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Phase Control Approach to Hysteresis Reduction
Juan Manuel Cruz-Hernández, Member, IEEE,and Vincent Hayward, Member, IEEE,

Abstract—This paper describes a method for the design of com-
pensators able to reduce hysteresis in transducers, as well as two
measures to quantify and compare controller performance. Rate
independent hysteresis, as represented by the Preisach model of
hysteresis, is seen as an input–output phase lag. The compensation
is based on controllers derived from the “phaser,” a unitary gain
operator that shifts a periodic signal by a single phase angle. A
“variable phaser” is shown to be able to handle minor hysteresis
loops. Practical implementations of these controllers are given and
discussed. Experimental results exemplify the use of these tech-
niques.

Index Terms—Compensation, hysteresis, intelligent materials,
phase control, piezoelectric transducers, smart materials, trans-
ducers.

I. INTRODUCTION

H YSTERESIS relates to looping graphs which associate
two scalar time-dependent quantities other than in terms

of a single valued function [see Fig. 1(a)]. Hysteresis is of
interest in many different areas: ferromagnetics, supercon-
ductivity, spin glasses, semiconductors, economics [8], and
physiology [22], to mention a few. It is characteristic of trans-
ducers based on “smart materials,” because these transducers
rely on modifications of stress-strain relationships invariably
associated with hysteretic behavior.

Loops are created when an input is varied back and forth be-
tween two consecutive extrema. This is not the essence of hys-
teresis however, it is a particular case of “branching,” which
occurs at the reversals of an input [see Fig. 1(b)] and where
memory is encoded.

There is no agreement on a general definition of hysteresis.
Since the present work is motivated by systems engineering, a
black box representation of the system is adopted (Fig. 2) along
with the following definition [33].

Definition 1: At any time , the output of a system de-
pends not only on the input , but also on its previous trajec-
tory (memory). The input–output relationship is invariant with
respect to changes in the time scale (rate independence). When
a system has memory and is rate independent, it is said to have
hysteresis.
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Fig. 1. Hysteresis loop and branching.

Fig. 2. A black box representation of hysteresis.

This definition also includes hysteresis with nonlocal
memory, which implies the existence of minor loops. This will
be further discussed in Section III. Hysteresis is often part of
a more complex system with dynamics, but in this paper we
focus on a case which applies to transducers having hysteresis.

Information available in the input–output behavior may be
used to characterize hysteresis. In this paper, we attempt to sum-
marize it using a small set of parameters, possibly just one, for
the design of practical compensators that can cope with hys-
teresis. This desire for simplicity is motivated by economical
and computational considerations. While the method developed
in this paper is primarily intended for electromechanical trans-
ducers, it could probably also be applied in some other areas.

The Preisach model of hysteresis is a general model of rate
independent hysteresis. It represents well the electromechanical
behavior of a number of “smart materials” [14]. We will use
some of its properties.

II. PAST WORK

In [9], Ge and Jouaneh used a combination of a feedforward
controller including a nonlinearity with a proportional integral
derivative (PID) feedback loop to reduce hysteresis in an ac-
tuator represented by the Preisach model. The inverse of this
model was used as part of the controller stored in a lookup table.
This technique was also used in [13], [14], [24] to compen-
sate for hysteresis in solid-state actuators. While hysteresis in
a piezoelectric actuator is reduced if the charge is regulated in-
stead of the voltage [19], the implementation complexity of this
technique prevents a wide acceptance [16].

In [15], feedforward control was used to reduce scanning
errors due to hysteresis modeled as “deterministic hysteretic
paths.” The controller depends on large amounts of experi-
mental data.

Banninget al.used a feedback linearization approach once a
model of the system with hysteresis was obtained [2]. Then a
model-based state feedback control is proposed.

1063–6536/01$10.00 © 2001 IEEE
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Korson and Helmicki used an design method to develop
a controller which explicitly deals with the model uncertainty
of the thermal dynamics of a shroud combined with the hys-
teresis of a valve [17]. A model of hysteresis was obtained from
the describing function method. The main concern was the pos-
sible occurrence of limit cycles in closed loop. In [5] a robust
controller was applied to a bimorph actuator, which achieved
disturbance decoupling with a small steady-state tracking error
and fast settling time. A nonlinear model was first linearized,
then an design was used to find a controller, however only
simulation results are presented in this reference.

