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the use of Kautz models, which seem to have large potential in many
applications in control theory and signal processing, where modeling
of resonant systems is of importance.
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Single State Elastoplastic Friction Models

Pierre Dupont, Vincent Hayward, Brian Armstrong, and
Friedhelm Altpeter

Abstract—For control applications involving small displacements and
velocities, friction modeling and compensation can be very important. In
particular, the modeling of presliding displacement (motion prior to fully
developed slip) can play a pivotal role. In this note, it is shown that existing
single-state friction models exhibit a nonphysical drift phenomenon which
results from modeling presliding as a combination of elastic and plastic dis-
placement. A new class of single state models is defined in which presliding
is elastoplastic: under loading, frictional displacement is first purely elastic
and then transitions to plastic. The new model class is demonstrated to sub-
stantially reduce drift while preserving the favorable properties of existing
models (e.g., dissipativity) and to provide a comparable match to experi-
mental data.

Index Terms—Friction compensation, friction modeling, mechanical sys-
tems, presliding.

I. INTRODUCTION

Friction modeling is important at all stages of the life cycle of a preci-
sion servo. During machine design, accurate friction simulation allows
for performance prediction and optimization—suggesting choices of
mechanical designs, materials and lubricants to facilitate friction com-
pensation. In compensator design, the role of friction modeling can
be categorized according to whether or not the friction compensation
is model-based. Examples of nonmodel-based compensators include
high-gain feedback [11], impulsive control [3] and dither [7]. These
techniques require accurate friction models for analysis: to predict op-
erating point stability [11], limit cycle stability [4] and performance
[3]. Model-based compensators perform feedforward cancellation of
the friction force. Their success depends on knowledge of the model
structure, its observability, and knowledge of the model parameters [8],
or, in the case of adaptive controllers, the capability for parameter es-
timation [2], [13], [18].

The question of appropriate friction models has been raised many
times; a 1994 survey cites 280 articles addressing issues of friction
modeling, control and applications [5]. Perhaps the most significant im-
pediment to friction modeling is that the physics underlying “sticking”
and sliding in lubricated contacts are different. What is classically re-
ferred to as “sticking” or static friction is now known to be a regime
extending over several microns of motion in metal contacts in which
friction force is predominately a function of displacement [5]. In this
regime, known as presliding, friction is a reaction force that compen-
sates for externally applied forces.

In high-precision pointing and tracking applications, presliding can
be the dominant friction phenomenon. Dahl, motivated by a coworker’s
description of the lightly damped relative lateral oscillations of two flat
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plates separated by three ball bearings, was the first to attempt to model
presliding for controls applications [9]. His model, and a subsequent
generalization known as the LuGre model [8], are justified based on
their ability to reproduce experimentally observed friction behavior.
Dahl’s model simulates the symmetric hysteresis loops observed in
bearings undergoing small-amplitude sinusoidal forcing. The LuGre
model was designed to extend Dahl’s model to include other effects,
such as those associated with the sliding of lubricated contacts.

Bothmodels incorporate a single continuous state to model presliding
displacement. Recently, multi-state models have also been proposed for
presliding. As can be expected, they are capable of reproducing more so-
phisticated presliding behavior—in particular, hysteresis. For example,
the model of Sweverset al.employs one continuous state plus an array
or stack storing positive and negative force/displacement extrema asso-
ciated with nested hysteresis loops [17].

For many applications, such as machine tools, the single-state
models still hold appeal due to their comparative simplicity for
system analysis, controller design and implementation. A significant
limitation of these models, however, is that they exhibit drift: systems
subjected to an arbitrarily small bias force and arbitrarily small
vibrations, experience unbounded displacements [15]. For example,
the single-state models predict that a block placed in frictional contact
with an inclined plane and subjected to small vibrations would creep
down the plane. Practical experience shows that this drift is spurious.

In this note, it is shown that drift is due to the fact that presliding dis-
placement in the Dahl and LuGre models always includes a plastic (ir-
reversible) component. To minimize drift, a class of single-state models
are defined in which presliding is elastoplastic, i.e., under loading the
displacement is first purely elastic (reversible) before transitioning to
plastic (irreversible). In Section II, a condition for elastoplastic pres-
liding is defined in terms of a breakaway displacement and a theorem
is presented casting this result in terms of single-state model equations.
This section also derives conditions on combined elastic and plastic
displacement. Sections III presents a new class of single-state models,
which are shown to exhibit elastoplastic presliding. In Section IV, ma-
chine tool experimental data is used to compare the LuGre and elasto-
plastic models. Conclusions appear in Section V.

