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Abstract 2 Multi-view Integration: A Review 
We address the problem of constructing a boundary 

model of an object when the input consists of a set 
of points that lie on its surface. W e  assume that the 
points are acquired using telemetric techniques. Such 
data constitute a discrete sampling of the surface: a 
“cloud” of points. Supplemental connectivity informa- 
tion between those points is necessary if one is to re- 
construct an approximation to the underlying object. 
W e  use the implicit information provided by  the ac- 
quisition procedure itself to achieve this goal. 

1 Introduction 

Many applications as diverse as computer-aided 
manufacturing, dentistry or archeology require digital 
models of actual three-dimensional objects. Manually 
measuring the objects and entering the data is a te- 
dious process. Automatically building such models is 
thus a desirable goal. 

Optical telemetric methods are among the most 
popular active methods of sampling an object’s sur- 
faces [4]. These methods rely on the opacity of the 
sensed object. 

The next step is to  combine the data from the sev- 
eral views, and to  convert that  information to a form 
suitable for a computer representation. This is the 
task of data integration. Since the data  may come from 
several sources, they must be coalesced into a single 
model. This is because similar sensors positioned at  
different physical locations give off information that 
must be integrated. In general, it is necessary to posi- 
tion the sensing apparatus at several locations in order 
to  completely acquire the desired scene. For example, 
opacity prevents optical sensors from “seeing” beyond 
occlusions. Hence, several optical sensors “looking” 
at a given scene but from different locations acquire 
different but complementary information. How to re- 
solve this complementary information into a unified 
model is the contribution of this article. 

IEEE International Conference 
on Robotics and Automation - 

0-7803-1965-6/95 54.00 01 995 IEEE 

The first task of multi-view integration is to  find 
the geometric transform between the different sensor 
positions. Once the inter-view transform is found, the 
views can be merged. 

A popular method for doing so is the “silhouette” 
approach. This approach assumes that a clear sep- 
aration between the “object” and the “background” 
can be found. Each image then yields an infinite solid 
cone whose apex is at the sensor location and whose 
sides are tangent to the object to  be modelled. The in- 
tersection of all the cones yields a volume guaranteed 
to  contain the object [14, 151. Silhouette approaches 
inherently call for a volumetric representation such as 
octrees. 

But since the sensing apparatus gives us a collec- 
tion of surface points, the most natural representation 
is a boundary one. The simplest such representation 
approximates the desired surface with a collection of 
triangular facets. The collection of facets forms the 
surface of a simple polyhedron. Processing the point 
set is hence reformulated as defining adjacency rela- 
tionships between the data points. 

Formally, we wish to  build the “most natural” con- 
nectivity graph G spanning the set V of da t a  points, 
where G is a labelled 3-connected maximal planar 
graph. Clever algorithms must be designed to  prune 
the candidate graphs since the enormous growth rate 
of their number q!J(n), as a function of n vertices, pre- 
cludes all attempts at enumeration [2]: 

We now review below some of the approaches used 
for the construction of G. O’Rourke defines the poly- 
hedron of minimal area as the most natural model for 
the set V [ll]. He also gives a “greedy” algorithm to 
compute a good approximation for such a polyhedron. 
It selects the convex hull of V as an initial approxi- 
mation. The hull is then incrementally (‘carved’’ by 
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inserting its internal points into its boundary. The se- 
lection of the internal points and how to insert them 
into the current shape is based on local criteria only, 
yielding an O(n3)  algorithm. 

An alternative method uses the three-dimensional 
Delaunay tetrahedrization as a seed structure[5]. 
Tetrahedra are then eliminated based on a local geo- 
metrical criterion that measures how “internal” to the 
current shape the tetrahedron is. As with O’Rourke’s 
method, the process stops when all the internal points 
are on the boundary of the shape. 

Hoppe reconstructs surfaces from very dense data 
by first constructing a Riemannian Graph, a special 
type of proximity graph derived from the Euclidean 
Minimum Spanning Tree [lo]. Good results are given 
using synthetic data.  

Contextual information often helps in finding the 
desired shape. This is the case when extra informa- 
tion is provided by the acquisition procedure. For ex- 
ample’ if the data  is organized into stacked contours, 
as with tomographic data ,  the contours can be used 
as subgraphs of the desired graph. It then remains 
to link the contours using a heuristic criterion 19, 161. 
Alternately’ the three-dimensional data may consist of 
stereo edges, rather than stereo points, and the sur- 
face triangulation is then constrained to  include such 
edges [6].  