Attempts were made to use artificial neural networks to com-
pensate for the hysteresis caused by backlash in mechanical sys-
tems, as in Seidlet al.[26]. Physical analysis of the system non-
linearities and optimal control were used to design the neural
network structure.

Adaptive control is also an approach to the control of plants
with hysteretic behavior. Tao and Kokotovic´ developed such
controllers to reduce the effects of hysteresis-like nonlinearities
[31]. The plant model consists of a linear part preceded by a hys-
teresis block representing the actuator. An adaptive hysteresis
inverse was cascaded with the plant so that the rest of the con-
troller could be linear. Tao used a similar idea, but the plant was
represented by two nonlinearities, one at the input and one at
the output [30]. All these ideas were collected in a recent book
by Tao and Kokotovic´ [32]. Adaptive control applied to a lin-
earized Preisach-like model was also described in [34].

Model-based nonlinear control methods for magnetostrictive
materials were presented in [27], and [28] because transducers
based on these materials exhibit significant hysteresis. The con-
trol method consists of a linear perturbation feedback law used
in combination with an optimal open-loop nonlinear controller.
The feedback control is constructed through linearization of the
perturbed system and is efficient for on-line implementation.

III. T HE PREISACH MODEL OF HYSTERESIS

This model is extensively discussed in [4], and [18], refer-
ences on which this section is based. The Preisach model repre-
sents well the behavior of hysteresis encountered in transducers
and provides insights for the design of compensators.

A. Succinct Description

The model can represent hysteresis with “nonlocal memory.”
In other words, the future values of the output
depend not only on but on past extrema of the input [18].
The special case of “local memory” implies that the value of the
output at some instant and the value of the input at
all subsequent instants in time uniquely determine the
future value of .

The Preisach model considers an infinite set of relay operators
(Fig. 3), where and correspond to the up and down

switching values of the input where the output switches
between and .

The weighted response of an infinite collection of relays is
summed over all possible switching values

(1)

Fig. 3. Relay as a basic hysteresis operator.

Fig. 4. Limiting triangle for the Preisach model.

where is the Preisach function. In the- plane, each
point of the half plane , is identified with one relay. Each
relay has only local memory, but collectively, they create non-
local memory.

The limiting triangle in the - plane, graphically de-
scribed in Fig. 4, corresponds to closed major loops, so
is equal to zero outside except on the line
which may extend indefinitely to describe degenerate relays
that yield no memory.

At any time , the triangle is subdivided into two
sets: consisting of the points for which the corresponding

-operators are in the up position, and consisting of the
points for which the -operators are in the down position. The
interface between and is a staircase line whose ver-
tices have and coordinates coinciding with the local maxima
and minima of input at previous instants in time.

The subdivision of the limiting triangle as the input
varies is what describes the Preisach model’s memory state. Past
input extrema are encoded in the shape of the staircase and this
is what gives it nonlocal memory. In particular, alternating se-
ries of dominant input extrema are sorted and all other input
extrema are “wiped out.” Moreover, minor hysteresis loops cor-
responding to back-and-forth variations of inputs between the
same two consecutive extremum values are congruent up to a
translation and closed.

B. Relationship with Phase

Fig. 5 shows a minor loop created after an input signal is
varied between and . The triangle is added to
the positive set (subtracted from ) when the input reaches

, and subtracted from (added to ) when reaches .
When the input is at the interface line is just a line

parallel to the axis, creating a set of past extrema (one corner
at the intersection and ). When it is at , the interface
line is a step as shown in Fig. 5, creating a different set
of past extrema (same as before plus the corner at ).
This difference is what causes the loop to trace two different
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Fig. 5. Hysteresis loops and their limiting triangles.

paths (ascending and descending) according to the state of the
interface line .

In Sections V and VI, we will develop controllers motivated
by the resemblance of hysteresis with phase lag. The Preisach
model would then predict that, unlike input–output phase in
linear systems, lag due to hysteresis depends on the amplitude
of the input, and more generally on past input extrema, but not
on frequency.