II. SINGLE STATE MODELS

Consider the class of friction models involving a single state vari-
able in which rigid body displacementx is decomposed into elastic (re-
versible) and plastic (irreversible) components,z andw, respectively

x = z + w: (1)

Friction models typically define the elastic dynamics explicitly while
the plastic displacementw is defined implicitly. For example, Dahl’s
friction model takes the form

ff = �0z; �0 > 0; _z = _x 1�
�0

fC
sgn( _x)z

i

(2)

whereff is the friction force,z(t) specifies the state of elastic strain in
the frictional contact, and�0, the contact stiffness [9], [10]. With suf-
ficient unidirectional sliding, the force saturates at the Coulomb level
fC . The integer exponenti was used by Dahl to govern the transition
rate ofz in order to achieve a better experimental match. Applications
of his model, however, typically employ the valuei = 1.

As a second example, the LuGre friction model is an extension of
Dahl’s model that can provide representations of Stribeck friction, vis-
cous friction, rising static friction and frictional memory during slip
[8]. It is written

ff =�0z + �1 _z + �2 _x; �0; �1; �2 > 0;

_z = _x 1�
�0

jfss( _x)j
sgn( _x)z (3)

Fig. 1. Stribeck curve of steady-state friction force versus rigid body velocity
_x.

wherefss( _x) is the steady-state friction force versus rigid body ve-
locity, also called the Stribeck curve. A representative plot offss versus
_x is seen in Fig. 1. The Stribeck friction curve is sometimes drawn
only in the first quadrant; here a more general form is considered in
whichfss( _x) is a signed quantity and which allows different values of
steady-state friction in the positive and negative motion directions. As
before,z(t) specifies the state of elastic strain in the frictional contact;
�0 and�2 are contact stiffness and viscous friction parameters; and
�1 provides damping for the tangential compliance. The LuGre model
specializes to Dahl’s model if�1 = �2 = 0 andjfss( _x)j = fC .

Introducing the steady-state elastic strain corresponding to steady
sliding at velocity _x as

zss( _x) =

f ( _x)
�

; j _xj > 0

lim _x!0
f ( _x)
�

; _x = 0
(4)

the governing equation of model (3) may be written as

_z = _x 1�
z

zss( _x)
(5)

where the second case ofzss( _x) is defined (arbitrarily) to assure that
_z( _x = 0) = 0. For use later in the note, the maximum and minimum
steady-state friction values,fmax andfmin, respectively, are defined as

fmax =sup
_x
jfss( _x)j > 0; (6)

fmin = inf
_x
jfss( _x)j > 0: (7)

A. Elastoplastic Presliding

Presliding displacement can be categorized using the rate equations
that follow from the displacement equation (1):

_x = _z

_w = 0
elastic displacement (8)

_x = _z + _w mixed elastic and plastic displacement (9)
_x = _w

_z = 0
plastic displacement/sliding: (10)

The type of presliding displacement provided by a friction model is
determined by the sequence of sliding states it produces when subjected
to an increasing load from zero initial conditions. The following defini-
tions will be used in this note.Elastoplastic preslidingstarts out elastic
(8), proceeds to mixed (9) and then to plastic (10).Plastic presliding
omits the elastic regime (8) and so always includes a plastic component.
A model lacking presliding entirely omits both the elastic and mixed
regimes. These observations make it possible to define the requirement
for a single-state friction model to exhibit elastoplastic presliding.
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Definition 1: A single-state friction model possesses elastoplastic
presliding if there exists a breakaway displacementzba > 0 such that
jz(t)j � zba implies _w(t) = 0, 8 _x 2 R.

To apply this definition to single-state friction models, consider the
following general equations:

ff =�0z + �1 _z + �2 _x; �0; �1; �2 > 0; (11)

_z = _x 1� �(z; _x)
z

zss( _x)
: (12)

By proper choice of model parameters�i and function�, these equa-
tions encompass a number of friction models including those of Dahl
[9], Haessig and Friedland [14] and the LuGre model [8]. These choices
also determine the model’s properties as well as the frictional phe-
nomena it can reproduce. The following theorem states the conditions
under which a model of this form will exhibit elastoplastic presliding.

Theorem 1: A friction model described by (11) and (12) possesses
elastoplastic presliding if and only if there exists azba > 0 such that
�(z; _x) = 0, 8 z 2 fjzj � zbag, 8 _x 2 R.