The latter contribution makes a crucial observation: 
because each element v E V is a boundary point, v 
is contiguous to  free space. Further, all acquisition 
procedures not only give off the coordinates of U, but 
also of a portion E of the free space around U. In the 
case of optical sensing, E is one or more directed line- 
of-sight segments joining v and the imaging system. 
Since these segments are known to lie entirely in free 
space, they convey information that the coordinate 
position of the surface point alone did not provide. 

In [3], we presented an algorithm that assumes the 
data  is organised in frames, where a frame is a set 
of surface points whose acquisition rays intersect a t  a 
common point P.  This is the case with many range 
finders, where P is the range camera center for a given 
range image. This special structure is exploited to  
build G in O(nlog2 n)  time. Further, the procedure 
exhibits the on-line property, that  is G can be updated 
as new frames are acquired. Unfortunately, not all 
objects can be correctly reconstructed, unless a pro- 
cedure exponential in the number of frames is used. 

Alevizos et al.’s algorithm takes as input a pla- 
nar set of points and their associated outward point- 
ing sensor acquisition direction, and uniquely solves 
the connectivity problem [l]. Moreover, it does so 
in optimal worst-case asymptotic complexity, namely 
O(n1ogn). An attractive feature is that  the resulting 
graph edges do not call for closeness measures in the 
Euclidean metric sense, as the Delaunay triangulation 
does. Indeed, the connectivity we wish to draw on 
the surface points is one which embeds the notion of 

nearest neighbour in a geodesic sense. Of course, the 
geodesic distance cannot be computed, for if it were, 
we would know the underlying surface. So using the 
Euclidean distance instead of the (unknown) geodesic 
distance is an arbitrary (albeit reasonable) choice. 

The algorithm we present below solves the problem 
of constructing a graph G,  knowing the set of surface 
points V and their respective directed segments, which 
are known to lie in free-space. As in [3], the algorithm 
does not use any distance measures to  build the graph. 
Instead, it relies uniquely on the information provided 
by the acquisition segments. Because we assume that 
the object is fully opaque and that all data  points 
are boundary points, no acquisition segment can pen- 
etrate the object. Hence the segments cannot intersect 
the model’s triangular faces. It follows that the cru- 
cial criterion we use for the construction of G is that 
a t  every stage of its construction, no segment intersect 
any of its faces. 

3 A Global Algorithm 
The algorithm assumes no coherence or organisa- 

tion for the data points. The price to be paid for this 
generality is the loss of the on-line property. We then 
say that the algorithm is global all data  must be ac- 
quired before the construction of G begins. 

The algorithm shares several aspects with the ones 
we reviewed in the last section. It first constructs the 
convex hull of the set V of all surface data  points as 
an initial approximation Go to  the desired graph G. 
Then successive graphs Gi are iteratively constructed 
by local modifications of Gi-1. The number of data  
points spanned by the successive graphs is guaranteed 
to grow monotonically. The process stops when the 
set of vertices spanned by the graph is equal to V .  

Assume the following notation: 

0 S is the set of optical, free-space segments that 
acquire V .  

0 If v E V ,  s(v) is the element of S acquiring, or 
associated with, U. 

0 V V  c V ,  S ( V )  is the set of optical, free-space, 
segments associated with the elements of V .  Also, 
S ( V )  = s. 
F is the set of faces of G. 

0 Graph subscripts indicate iteration levels. For ex- 
ample, G; is the graph at  level i and Si is the set 
of acquisition segments of the vertices spanned by 
Gi . 
Graph superscripts refer to  the face of the preced- 
ing level’s graph that a given subgraph is rooted 
at. For example, Gf is the subgraph of Gi rooted 
at face f, where f is a face belonging to  Fi-1. 
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We elide graph attributes as follows: V(Gi)  = V , ,  
E(Gi) = E; and F(Gi )  = Fi. 
- 
K = V \ v , .  

Mf is the polyhedron drawn by the graph Gf, 
and M is the polyhedron drawn by the final graph 
G 

We now describe in detail one algorithm iteration i .  
Proofs for the claims can be found in [a ] .  

We first construct a partition P of K, and of 
cardinality Card(Fi-1). Each element V of a given 
equivalence class p f  of P is such that f is the first 
face intersected by ~ ( 5 ) .  