IV. PLANT MODEL

Hysteresis is often part of a system having other dynamics
[18]. In practice, the input to the hysteresis model may not be
accessible, and that its output may be hidden. However, we con-
sider the input and output of a transducer to be accessible by ob-
servation or by other techniques. A transducer having
hysteresis is such that the gain and phase both are functions of
the magnitude of the input signal, in addition to being a function
of frequency

and (2)

A representation may have the structure of a Volterra series
(a sum of operators), and may be limited to a finite number of
terms [3], [23], [25]. If only two are considered

(3)

where represents a linear time invariant filter, andrepresents
rate independent hysteresis. This is illustrated in block diagram
form by Fig. 6, where hysteresis is connected in parallel to a
linear filter.

Transducers containing hysteresis, as observed in real sys-
tems, fall in one of the following cases:

• nonsaturated and rate independent (e.g., ceramic actuators
[10]);

• saturated and rate independent;
• nonsaturated and rate dependent (e.g., [6]);
• saturated and rate dependent (e.g., shape memory alloy

actuators (SMA) [1]).

The block diagram in Fig. 6 may be augmented with a satura-
tion at the output or at the input. Loops can also be symmetric
or asymmetric. Piezoceramic actuators usually yield symmetric
loops [6], while SMA actuators yield asymmetric loops [14].
The controllers described in this paper achieve significant hys-
teresis reduction under most of the conditions mentioned above

Fig. 6. Block representation of a transducer with hysteresis.

because they are designed to act on phase alone, even if a trans-
ducer does not satisfies all the conditions needed by the repre-
sentation theorem of the Preisach model [18].

The Preisach model maps a Sobolev space into itself, the
space of truncated functions for
which the Sobolev norm is fi-
nite [11]. Since a linear time invariant system also maps signals
in this space into itself the configuration of the plant above will
map into itself as well.

V. THE “PHASER”

The notion of “apparent phase shift” between input and
output motivates the design of controllers which act specif-
ically on phase. When a periodic input signal with period

is applied to a system with hysteresis, the output has in
general the same period. This can be viewed as a point which
travels along a loop, where the time spent by the point to
return to the initial position is also . For systems with rate
independent hysteresis, if , with ,
then , with . The output has the
same period as the input but is shifted in phase; so the phase
is produced by the nonoverlapping ascending and descending
paths in the loop.

Periodic signals which are square integrable over a single pe-
riod can be decomposed in terms of a Fourier series [20]. If a
system maps the Sobolev space into itself, as it is the case here,
the condition above is satisfied

(4)

If is referenced to the input , all the components of
the output are shifted by some angle. It is possible to speak of
phase shift between the input and the output. In particular, for
the Preisach model, this phase shift does not depend on the fre-
quency of the input signal.

Definition 2: (Localized Phase):For a periodic input signal
of arbitrary frequency applied to a system

having rate independent hysteresis, the frequency invariantlo-
calized phaseis defined as the phase between the input and
the output , i.e., .

This definition must be regarded as tentative since phase is
not well defined for nonlinear systems. In practice, we use phase
estimates based, for example, on the first harmonic, as in Sec-
tion VIII. The phase shift is a distortion acting on a periodic
input. In other words, hysteresis can be seen as a phase lag be-
tween a periodic input and the corresponding output. The natural
way of correcting this problem is to reverse its effect.

Definition 3: (Phaser): A phaser is an operator that
shifts a periodic input signal by a constant angle , and
has unity gain.
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The phaser can be viewed as the counterpart of again which
modifies the magnitude of an input signal but not its phase. The
operator maps into itself. In the frequency domain

and

(5)

In the time domain, the system is the product of an impulse
function with the complex number .

The phaser has two important properties, superposition
and noncausality. Superposition follows from linearity. Non-
causality prevents direct online implementation.

A. Compensation

In the low frequencies, where hysteresis dominates, a band-
limited phaser can be used to produce the inverse phase function
of the hysteresis between and , as in Fig. 7, where
is shifted by an angle with respect to and will be
shifted also, but by an angle with respect to . The angle

is the localized phase for . The phase angle between
and is reduced. The phase introduced byis neglected in
the low frequencies since it is a linear filter, it must be zero or a
multiply of .