Proof: Assume that the model possesses elastoplastic pres-
liding and is in its elastic regime with_z = _x 6= 0. By (12),
�(z; _x)[z=zss( _x)] � 0. Sincezss( _x) is bounded, this is true if either
z(t) � 0 or �(z; _x) � 0. However,z(t) � 0 contradicts the assumed
existence of elastic presliding. Thus, it must be true that�(z; _x) = 0,
8 z 2 fjzj � zbag, 8 _x 2 R. Now, assume that�(z; _x) = 0,
8 z 2 fjzj � zbag, 8 _x 2 R. Clearly _z = _x and _w = 0 for jzj � zba
so that the model possesses elastoplastic presliding.

These results can be used to evaluate the properties of models fitting
the form of (11) and (12). For example, casting the LuGre and Dahl
models in the form of Theorem 1, they satisfy the inequality

0 < �(z; _x)
1

jzss( _x)j
<1 (13)

and there is nozba > 0 corresponding to an elastic regime. Thus, with
the exception of a constant friction force,ff(t) = ff(t0), 8 t � t0,
any friction force history produces plastic presliding for these models.

B. Mixed Elastic and Plastic Displacement

Before defining a general elastoplastic model, the cases of elastic
displacement combined with either plastic presliding or sliding require
a careful description since they define bounds on�(z; _x) in (12). The
rate equation governing these combinations is given by (9), and three
cases must be considered.

1) Relaxed Contact Undergoing Loading:If a friction model al-
lows a regime of mixed elastic and plastic presliding, a relaxed contact
undergoing loading can experience displacement rates satisfying

sgn( _x) = sgn( _w) = sgn( _z): (14)

This equation constrains the rates of elastic and plastic deformation to
fall between the limits obtained in the cases of pure elastic displacement
and pure plastic displacement (or equivalently, steady-state sliding).
In two special cases, however, one of these equalities can be violated.
These are described below.

2) Elastic Relaxation Due to the Stribeck Effect:The Stribeck
curve, as depicted in Fig. 1, indicates that the steady-state friction
force is a decreasing function of velocity magnitude at low velocities.
By (11) and (12), following an increase in velocity, the elastic
deformation must decrease, despite continued sliding, to produce the
smaller steady-state friction force. The inequality

sgn( _x) 6= sgn( _z) (15)

holds during the elastic relaxation. If the friction model includes an
elastic damping term, such as�1 _z in (11), the elastic damping can re-
verse the direction of the friction force during relaxation—rendering

the model nondissipative,ff _w < 0. This effect can be avoided by
proper choice of model parameters [1], [6].

3) Elastic “Super Relaxation” Following Motion
Reversal: Immediately following a sign change of rigid-body
velocity _x, the elastic displacement,z, must relax before stretching
in the opposite direction. If the rate of relaxation exceeds the rigid
body velocity

sgn( _x) 6= sgn( _w) (16)

and dissipation is increased. Given the experimental observation that
contacts transitioning to rest from fully developed sliding experience
lightly damped tangential oscillations [16], this phenomenon, if
present, is of limited effect. It is therefore precluded from the model
presented below. However, its inclusion, if needed, is straightforward.

The conditions describing elastic and plastic presliding, as well as
sliding, can now be summarized in a time-independent formulation as
follows. Equations (8) and (10) yield

dz

dx
=

1; elastic presliding
0; plastic presliding/sliding.

(17)

Equations (14)–(16) are summarized by

No Stribeck; 0

Stribeck; Smin

�
dz

dx
�

1; No super relaxation
Smax; Super relaxation

(18)

where the existence of the boundsSmin, due to the Stribeck effect, and
Smax, due to super relaxation, will depend on the equation adopted to
describe the dynamics. For the LuGre model and a reasonably smooth
Stribeck friction model (e.g., [5]), it is seen from (3) and the fact that
jzj � fmax=�0 thatSmin = (1 � fmax=fmin) andSmax = (1 +
fmax=fmin).

III. T HE ELASTO-PLASTIC MODEL

This section presents a class of models of the form of (11) and (12)
that exhibit elastoplastic presliding. A breakaway displacementzba >
0 is defined such that the models behave elastically forjzj < zba.
This model class also preserves the following properties, which can be
achieved by models of the LuGre type. Proofs of these properties are
straightforward and can be obtained from [6], [8], and [12].

1) The statez is bounded: Ifjz(0)j � zmax = fmax=�0 then
jz(t)j � zmax, 8 t � 0.

2) Equations (17) and (18) are satisfied. Assuming super relaxation
is precluded,0 � dz=dx � 1 if no Stribeck effect is modeled
and�1 < Smin � dz=dx � 1, otherwise.

