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Abstract. We describe an impedance control method following an independent joint control ap-
proach. Simple impedance controllers are set up at each joint and coupling among the joints is
cancelled using equally simple compensators. It is possible to program any diagonal visco-elastic
impedance matrix in Cartesian task coordinates within the limits of what can be achieved at the
Joint level. The performance depends on the precise tracking of joint torque specifications which
may be achieved by minor feedback loops and co-located joint torque sensors. This technique takes
advantage of the frequency separation of signals describing the dynamics of most serial robot manipu-
lators to achieve excellent performance and robustness at a low computational cost. In the described
method, we should more appropriately speak of control of the impedance rather than of impedance
control. Experimental results are reported using a Sarcos redundant manipulator model GRLA
(General Robotic Large Arm). The method applies equally well to kinematically non-redundant and

redundant manipulators.
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1. INTRODUCTION

Many applications of robot manipulators to date
have been based on position control, but when a
robot manipulator makes contact with the envi-
ronment, the control of both force and motion is
required. One approach is “impedance control”:
the robot is controlled to approximate as a mass-
spring-damper system whose parameters can be
specified arbitrarily (Hogan, 1985). Impedance
control requires force sensing devices to improve
performance because friction and actuator dy-
namics are typically the dominating dynamical
effects when a manipulator is made to “comply”
with an environment at low velocity.

It is natural to use Cartesian task coordinates to
perform the control of impedance. In recent years,
a number of impedance control schemes have been
proposed based on using feedback from a force
sensor interposed between the arm proper and an
end-effector, see for example (Lawrence, 1988).
The implementation proposed here requires in-
stead co-located joint torque sensors. Co-located
torque sensors allow a larger bandwidth and con-
trol robustness since the feedback does not in-
clude the structural dynamics of the arm. Only
an approximate knowledge of the dynamics of the
robot is needed to achieve good results (Wu and
Paul, 1980; An and Hollerbach, 1987; Eppinger
and Seering, 1987) and no coodinates transforma-
tions are needed in the feedback loop.

Salisbury first proposed the idea of an active stiff-
ness controller, mapping Cartesian stiffness ex-
pressed in task coordinates into joint coordinates
stiffness (Salisbury, 1980). In this paper, a gener-
alization of this idea is proposed by adding an ac-
tive damping controller and eventually an active
inertia compensator. In this approach, a collec-
tion simple SISO controllers and decoupling com-
pensators are needed and the computations can

be performed on the basis of one computing unit
{CPU of task) per joint.

2. DECENTRALIZED IMPEDANCE
CONTROL

2.1. Basic principle

The manipulator is to be controlled to appear
like a second order linear system (mass-spring-
damper system) to an external observer in Carte-
sian coordinates. A desired Cartesian coordinates
impedance is derived for the joint coordinates con-
trol law as follows. We first map the Cartesian co-
ordinates into joint coordinates. Assuming small
displacements we linearize to obtain:
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thus
Zy(s) = JT Z.(s)J (5)
where Z.(s) = Bys + K,

This method for computing the nominal
impedance of each joint has the advantage that
it does not require a Jacobian inversion, reducing
the computations and alleviating problems near
singularities. There is however no reason why the
resulting Zp(s) should be diagonal (and not nec-
essarily positive definite) when Z,(s) is chosen to
be diagonal, except in special cases.

Conversely, a diagonal Zy(s) (namely PD control)
will not lead to Z,(s) diagonal, meaning that cross
coupling occurs in Cartesian space. When Z,(s) is
diagonal, Zy(s) is symmetric and the terms out-
side the diagonal (cross coupling terms) are not
negligible. However, in general the diagonality or
degree of decoupling of Z(s) will vary with the
robot configuration. A non diagonal Z(s) means
that the errors in one joint will affect the com-
manded torque in all the other joints (see equation
4) as was pointed out in (Salisbury, 1980) . Only
certain cases will lead to decoupling which is an
architectural kinematic property of the underlying
mechanism as shown in (Hayward, 1993).

Redundancy may contribute to reduce or even
cancel cross coupling terms by using the addi-
tional degrees of freedom to select a configuration
which minimizes the off diagonal terms of the joint
space impedance matrix for a given Cartesian co-
ordinates impedance matrix. The relationship be-
tween p, the number of parameters to control in
joint space and N, the number of degrees of free-
dom is given by:

N-—1

p= SO (-1 (N =P ®)

=

Tor purposes of illustration, the case of a planar
robot with three DOF is now discussed. It is
possible to configure a manipulator of this kind
to produce a given diagonal Cartesian coordi-
nates impedance matrix from a diagonal joint
space impedance matrix. A Cartesian coordi-
nates impedance matrix specifies three terms, the
impedance in the x and y directions and the cross
coupling term between x and y fixed to zero, ide-
ally. Since the robot has three joints it can be
verified that there is a unique solution to three
equations with three unknowns. Redundancy can
be used to yield a diagonal joint space matrix that
will satisfy the Cartesian specifications.

