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Abstract

The autonomous parameter estimation of a manip-

ulator is considered with respect to both dynamic and

joint sensor properties. Using methods based on adap-

tive control, a new formulation is introduced such that

bench calibration of the robot joint sensors and actu-

ators is no longer necessary. This method is unique

because estimation is done with respect to invariant

forces due to gravity loading. The method also guar-

antees convergence to the true values from arbitrary

initial estimates; consequently, the algorithm can also

be used for manipulator self test. Experimental results

are presented which were performed on two links of a

a six degree of freedom hand-controller. Results show

that angles can be recovered to an accuracy of �1o in

the absence of initial estimates.

1 Introduction

Adaptive Control techniques in robotics have shown

powerful results with respect to both overall motion

control and identi�cation of robot dynamic properties.

These methods however, assume that the robot's joint

sensor parameters are known. This paper presents a

new method to extract both the dynamic properties

and the sensor properties using adaptive control.

For devices which do not have incremental joint

encoders to measure joint position, but instead ana-

log sensors, the problem of joint parameter estimation

must generally be done by independently measuring

joint angles and displacements. Unfortunately, there

are many factors which can change these parameters

making this manual calibration cumbersome. For this

reason we have integrated adaptive control with joint

parameter estimation to avoid this manual task.

The methods used in this paper are based on the

work done in nonlinear adaptive control by Slotine and

Li [13, 15]. Their methods use the property that con-

stant parameters in the dynamic equations, such as

masses, centres of gravity, and inertias of the links,

occur linearly with respect to the joint torques; this

is known as the regressor form of the robot dynamics.

This has been exploited by other researchers in adap-

tive control including Khosla [6] and Craig [4]. Over

the course of their research, Slotine and Li combined

their results, which were based on trajectory track-

ing error, with that of Middleton and Goodwin whose

results were based on joint torque error. The combina-

tion, known as composite adaptive control, guaranteed

both tracking and parameter convergence. It is the

guarantee of parameter convergence which is utilised

to solve the autonomous estimation problem.

To estimate joint sensor parameters, the robot re-

quires a source of reference. For example, this has

been accomplished in the past using a \home position"

in which the manipulator is constrained to a known

con�guration in space. Unfortunately this does not

give information concerning the sensor gains. (The

conversion factor between the raw sensor output, and

the actual angle.) Instead, this paper proposes a tech-

nique whereby the manipulator's sensors are estimated

using the invariant force of gravity. The gravity terms

introduce trigonometric functions within the dynamic

model. These terms are replaced by polynomial ap-

proximations such that the unknown sensor param-

eters can be integrated into the composite adaptive

control framework.

Section 2 gives a brief summary of Slotine and Li's

results in adaptive control. Section 3 presents the new

method for joint parameter estimation. Sections 4 and

5 present implementation issues, and an evaluation of
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the experimental results.

2 Composite Adaptive Control for

Robot Joint parameter Estimation

In this section the results obtained by Slotine and

Li in Composite Adaptive Control are summarised.

2.1 The Dynamics of a Robot Manipula-
tor

Using � as the vector of joint angles, the dynamics

of a robot manipulator can be modelled by:

� =M(�)�� + C(�; _�) _� +G(�) (1)

Where _� and �� are joint velocities and accelerations,
M(�) is the inertia matrix, C(�; _�) contains the cen-

trifugal and Coriolis terms, and G(�) is the contribu-
tion due to gravity. (1) can also be expressed linearly

in terms of the physical parameters of the system.

� = Y (�; _�; ��)�a (2)

(2) is known as the regressor form of the dynam-

ics. The vector �a comprises the unknown parameters

of the system; generally this includes, masses, link di-

mensions, and even constants of friction. It is from the

regressor form of the dynamics that composite adap-

tive control is derived.

2.2 Composite Adaptive Control

Composite Adaptive Control evolved from the

adaptive control methods of Slotine and Li [7,10,11,13]

and Middleton and Goodwin [8, 9]. These two ap-

proaches were combined into composite adaptive con-

trol in [12, 14, 15]. The composite adaptive controller

uses error measures from both joint tracking and joint

torques to update the parameter estimates. The con-

troller requires neither inversion of the inertia matrix

or use of joint acceleration measurements.