3) During sliding, the friction force opposes slip:ff _w > 0, 8 _w 6=
0 (assuming proper choice of model parameters, as discussed in
[1], [6]).

4) The model is dissipative for all_x 6= 0.
To achieve these properties, we define the piecewise continuous

function�(z; _x):

�(z; _x) =

0;

�m(�);

1;

0;

zba <

jzj � zba
jzj < zss( _x)

jzj � zss( _x)

sgn _x =sgnz:

sgn _x 6=sgnz:

(19)

with 0 < zba � zss( _x); 8 _x 2 R: (20)
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Fig. 2. Plot of�(z; _x) for sgn( _x) = sgn(z).

Fig. 3. Schematic diagram of electrical discharge machining (EDM) system.

Fig. 4. Friction torque versus time. Both experimental data and elastoplastic
model prediction are depicted.

The piecewise continuous function0 < �m(�) < 1 in (19) controls
mixed elastic and plastic displacement. A specific example of�m(�) is
given by

�m(z; zba; zss) =
1

2
sin �

z � z +z

2

zss � zba
+

1

2
;

zba �jzj < zss( _x): (21)

Graphically,�(z; _x) for sgn( _x) = sgn(z), has the general shape de-
picted in Fig. 2. The existence of an elastic presliding regime follows
directly from (19) and Theorem 1.

The dependence ofzss on _x is the consequence of forcing the model to
represent presliding displacement and the Stribeck effect using just one
state. The Stribeck effect describes the steady-state behavior of the sepa-
rating lubricant film dynamics. The underlying assumption (in common
with the LuGre model) is that the fluid layer develops its thickness in-
stantaneously in responseto the input_xandtheslowerasperitydynamics
control the evolution to the steady sliding friction force associated with
_x. No attempt is made to justify this assumption here. It is likely that

TABLE I
ESTIMATED FRICTION MODEL PARAMETER VALUES. NOTE THAT FOR THE

TRAJECTORIESCONSIDERED, VISCOUSFRICTION IS NEGLIGIBLE, I.E., � _x � 0

Fig. 5. Comparison of friction torque versus angular displacement for
measured data and the elastoplastic model.

Fig. 6. Comparison of friction torque versus angular displacement for
measured data and the LuGre model.

the introduction of additional fluid-related state variables would provide
better consistency with the underlying physics. Here,zba is chosen to be
independent of_x. The result is that the range ofz over which combined
elastic and plastic presliding occurs is a function of_x.

IV. EXPERIMENTAL EVALUATION

To test the capabilities of the elastoplastic model, friction data was
obtained from thex-axis of a Charmilles’ wire electrical discharge ma-
chining (EDM) system. EDM is used to manufacture such items as dies,
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(a) (b)

(c)

Fig. 7. (a) Motor torque,F , versus time. (b) Angular displacement predicted by the elastoplastic friction model. (c) Angular displacement predicted by
the LuGre model.

molds and cutting tools. Since the positioning tolerance for these sys-
tems is less than a micron, most of the machining operation is performed
within friction’s presliding regime. With displacement sensing resolu-
tionof0.1micronbecoming the industrystandard, thesesystemsprovide
excellent test beds for measuring the displacement dependence of fric-
tion.

A. Test Bed

A schematic diagram of the test machine is shown in Fig. 3. The drive
system consists of an ac motor, belt reduction, a ball-screw-and-nut
transmission and a linear scale. Friction is primarily present in the var-
ious ball bearings and in the transmission system; measurements in-
dicate that linear bearing friction can be assumed negligible. Desired
velocity from the machine’s CNC is fed to a servo system that controls
the AC motor using displacement measurements obtained from both
the motor encoder and the linear scale encoder.

For friction parameter estimation, motor encoder position and refer-
ence motor torque are sampled at 100 Hz and stored for offline anal-
ysis. The belt reduction is extremely stiff; frequency measurements in-
dicate that transmission stiffness exceeds friction interface stiffness by
a factor of one hundred. With a transmission reduction ratio of about
one thousand, displacements within the presliding regime are easily re-
solved using the high-resolution motor encoder.

B. Trajectory Design

To design trajectories for estimating presliding friction, preliminary
experiments were performed to obtain upper bounds on acceleration
and velocity. The bound on acceleration ensured that friction domi-
nated inertia. Thus, friction torque could be estimated using motor cur-
rent. The bound on velocity ensured that presliding friction dominated
viscous friction so that the latter could be neglected. In addition, these
machines use boundary lubricants to eliminate the Stribeck effect.