Let f = (vg, v1, v2). If pf is empty, no element 
of 6 crosses f .  In this case, we define Gf as the 
triangle graph drawn by f .  If pf is non-empty, we 
define Gf as a maximal three-connected planar graph 
whose vertex set is yf = q f  U(v0,  u1,  v z } ,  where qf is 
a non-empty subset of p f  , and whose construction we 
explain in Section 3.1. 

Finally, we define Gi as the union’ of Gi-1 and of all 
the G{ subgraphs, thus completing the ith iteration: 

f E F , - i  
Gi = Gi- lU U G!. 
If Gi now spans the set V ,  (i.e. if = 0), the 

algorithm stops. 

Claim 1 At each level i, Gi is a three-connected max- 
imal planar graph (3CMPG). 

An obvious corollary of the claim is that the final 
graph is guaranteed to be a SCMPG, which is a proper 
model for the polyhedron M .  
Claim 2 The volume enclosed by the final model is 
that drawn by the convex hull, less that of the union 
of the polyhedra drawn by the individual subgraphs of 

all levels. Formally, I ( M )  = MO\ U U I (Mf)  
Claim 2 states that each successive model monoton- 

ically “carves” the volume enclosed by the preceding 
one. 

Claim 3 The segments associated with the vertices 
spanned by G{ do not intersect any of the faces of 

i f  

G;f 

Claim 3 states that each subgraph draws a figure 
which is locally consistent with the data acquisition 
procedure and the opacity assumption. 

Proposition 1 A t  any stage i of the graph construc- 
tion, none of the segments associated with the vertices 
spanned by the current graph Gi intersects any face of 
Fi . 

‘The union of two graphs has for vertex set the union of the 
graphs’ vertex sets and for edge set the union of the graphs’ 
edge sets. 

3.1 Subgraph Construction 

Recall that f is a graph face of the previous level, 
and that the segments associated with the elements of 
p f  intersect f .  As in [5], we prefer to link the vertices 
o f f  to the points ofpf which are “close” to f ,  or those 
whose “penetration” into f is shallow. In this manner, 
we first construct subgraphs whose faces are near the 
original f face, and which are themselves intersected 
by the segments of the “deeper” data points. Again we 
prefer to use the acquisition segments rather than Eu- 
clidean distance measures in order to guide the carving 
process and to capture to notion of “closeness”. This 
requirement can be met by a special use of conzex lay- 
ers [la]. 

Let vJ(o)  = K’ = p f  u{vO, w1, v z ) .  we construct 
the zeroth layer by taking the convex hull of Vf(0). 
The next layer consists of the convex hull of the points 
internal to that hull, again augmented with the ver- 
tices of f .  The process is repeated until a hull is found 
which contains no internal point. The graph of that 
hull is the sought subgraph G f .  

Let G f ( i )  be the graph drawn by the ith convex 
layer and let V f ( i )  be its vertex set. Let p f ( i  + 1) 
be the subset of V f  ( i )  with degree zero in Gf ( i )  (Sec 
Figure 1). The elements ofpf (i+l) arc the data points 
which are internal to the ith convex layer. If p f ( i  + I)  
is empty, then Gf = Gf (i). If p f  (i + 1) is non-empty, 
wethenlet V f ( i + l )  = p f ( i  t I ) U { v g , v l , ~ Z } ,  andthe 
(i + 1)th convex layer is the convex hull of Vf ( i  + l) ,  
whose graph is G J ( i  + 1).  

Figure 1: A convex layer at a given level i. 
21 and 2 2  have degree zero in G f ( i ) .  Hence 
we write ~ ~ ( 0 )  = pf = { z 1 , ~ 2 , ~ 3 , ~ 4 , x 5 } ,  

{ZI,Z~}, V f ( l )  = ( Z ~ , Z ~ , V O , V ~ , V Z } .  For clarity, the 
only segments shown here are those of zl and 22. 

v’(0) = { 2 1 , 2 2 , 2 3 ,  z4, 2 5 1  vO,vl,’U2}1 pf(l) = 

Claim 4 The convex layer algorithm always termi- 
nates. 
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3.2 Algorithm’s Efficiency 
We now analyze the theoretical worst-case asymp- 

totic complexity of the algorithm. 
The initialization phase requires the computation of 

the three-dimensional convex hull of a set of N spatial 
points. Such a hull can be optimally computed in 
O ( N  log N )  operations [la]. Each graph iteration then 
requires: 

1. The determination of which face f in M i  each 
segment of S ( K )  intersects. 

2. For each face of Fi, the determination of the 
points of pf which achieve maximum depth, where 
the depth of a point is the number of convex lay- 
ers that have to be stripped from V f ( 0 )  before 
these points are removed. 

