the time of travel
from (1) to (2) is about 2 seconds (the figure is to scale 1:1).

Figure 5.

1www.haptech.com
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Here, the more general model of Section 4.2 is exemplified with α(z) as
in Section 3.2.2. Figure 6 show the plot of Z (zmax± .25 mm, zstick± .5 mm)
against X (± 50 mm). The experiment starts in (0) where the virtual pointer
is moved slowly to the right. It traverses the stuck zone (1), and continues in
the creep zone before converging in (2) to an equilibrium between the motion
rate and the creep rate. In (3), the motion is reversed over a small distance
and so the ascending branch retraces exactly the descending one. In (4), the
motion is reversed over a larger distance, so the model creeps for a while in
the negative direction, eventually forming a hysteresis loop. Shortly after, a
larger force is applied so z climbs to reach zstick, then returns to zmax. Because
the “feed-rate” is high enough, z quickly meets zstick again, yielding a limit
cycle (5). In (6), the motion is reversed, attempting to move to the left now at
higher speed. The subject’s hand takes a while to reach a sufficient speed so
an oscillatory regime (7) is entered before sliding in (8).

Figure 6.

Synthesized signals of this type of experiments have been recorded and are
made available at www.cim.mcgill.ca/∼haptic/squeaks.html.

6. Conclusion
It is shown that the Dahl friction model drifts when a small bias force is present
with small oscillations of position. We hypothesize that this drift has not previ-
ously been identified because, in simulations, velocity during static friction can
be exactly zero. In implementations where input is derived from measurements,
such as haptic rendering, the drift becomes apparent.

The computational friction model proposed does not drift and provides
several advantages for implementation. It is autonomous, and so suitable for
event-based interfaces which may have nonuniform sampling. It is robust to
noise, especially because it depends only on position. It is discrete in formu-
lation, and so directly implementable by computer. It is extensible to 2D and
3D motions. Its parameters can be interpreted in terms of a surface deforma-
tion model, and it shows four regimes of behavior that are observed in physical
systems.

The choice of a friction model depends on the application [2]. Here, the

In Experimental Robotics VI, 
P. Corke and J. Trevelyan (Eds.), Springer: New-York, LNCS 250, 2000, pp. 404-412



much simplified candidates for α(z) yield a variety of behaviors which are suit-
able for haptics. Various choices affect the haptic perception, so the question of
perceptual relevance arises. For other applications, more direct association of
the proposed friction model with tribophysics is needed, as is the introduction
of dynamic friction effects. These are the subjects of continuing work.
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