The control law is:

� = M̂(�)��r + Ĉ(�; _�) _�r + Ĝ(�)�KDs (3)

where M̂ , Ĉ , and Ĝ are estimates of the robot dy-

namics matrices M , C, and G. KD is a linear feed-

back constant and s is a measure of joint error. The

parameter update is de�ned as:

_̂a = �P (t)
�
c1Y

T (�; _�; _�r; ��r)s+ c2W
T (�; _�)e

�
(4)

The matrix Y is the regressor form of the robot dy-

namics and is a function of the both measured joint

values, �, _�, and joint errors restricted to lie on a slid-

ing surface _�r, ��r. W is a �ltered form of the regressor

matrix Y ; the �ltering is done to avoid measurement

of joint acceleration. e is a measure of torque error, c1
and c2 are weighting constants.

The time varying matrix P (t), in (4), is de�ned by

the Bounded Gain Forgetting method (BGF) [15].

d

dt
P�1(t) = ��(t)P�1 +W TW (5)

where:

�(t) = �0

�
1�

k P k

k0

�
(6)

�0 and k0 are positive constants which de�ne the

rate of data forgetting and the upper bound of the

P matrix. The product W TW is the solution to a

least squares minimization problem of the actual and

computed joint torques.

Slotine and Li show that under excitatory condi-

tions the composite adaptive controller attains expo-

nential trajectory convergence and global parameter

convergence [15]. This result is important because it

can be used as a basis for joint parameter estimation.

3 Joint Parameter Estimation

The adaptive control of Slotine and Li uses the

robot dynamic model; this enables prediction of non-

linear robot behaviour. Intuitively, this predictable

behaviour should also be utilised in joint parameter

estimation schemes in an attempt to achieve an au-

tonomous algorithm.

3.1 The Problem Caused by Transcen-
dentals

When examining the various forces which are ap-

plied to the robot system, gravity stands out as being

the most predictable and most reliable of these forces.

Using gravity as a reference, it should be possible to

�nd the relationship between joint sensor output and

joint angle.

To simplify the derivations and issues involved in

joint sensor estimation using adaptive control, a single

link rotational manipulator against gravity is used. Its

dynamics are:

� = ml2
c

�� +mlcg cos(�) (7)

Proc. 1997 IEEE Conf. on Robotics and Automation, Albuquerque, NM. pp. 1743-1748.



where m represents the point mass of the manipulator

link, lc is the distance from the joint to the centre of

mass, g is the acceleration constant due to gravity, �
is the joint position, and �� is joint acceleration. The

dynamics in (7) can be rewritten in the regressor form.

[� ] =
�
�� g cos(�)

� � ml2
c

mlc

�
(8)

The model in (8) is the regressormodel which would

be used in the standard Slotine and Li composite adap-

tive controller. Most importantly, (8) assumes the re-

lationship between sensor output and joint angle is

known.

Assuming a linear relationship between the joint

angle �, and the sensor output q gives,

� = �q + � (9)

where � represents the unknown joint gain (De-

grees/Volt), and � is the unknown joint sensor o�set

(Degrees). Substituting (9) into (8) gives:

[� ] =
�
�q g cos(�q + �)

� � �ml2
c

mlc

�
(10)

From (10) the unknown joint angle parameters of

the system (�, �) cannot be extracted using the re-

gressor form. The fundamental problem in this formu-

lation is that the transcendental cosine function pre-

vents the � and � terms being written linearly with

respect to the joint sensor values.

An intuitive solution to this problem is to expand

the cosine term in (10) using well known trigonometric

expansion formulae. Unfortunately this approach can

only isolate the o�set term �. For example expanding

the cosine term gives

cos(�) = cos(�q + �)

= cos(�q) cos(�)� sin(�q) sin(�) (11)

which does not isolate, in a linear fashion, the � term.

3.2 Introducing Polynomial Approxima-
tions

It is possible, with arbitrary accuracy, to approx-

imate segments of di�erentiable nonlinear functions

such as cosine and sine functions with polynomials.

For example, (12) shows the expansion of cos(�).

cos(�q + �) = cos(�)

= a+ bq + cq2 +O3 (12)

Substituting the cosine approximation in (12) to

the regressor form of the single link robot dynamics

gives,

[� ] =
�
�q g gq gq2

�
2
664

�ml2
c

a
b
c

3
775 (13)

where a � amlc, b � bmlc, and c � cmlc.
In (13), the relationship � = Y �a is now in the cor-

rect form; all known parameters and variables are in

the matrix Y , and the unknown parameters are in the

parameter vector �a. The condition on parameter and

trajectory convergence shown in Section 2 remains un-

changed because the transcendental functions are sim-

ply being replaced by an equivalent expression. This

is valid as long as two conditions are met.