A typical trajectory meeting these requirements is depicted in Fig. 4.
It consists of an initial segment of unidirectional sliding, in which a
constant friction torque is achieved, followed by seven closely-spaced
direction reversals. Such a trajectory tests the capability of a friction

model to reproduce both “major” and “minor” hysteresis loops. Major
loops correspond to closed torque-displacement curves, such as those
observed by Dahl, in which periodic motion achieves fully developed
sliding in both directions. Minor loops are closed torque-displacement
curves that occur entirely within presliding.

C. Estimation

Friction parameters were estimated for the elastoplastic and LuGre
models by minimizing mean square error in friction force over a trajec-
tory, using a nonlinear search technique. Due to the boundary lubricant,
jfss( _x)j = fC is constant for both models. Its value was found to de-
pend on the direction of motion, however, so an offset term,fDC, was
introduced. Velocity was estimated from first-order differencing of po-
sition data followed by symmetric low-pass filtering at 3 Hz.

Parameter estimates for the elastoplastic model, described by (11),
(12), (19)–(21), withzss( _x) = fC=�0, and the LuGre model, described
by (3), are given in Table I. Parameter variances are not provided due
to the limited number of trials considered.

Predictions of friction force corresponding to these parameter esti-
mates are shown in Figs. 4 and 5 for the elastoplastic model, and in
Fig. 6 for the LuGre model. Estimated friction force is comparable for
both models. For the trial depicted, RMS friction error was 11.9% for
the elastoplastic model and 12.4% for the LuGre model.

D. Results and Discussion

The advantage of the elastoplastic model is its ability to minimize
spurious drift. Its capability to do so is clear from the estimated value
zba=zss = 0:7169. This value indicates that for 71.69% of the friction
state’s range of motion, centered around the unloaded state, presliding
displacement is purely elastic. In this range, no drift will occur.

For illustration, consider the motor torque,Fapplied(t), shown in
Fig. 7(a). Initially, the torque increases linearly so as to exceed the
magnitude associated with fully developed (plastic) sliding,fC+fDC.
The torque is then reduced to about one quarter of this level and an os-
cillatory component is added. Such a component could correspond to
system vibration or (position) sensor noise in a feedback loop.
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(a)

(b)

Fig. 8. (a) Torque versus displacement for elastoplastic model. The dashed
horizontal line is a lower bound on the amplitude of the small loops such that
there is no drift. (b) Torque versus displacement for LuGre model. Note the
differing horizontal scales.

The response of the EDM machine for this torque input was simu-
lated using the parameter values in Table I. Machine position versus
time is plotted in Fig. 7(b) and (c) for the elastoplastic and LuGre
models, respectively. The corresponding torque versus displacement
curves are shown in Fig. 8(a) and (b). During the initial portion (�2 sec)
of the trajectories, both models predict fully developed sliding. This can
be most clearly seen by the saturation of the friction forces in Fig. 8.

During the subsequent sinusoidal loading, however, the elastoplastic
model predicts elastic presliding with no net displacement. (Note that
the area inside the small loops of Fig. 8(a) is due to the damping term
�1 _z in (11).) The LuGre model, which always includes a plastic com-
ponent of presliding, predicts that the displacement increases as long
as the sinusoidal torque is applied. This drift, which will occur for arbi-
trarily small sinusoidal torques of the formFapplied = A+B sin(!t);
A;B > 0, is clearly contrary to the fact that even objects with lubri-
cated contacts remain situated in the presence of small loads and vibra-
tions.

For the elastoplastic model, the quantity(zba=zss)fC + fDC =
0:1934 N-m, labeled as a dashed horizontal line in Fig. 8(a), provides
a lower bound on the torque amplitudeA + B for which no drift will
occur. Thus, the small loops in this figure can extend at least as high
as this boundary without producing any drift. Note that this bound de-
pends on the experimentally estimated ratiozba=zss and so may vary
considerably between applications.

V. CONCLUSION

In high-precision applications, such as EDM, control within the
presliding regime is mandatory. Single state models, as approximate
representations of friction, are appealing for these applications since
their simplicity and continuity facilitate controller design and analysis.
Unlike models with many or even infinite states, however, single
state models overestimate plastic displacement in presliding—they
drift. As demonstrated in Section IV, for applications that involve
periodic motions within the presliding regime, the cumulative drift can
grow without bound. The elastoplastic models developed in this note
eliminate drift in the elastic presliding region and so can substantially
reduce total drift. This enhancement can extend the application domain
of single state models to trajectories dominated by presliding.
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