In [8], a data structure called the drum representa- 
tron is given for polyhedra. It can be constructed in 
O ( n  log n)  for an n-vertex polyhedron. Among other 
uses, the representation can detect the intersection of 
a polygon with that polyhedron in logn time. By ex- 
tension, it can also detect the intersection of the poly- 
hedron with a segment, since a segment is a degenerate 
polygon. 

with the 
€aces in Fi (Step 1 above), can be performed in 
O ( n f  log nf  + n, log n f  ) using the drum structure, 
where R, is the number of segments and n f  is the size 
of the polyhedron again& which to  check intersection. 
n, is the cardinality of vi, which is bounded above by 
N .  Because the graph of a polyhedron is planar, the 
cardinality of the face set of M i  has the same order 
as that of its vertex set. But V, is the vertex set of 
M i ,  and its cardinality is also bounded above by N. 
Hence, O ( n f )  = N and Step 1 requires O(N1ogN) 
operations per iteration. 

Step 2 requires the determination of the maximal 
depth convex layer for each Kf set. In 2 dimensions, 
this can be achieved in O(mf logmf)  [7], which is 
provably optimal, where mf is the cardinality of the 
input set. No such result is known in three dimensions 
however, so we resort to a repeated application of the 
simple gift-wrapping technique [ la ,  pp. 125 and 1661, 
which requires at most O ( N 2 )  steps per layer. Since 
we are aggregating at least one point at each itera- 
tion, the worst-case complexity of step2, and of the 
algorithm, is O ( N 3 ) .  

So the intersection of all segments in 

The bound is achieved if and only if 

1. At each step of the algorithm, only 0(1) faces are 
intersected by segments of q. 

2. At each step of the algorithm, only O(1) points 
are aggregated into the graph. This can only hap- 
pen if the above condition is satisfied and the car- 
dinality of the set of maximum depth is O(1). 

Because of the recursive nature of the algorithm, we 
can reasonably hope that the partition of segments 
into faces is well-balanced, and that a large number 
of points gets aggregated at each algorithm iteration. 
For example, suppose that for every subgraph face 
f E G{ , the number of points of pf of maximal depth 
is O(n) ,  where n is the cardinality of p f .  Then the 
number of iterations is O(1) and the algorithm re- 
quires O ( N 2 )  operations. Additionally, suppose that 
at every iteration, the number of faces of M ,  that get 
crossed by segments is O ( N ) .  Then each pf set is at 
most O(1), and Step 2 is performed in constant time 
a constant number of times. Step 1 however is incom- 
pressible, giviing the algorithm total execution speed 
of O(N1ogN). The claiim that the expected speed is 
smaller than O ( N 3 )  is warranted by experimental ex- 
ecution speeds [ a ] .  

We implemented the above algorithm on real noisy 
data, obtained with a triangulation-based synchro- 
nized laser range finder developed at the NRC [13]. 
Figures 2 ancl 3 show snapshots of a round object 
with a deep concavity (a  pencil holder) and its facial 
representation through two levels. The subject mea- 
sures approximately 20cm in each dimension. Sev- 
eral thousand three-dimensional surface data points 
were taken from three different viewpoints from a dis- 
tance of about 60cm, and were smoothed with a Gaus- 
sian filter. All three views were designed to  sample a 
substantial portion of the deficiency. The accuracy 
of the measurements using this setup is better than 
lmm.  The inter-view calibration was done with a 
least-squares minimization technique on a set of seven 
fiducial points, namely the top of the pyramids shown 
in Figure 2. 

Figure 2: Left: A round object with a deep concav- 
ity. Right<: The zeroth-order approximation of the 
object Go (the convex hull). The black lines are the 
range finder‘s line-of-sight rays for those points which 
make up the next order’s approximation. 

The resulte, are somewhat disappointing from a per- 
ceptual point of view. The main reason is that the 
edges from the higher level always remain in the graph. 
Where a large deficiency is present, as is the case in 
the example, each higher-level face gets carved as if it 
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Figure 3: Left: The first-order approximation of the 
object GI .  Artifacts on the round part of the object 
are caused by calibration inaccuracies. The concavity 
is now only partially carved. Right: The second- 
order approximation of the object. The concavity is 
still being carved (note the many rays in the bottom 
part of the figure) while the round part of the object 
is fully modelled. 

contained its own separate deficiency. As the carving 
proceeds, these “separate” deficiencies get larger. 