� The order of the polynomial is of su�cient de-

gree to represent the transcendental function it is

replacing to a known accuracy.

� The range of operation is not large enough to in-

voke the periodic properties intrinsic to trigono-

metric functions.

To �nd the constants � and � from the polynomial

coe�cients in (13), some simple post processing is re-

quired. After estimating the parameters using com-

posite adaptive control for the single link case, and

using the manipulator model given in (10), the pa-

rameters estimates should approximate:

gmlc cos(�q + �) = gmlc cos(�) (14)

� g
�
a+ bq + cq2

�
(15)

The constants � and � can be found by equating

the right side of (14) with (15) such that:

mlc cos(�) = a+ bq + cq2 (16)

It is necessary to normalise the cosine term by �nd-

ing the value of mlc in (16). Di�erentiating the left

and right sides of (16) with respect to � and q respec-
tively, and equating to zero gives.

�mlc sin(�) = b+ 2cq = 0 (17)

Assigning q� to the solution of (17) enables mlc to
be found by:

mlc cos(�
�) = mlc = a+ bq� + cq�

2
(18)

Therefore by �nding the maximum point on the

cosine approximation, the value for mlc can be found.
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This allows the �tting of cos(�q+�) to be independent
of the mass properties of the manipulator according to:

cos(�) = cos(�+ �) =
a+ bq + cq2

mlc
(19)

Using (19), the value of cos(�) can be found for any

value of sensor measurement q. Rearranging (19) to

isolate the � and � constants yields:

� = �q + � = arccos

�
a+ bq + cq2

mlc

�
(20)

To solve for � and � in (20) a curve �tting strategy

is used; the experimental work presented in Section 5

uses a least squares technique.

3.3 The Multi-Link Case

Unfortunately it is not possible to substitute all

transcendental functions with polynomials in the com-

plete robot dynamics for two reasons.

� The columns of the regressor matrix will become

rank de�cient. Therefore there will not be a

unique solution and parameter convergence will

not be guaranteed.

� For every transcendental function, one unknown

parameter gets substituted for at least three new

ones, causing a rapid explosion in the number of

parameters. (Processing time increases with the

square of the number of unknown parameters.)

Therefore it is proposed that the gain parameters

be found separately from the o�set parameters. Each

� term is found individually by locking all joints ex-

cept the joint to be estimated. This has the e�ect of

making the robot into a single link mechanism and

greatly decreases the complexity of the dynamics. By

using composite adaptive control methods on the sin-

gle link equivalent, a polynomial approximation can

then be used to �nd � and �. Only the � term will be

valid because the displacement of the centre of mass

per sensor unit will be invariant to the location of

the centre of mass for the one link system; the o�set

�, however, will be taken with respect to direction of

gravity not the preceding link. Once all the gain terms

have been found, the o�set terms can be extracted us-

ing trigonometric properties, as in (11).

4 Experimental Procedure

The algorithm is tested on two links of a 6 degree of

freedom hand controller [5]. The joints are actuated

through tendons which are connected to two motors

working in a pull-pull con�guration. The joint sensor

is a di�erential LED-receiver system which produces a

current proportional to the joint position. After signal

conditioning circuitry, the sensor output is a voltage

with a range of approximately �8 volts. The velocity

reading is obtained from an operational ampli�er in

a di�erentiating con�guration. These signals are fed

into a 16 bit analog to digital converter which is con-

nected to a standard 486 PC running at 66MHz. The

sampling rate is 1kHz.

The assumptions made for algorithm implementa-

tion are:

� The joint limits are known with respect to the

sensor voltage output.

� The sign of the torque applied, position (in sen-

sor units) and velocity are all uniform to prevent

positive feedback in the linear PD feedback of the

controller.

� The structure of the robot is known.

Experiments on the device using the algorithm ex-

posed several factors necessary for successful imple-

mentation. These include, trajectories, friction, and

sensor scaling.

4.1 Trajectories

There has been much work in �nding suitable ex-

citatory trajectories for adaptive control, [1{3]. Most

of this research, however, has been with respect to

linear systems. The approach we took was to use a

frequency rich trajectory to excite as many modes of

the system as possible. This can be achieved theoreti-

cally by applying a train of impulses or applying white

noise to the system. In experiments, it was found that

a triangular wave trajectory gave the best parameter

convergence results. Although a rigorous explanation

is not available to substantiate this �nding, it is pos-

sible, in hindsight, to hypothesise on the intuitive fac-

tors which contribute to this result.