In the more general case of a seven degree of free-
dom robot, from equation 6, we find that 28 pa-

rameters are to be determined, among which 21
must be set to zero. A manipulator with at least
28 degrees of freedom would be capable of yielding
a diagonal Cartesian coordinates impedance ma-
trix from a diagonal joint space impedance matrix.
Redundancy, in this case, can only contribute to
minimize the cross coupling terms. Therefore, an
optimization method can be applied to find pos-
tures that minimize the coupling but decoupling
cannot occur in general.

If one decides to set the diagonal terms of Zy(s)
by means of feedback control, the corresponding
joint controllers are PD controllers whose gains
are scheduled or continuously modified as the task
progresses. With the off diagonal terms neglected,
the system will be highly coupled but the control
1s quite robust. From equation 4, the torque com-
mand to one joint is given by:

N
o= Y Zi;0; (7)
j=1

N
T o= Ziib+ Z Z; ;95 (8)
J=1,5#i

Next, we look at the off diagonal terms of Z for
each actuator to apply compensating torques (sec-
ond right hand side term of equation 8) calculated
from the position of the other joints. The result-
ing impedance matrix in Cartesian coordinates is
then decoupled as will be presented in section (5).

3. JOINT SPACE IMPEDANCE
CONTROLLER

While the decentralized impedance control oper-
ates in the joint space, it is important to derive
the Cartesian space transfer function. The trans-
fer function will be obtained by mapping the joint
space control system into a Cartesian coordinates.
It is well shown that the joint coordinates dynam-
ics: inertia, damping and stiffness are captured
by,

Trobot — DGH + V(e: 6) + G(e) (9)

Then the desired impedance expressed in joint co-
ordinates is,

Trobot = Mg(8a— 6) + Bg(6q — 6)
+ Ky(Ba—0)+V(0,0) +G(0) (10)

Joining equations 9 and 10,
Dy + V(8,0) + G(8) = My(64 — 6)
+By(84 — 0) + Ko(6a — 6)
+V(8,0) + G(6) (11)
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assuming,
T4 = Msbg+ Boby+ Keby (12)
r = JUF (13)
e =~ J&O (14)
i = Jo+J6 (15)
we have,
Fi = J T(My+Dg)d+J"TBeb +
J TR+ T(V-V)+
JI7TG-G) (16)

replacing equation 14 in equation 16,
Fa=J"T(My+Dg)J 3 +J TByJ "2
+J TKgJ te+ I T(V = V)
+J7 TG = G)— T~ (My + Dp)J 1 J0 (17)

where
My = J'M,J (18)
By = JTB,J (19)
Ky = JTK,J (20)
D = JTpyJ? (21)
so that,
Fi = ((D+ M)s*+ Bys+ K)z + A (22)

A = JTWV=-)+IJTGC-G)-
JT(My + Dg)J 176 (23)

At relatively low speed, the centrifugal and cori-
olis term becomes negligible and so does the rate
of change of the Jacobian matrix. The error due
to gravity subsists and depends on the precision
of the compensation. Assuming perfect compen-
sation, the transfer function becomes,

Z (@4 M) B KT (2)
d

Notice that the robot inertia appears in equation
24. Since this matrix is not diagonal it will cause
errors in the transient response. These can be
minimized using redundancy of the manipulator
when possible.

An example using a 2 DOF robot is now worked
out to gain some insight on the control algorithm.

In the following, we assume that each link of actu-
ator can be modeled with a torque source acting
on a simple inertia. The controller used in the ex-
periments has in fact an internal force loop with
enough gain make this simplification valid. Fig-

ure 1 shows the basic joint control scheme. Since
we assume for now small displacements and low
velocities, only the moments of inertia are consid-
ered and the products of inertia are neglected.

Tcross-coupling
+

0
I Bs+K (3 )= 11¢—2

Fig. 1. Basic joint control scheme

The desired joint impedances are computed from
equation 5. A decoupling compensator is intro-
duced to cancel cross coupling terms by adding
an equivalent joint torque (figure 2). The cross

coupling torque for a particular actuator is given
by:

N
=Y Zijb (25)

j=Li#i

Given a desired Cartesian coordinates impedance,
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Fig. 2. 2 D.O.F. decentralized impedance controller

the joint impedances can be computed using the
corresponding Jacobian matrix:

[ bps+ ke 0
Zo(s) = < 0 bys+ ky) (26)
g, = [#1 %12
? 221 %22

_ ( J1ze + 3512y

J1j122: + Ja1ja2zy
J11J122z + Ja1J222y

Ja%e + i3z
Assuming small displacement, we have
6 = A lr (27)

where A is the matrix containing the transfer func-
tion, relating 4; to 7; (i,j = 1 to N), obtained from
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figure (2).
= (i1$2+b115+k11)
tog = (i252 + boos + k22)
tig = (bias+ ki2)
tar = (bars+ ko)

ta1 o2

A = (t“ tl?) (28)

JA~YJTF

- 29
tity — t1atay (29)

The pattern in the algebraic structure of the de-
nominator of the transfer function can be roughly
described as the product of the denominators of
each joint’s transfer function minus a correction
term.