Since both and are in phase, the fundamental com-
ponent of is similar to the input , and the difference

is smaller than the uncompensated error
. It should be small since higher harmonic compo-

nents of the output usually have decreasing coefficients. The
main component will be in phase with the reference. is
a distortion or noise on the output that can be compensated for,
as other distortion signals, by feedback. Moreover, the higher
components are phase shifted the same way. For the same com-
pensation and compared to the input signal, they will be all
shifted by the same phase angle. Note that the composite system
in Fig. 7 has hysteresis but it is now hidden.

B. Nonlinear Phaser

In practice, the angle varies with the magnitude of the input
signal, so a fixed phaser will yield an imperfect compensation
[7], typically as in Fig. 8. Depending on the input amplitude,
there is over or undercompensation.

Imperfect compensation yields an input–output phase plot
having several loops with different phase angles. However, the
result can be further improved by successive approximations.
The second approximation involves the use of another phaser to
provide a positive angle for the middle loop, and a negative
angle for the others. These angles, can be obtained consid-
ering each loop independently from the others, and estimating
the phase between input and output. The control strategy is now
as shown in Fig. 9.

A nonlinear phaser has a phase angle which varies from
to

if
if

(6)

Fig. 7. Phaser in tandem connection with the plant.

Fig. 8. (a) Hysteresis with saturation. (b) Phaser. (c) Composite loop.

Fig. 9. Controller diagram.

where and , and is illustrated on Fig. 8(c) where
a change in the orientation of the loop occurs. The angle is still
independent of frequency but depends on the magnitude. The
phase angle of the phaser can be designed to meet any variation
of the loops, since it depends on the input signal only. Such a
nonlinear phaser will be termed a “variable phaser.”

VI. I MPLEMENTATION

The phaser is noncausal, so an approximation must be found
to use it online. Filters can be built which add phase over a lim-
ited frequency range, at the expense of a small variation in gain.
We propose to use one of the three methods described below.

The angle is the sole parameter needed for design. It can be
estimated from the phase plot of the empirical transfer function
starting in the quasistatic range as will be shown in Section VIII.
A linear system in the quasistatic range has a zero phase angle or
a multiple of . For a system with hysteresis, the phase angle
will be finite in the quasistatic range, close to either zero degrees
or a multiple of degrees. The linear part of the plant will
yield an experimental transfer function, but the phase plot will
always appear to be shifted bydegrees over the whole range
(a hallmark of hysteresis). This is illustrated by Fig. 19 which
shows a quasi constant phase over a range of two decades in the
low frequencies for a piezoceramic actuator (the phase varies
with amplitude from 1.5 to 4 ), or by Fig. 14 which starts
at 38 for a SMA actuator.

A. Implementation Based on the Hilbert Transform

A similarity exists between the phaser and the Hilbert trans-
form commonly used in communication systems [21]. It is a
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filter that shifts a signal by for posi-
tive frequencies and for negative ones. What is needed is
specify any phase , that is

(7)

in which case, the impulse response is

(8)

Equation (8) is a representation of the phaser in terms of the
Hilbert transform. In the time domain

(9)

The output of the system is a linear combination of the input
signal and of its Hilbert transform .

This can be implemented as a finite impulse (FIR) response
filter, a FIR Hilbert transformer [29]. Let be its ideal
transfer function, then, to have unity gain response and
phase lag at all frequencies

(10)

To have real weights, the transfer function must equal its own
conjugate from frequencies fromto

(11)

The ideal impulse response of extends infinitely in
both directions from the sample and is found as the sampled
inverse Fourier transform of

even
odd

(12)

is included in the category whereis even.
The FIR Hilbert transformer differs in three ways from the

ideal of (12). First, it is of finite extent , where is odd.
Second, it is causal, with weights centered around
instead of . Finally, since in (12) is truncated, a data
window is applied to improve the gain characteristic of the prac-
tical transformer. The introduction of causality simply adds a
delay of samples, which is easy to compensate for,
by using a delay at the input signal. Despite its constant angle at

, the implementation depends highly on the number of sam-
ples taken per cycle, and if a signal with unknown frequency is
used, poor results can be obtained.

B. PD Implementation

Equation (5) can be rewritten as [7]

(13)

(a) (b)

Fig. 10. Frequency response. (a) Ideal phaser. (b) Approximation.

or in the time domain

(14)

This resembles a PD controller, .
If the angle varies with the input magnitude, (13) becomes

(15)

to yield a variable phaser. This implementation was used exper-
imentally in [7]. The controller must be designed for a specific
input frequency. If the input contains more than one frequency,
the controller will not compensate well for that signal, but if the
system is to operate in a narrow band (e.g., a scanning head op-
erated at a fixed frequency).