A mechanical system can be approximated to a

double integrator, such that a force is applied to the

input and the output is a displacement. Since twice

di�erentiating a triangular wave trajectory gives an

acceleration pro�le made up of impulses, full frequency

content is experienced at the force input to the sys-

tem. This explanation is easily understood from an

intuitive level; however, a more rigorous explanation

is beyond the scope of this paper.
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4.2 Friction

Friction e�ects can be included in the original adap-

tive controller; this is not the case, however, for the

polynomial approximation. This can be attributed to

the lack of structure in a polynomial when compared

to the original transcendental function. (i.e. the poly-

nomial can take many forms but the cosine structure

is �xed.) For this reason, adding friction models to

the adaptive control dynamic model when using the

polynomial approximation is detrimental. Instead, a

feed-forward Coulombic friction term was augmented

to system outside of the adaptive controller. The coef-

�cient of Coulombic friction was found autonomously

using a closed loop trajectory under PD control.

4.3 Scaling

The most volatile period of the adaptive control

estimation is the initial one or two seconds after start

up. This is because the initial parameter estimates, in

the manipulator model, are all zero. To minimize this

volatility it was found bene�cial to scale the sensor

output voltages to between �1 Volt. This prevents

polynomial terms of the form qn
i
becoming unbounded

such that:

kqik � 1 =) kqn
i
k � 1 8n > 0 (21)

5 Experimental Results

To estimate the joint sensor parameters � and �
for the two link mechanism, a two phase procedure

is required. First the � (gain) terms are estimated

for each joint independently, then the � (o�set) terms

are found together. Figure 1 shows the convergence

of polynomial parameters for the adaptive control es-

timation of the joint 2 � term. Parameters a, b, and
c, on the graph correspond to the model in (13). The

graph shows that the polynomial coe�cients are esti-

mated within approximately 15 seconds.

To evaluate the accuracy and consistency of the

algorithm, the adaptive control estimation was per-

formed over ten trials. Table 1 shows the results of

the complete estimation over these trials.

The results show that the algorithm has an accu-

racy of about �1 degree when all factors are consid-

ered. This was achieved using arbitrary initial pa-

rameter estimates. What is more, the algorithm also

estimates the dynamic parameters of the system, we

used this data to perform gravity compensation on the

hand-controller.

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15
Parameter Estimates for Polynomial Approx. on Joint 2

Time (secs)

P
ar

am
et

er
 V

al
ue

ml^2

a

b

c

Figure 1: Parameter Estimate Evolution for Polyno-
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6 Conclusion

The algorithm presented in this paper enables au-

tonomous joint and dynamic parameter estimation of

a multiple link robot. The estimation is performed

on-line using adaptive control methods introduced by

Slotine and Li. Their adaptive control method is ad-

vantageous for estimation because it is globally con-

vergent with respect to both trajectory tracking and

parameter convergence. This implies that a priori

knowledge of the system parameters is not required

to achieve system parameter convergence; the Slotine

and Li method, however, requires that the manipula-

tor's joint parameters are estimated before operation.

Experimental results are presented for joint parameter

estimation of a two link planar robot; the results show

an accuracy of about �1o.

Our algorithm requires only knowledge of the ma-

nipulator dynamic model structure and does not re-

quire a priori joint sensor information other than as-

suming the joint sensor is linear. This means that af-

ter switching the power to the robot on, the robot can

autonomously �nd its dynamic and joint sensor prop-

erties without human interaction, use of specialised

measuring equipment, or physical constraints on the

robot.

Presently the algorithm is being used for both self

calibration and gravity compensation of a 6 dof hand-

controller (The original purpose of this research.) The

algorithm naturally lends itself to these applications

because both dynamic and joint sensor parameters are

found upon completion. Also, this algorithm is useful

for performing a manipulator self test. In the event of

a sensor or actuator degradation leading to failure, the
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�1 �1 �2 �2
degrees=V olt degrees degrees=V olt degrees

Manual Calibration -7.638 -17.544 -9.052 26.299

Mean A-C Estimation -7.465 -17.841 -8.537 26.673

Maximum A-C Estimation -6.963 -16.890 -8.322 27.250

Minimum A-C Estimation -8.164 -18.115 -8.795 25.273

Standard Deviation 0.465 0.421 0.161 0.615

Table 1: Consistency of Adaptive Control Robot Parameter Estimation (Over 10 experiments)

algorithm will converge erratically or fail to converge

altogether. This lack of convergence can be used to

isolate the hardware problem. Currently work in sen-

sor and structural failure detection is on going.
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