N
denominator = ]T[(I,-s2 + biss + ki)
i=1

— decoupler correction (30)

The complexity of this term increases with the
number of DOF. It has the form of multiple com-
binations of each decoupler terms times the diag-
onal terms (I;8* + by;s + ky;). Since the by and
k;; are functions of by by kz,ky, we can simplify
further to obtain an expression in Cartesian coor-
dinates:

Den = as*+ (b1 B; + bgBy)s3 +

(b1 Ky + b2 Ky + cBy;By)s® +
e(KyBy + KyBg)s + cK, K, (31)

Az _ b15? + cBys + cKy (32)
AF, Den

Az ds?

AF, Den (33)
Ay _ Az (34)
AF, AF,

Y. 2
Ay _ bys® + cBys+ cK, (35)
AF, Den
where

a = Il]z
by = (Ijis+ Lith)
by = (Iisy+ Ij3)

¢ = (Jirjez — J12j21)?

= (Iyji2jee + L2j11d21)

It is readily seen that there is no steady state error
to a step input since:

. Az 1 . Ay 1

1 = — P

AR TR AR T (36)
and

. A A

i —e Y —9 (37)

s0 AF, AF,

If no decoupler is used, then the final value will
depend on the configuration of the robot as well
as the Cartesian coordinates stiffness matrix. Ob-
viously, the Cartesian coordinates system will be
coupled.

4. STIFFNESS ERROR

So far, we assumed small displacements and a lin-
earization was performed to map the Cartesian
space position into joint space angles. As the
robot 1s moved away from its nominal position
the linearization no longer is valid. The error re-
sulting from this linearization varies depending on
the robot configuration. We have,

JA0 — (A(6) — A9a))
(A(0) — A(64))
P (
FTEA() - A0a))

(38)

Kefjective 39)
given that the Cartesian displacement, (A() —
A(04)), is different of zero.

When Az is large, the error arises from the ap-
proximation:

Az~ JAD (40)

To correct this error, an incremental update of the
desired joint space position is performed,

Btnew = 0+J7'Az (41)

In the case of redundant manipulators, an addi-
tional constraint can always be added leading to
a square Jacobian matrix which is invertible.

5. EXPERIMENTAL RESULTS

A 7 DOF manipulator (Sarcos GRLA arm) lo-
cated at Institut de recherche d’Hydro-Québec for
which the last three articulations (the wrist) were
locked was used for experimentation. Each actu-
ator torque is regulated via an analog PD con-
troller.

The cross-coupling terms are computed digitally
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Fig. 3. Sarcos Arm (General Robotic Large Arm)

and the diagonal terms are set by analog PD con-
trollers. This implementation increases the ro-
bustness and the stability of the controller since
it reduces the problems due to sampling and de-
lay in conventional digital controllers and allows
the cross-coupling correction to be performed at
a relatively low sampling frequency. A rate of 100
Hz is perfectly satisfactory since the position and

velocity signals occur in a rather low frequency
band.
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Fig. 4. No decoupler: Force vs Displacement

Two experiments have been carried out. The first
one consists of programming the Cartesian coor-
dinates stiffness (F = K X) and then to compare
the static case responses with and without decou-
pler. An external force causing a deflection of the
end-effector from its desired position is applied. A
decoupler, as seen on figure 5, ensures no error on
the desired stiffness in all directions. In figure 4
no decoupler is used and the error is quite large.

In a second experiment, the complete controller
(with decoupler) is used and the dynamic response
is studied. The proposed controller does not re-
quire the calculation of a dynamic model, but the
modification of the dynamic response require the
knowledge of the inertia matrix. The joint coordi-
nates inertia matrix has been approximated and
then i1s mapped into Cartesian coordinates. Given
the mass estimate, the desired damping and stiff-
ness in Cartesian coordinates, a theoretical step
response in the z direction has been computed
and compared to experimental data. The result
is presented in figures 6 and 7. Those figures also
show the dynamic coupling between the y and z
directions. As seen on figure 5 showing a cloud of
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Fig. 5. With Decoupler: Force vs Displacement
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Fig. 6. With Decoupler: Dynamic Response

points, the relationship between the applied force
and the displacement is linear. When no decou-
pler is present, the effective stiffness can be quite
far from the desired stiffness. Activating the de-
coupler leads to a much more accurate effective
stiffness.
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Fig. 7. With Decoupler: Dynamic Response

6. CONCLUSION

We presented a method to program a desired
Cartesian impedance on a robot manipulator. We
gave an expression for the Cartesian coordinates
transfer function and showed that this method
could be easily implemented.
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