A second problem pertains to  the planar-facet rep- 
resentation itself. Claim 3 only shows that the acquisi- 
tion segments of the vertices spanned by a local graph 
Gf do not intersect any face of Gf. However, they 
still may intersect the faces of Gf’, where f # f’ (we 
then say loosely that the subgraph Gf and Gf‘ inter- 
sect). Such situations do arise in practice. One reason 
of course is that the data at our disposal is insufficient 
sampled to  correctly and unambiguously reconstruct 
the object. As well, the sensing method introduces 
local spurious artifacts. But a more fundamental rea- 
son is that the simplicial representation we adopted is 
an arbitrary representation for the underlying surface. 
In practice, it tends to  “carve O U ~ ”  too much of the 
object’s enclosed volume. 

Consider the simple case illustrated in Figure 4. f 
and f’ are two faces, each of which is intersected by 
one acquisition segment. In this case, no segment-to- 
face intersection is present. 

If we modify the position of the data  points in Fig- 
ure 4 to allow v’ to translate towards the left of the 
figure, we reach a limit where v’ penetrates through a 
face q!~ of F{+l, as shown in Figure 5. As a result, S(U’)  
intersects 0. 

This happens because the volume of the deficiencies 
carved out by the convex M ;  objects is too large. S u p  
pose now that we fix face q!J at its vertices, and that we 
“bend” it away from U’, thus making it non-planar, so 
as to allow U’ (and hence s(v’)) to not intersect 4 any 
longer. Because we know that both s and s‘ entirely 
lie in free-space, there exists a topological mapping 
7 such that the image of q5 through 7 is a sheet with 
the same boundaries as 4, but which intersects neither 
s(v) nor .(U’). 

Figure 4: f and f’ are two (neighbor) faces of a 
graph G,. The cardinality of both p f  and pf’ is 1. 
The acquisition segments are shown for the singletons 
v E pf and v‘ E: pf‘ .  On the right of the figure, the 
corresponding graph for Gf+l and Gf;, is shown. 

Figure 5: The faces of Gf and Gf’ intersect. For 
clan’ky, the acquisition segments are omitted from this 
and the following figures. 

Hence, although the geometry of the modelled ob- 
ject is incorrect, the connectivity of its vertices is con- 
sis tent  (in the sense of [ a ] ) ,  with the data  acquisition 
procedure. 

Refer back to Figure 4. Faces f and f’ both spawn 
a sub-tree, with vertex v and U’ respectively. Each 
sub-tree models a deficiency, which is deemed to have 
been “discovered” by the intersecting segments .(U) 
and s(u‘). Thanks to the particular geometry of the 
data,  the model drawn by the resulting graph is free 
of self-intersections. 

In Figure 6, the same data configuration is shown, 
except that the convex layer algorithm has been per- 
formed by merging faces f and f’. More formally, the 
convex layer algorithm has been applied to  the merged 
input set 

V f J ‘  = ( 2 1 ,  t 2 , 2 3 , 2 4 }  U pf U pf , 

where f = ( q , x 2 , x 3 )  and f’= ( 2 1 , 2 2 , 2 4 ) .  
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We can see that the resulting boundary and graph- 
theoretic interpretation of Figure 6 is as consistent 
with the data as that of Figure 4. 

[2] S. Aubry. Xhree-Dimensional Model Construction 

Figure 6: f and f '  have been merged for the convex 
layer algorithm, resulting in a different graph. 

Contrast the above situation with that which we 
illustrated in Figure 5, where the resulting planar-facet 
model violated the opacity condition. The same data 
geometry is shown in the companion Figure 7, but 
with the convex layer algorithm having been applied 
to the merged faces f and f'. As before, merging faces 
yields a different graph, but it now also eliminates the 
self-intersection between Gf and Gf'. 

Figure 7: Modified graph for f and f'. The seg- 
menqs associated with the segments of vertices of 
Vf,f  do not now intersect any face of Gflf ' .  

This example illustrates the need for merging faces 
in the case where neighbouring deficiencies intersect. 
In [a ] ,  a heuristic modification to  the algorithm based 
on the face-merging approach is presented. 
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