C. Phase Lead Implementation

The phaser can also be approximated by a linear filter of the
form

(16)

It must be such that the phase of the filter varies minimally
around the design parameterwithin an operational range of
frequencies and (see Fig. 10), where the zeros are lo-
cated. The poles are determined to achieve a phase angle cen-
tered around , between and .

The frequency range must be carefully selected since the
nonunitary gain amplifies noise at high frequency. The wider
the frequency range, the greater the magnitude distortion given
by this approximation. Note that the controller can be connected
in closed loop to minimize the distortion of the output signal.
In the low range, interference with the linear part of the model
that produces a widening behavior should be avoided.

The stability of such connection was established but the proof
is beyond the scope of this paper.

Next, the denominator can be made to depend on the magni-
tude of the input signal, yielding a variable phaser



22 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 1, JANUARY 2001

The coefficients are derived from predesigned phasers
with different angles corresponding to different magnitudes of
the input signal

...
...

An interpolation is fitted over the values corre-
sponding to each magnitude, for and

, where is the order of the filter and the
number of input magnitudes considered. If individual phasers
are stable such that poles and zeros are located in the left-hand
side of the complex plane, with proper interpolation, the
resulting variable phaser will be stable too since the poles will
never leave the left-hand side of the complex plane.

VII. M EASURES OFPERFORMANCE

The approximations that were made to design hysteresis
reducing compensators lead us to expect—as with any other
type of control—that performance will be lower than an ideal
one. With a measure of performance, different controllers can
be compared under given operating conditions. Alternatively, it
becomes possible to trade performance for operating frequency
range and input magnitudes variations, or even to check the
robustness of a controller against plant variations and other
sources of uncertainty.

Given a set of input signals, performance can be expressed
by a measure of similarity of an input–output hysteresis loop
to a singular linearity or nonlinearity. Two measures are devel-
oped. The first can be easily estimated online directly from mea-
surements. The second gives more insight into the behavior of
a system, but requires to log measurements.

A. Length Measure

Consider the continuous mapping between a time interval
and an arc of a loop in the input–output plane,

with , such that the image points
are ordered according to increasing values of, and where

, and . The interval is partitioned
into subintervals of equal length ,
for . The length of the polygonal line joining
the successive points is

(17)

The mean value theorem gives us
, where and lie between

and . The length of the approximating polygonal line is

(18)

(a) (b)

Fig. 11. (a) Hysteresis loops with and without saturation, top, and bottom. (b)
Compensated loops.

The limit exists when and have continuous first derivatives
and gives the length of the arc

(19)

The directed distance along the curve from to is is
positive if and negative otherwise

(20)

We define now the mapping , by ,
which measures vector functions . The function
will be called the “arc length measure” of hysteresis loops, using
a time interval needed to trace one loop, that is the smallest
interval such that .

In practice, only discrete points are obtained, and a discrete
version of the arc length measure is used as in (18). One
problem associated with this measure is the effect of noise
which produces over-estimates. To alleviate this problem,
filtering the input and the output signals with the same filter
shifts the two signals by the same amount and preserve the
input–output phase relationship.

For an arbitrary input signal, hysteresis loop
hysteresis phaser loop. The measure for such a loop will

be bounded under by the length of the corresponding segment
of a function (see Fig. 11), i.e., when there is no hysteresis in
the loop. While this measure can be easily estimated online, it
is hard to know what the ultimate limit of reduction is.

B. AverageMeasure

The area inside a loop is a candidate for an average mea-
sure. However, it would be cumbersome to use it, should the
ascending and descending paths cross. It is better to take ad-
vantage of the ordering of the points traced by the input–output
trajectory.

A loop created by an oscillating input is divided ac-
cording to the extrema of the input into: the ascending path,
and the descending path. Consider a pointon , and de-
note the Euclidean distancefrom this point to , see Fig. 12.
If and overlap, the distance is zero. Each path is divided
time-wise into equal segments, from timeto time for the
ascending path, and from timeto time for the descending
path.
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(a) (b)

Fig. 12. Average measureM .

The distances from points to the points are
measured and summed for . For a finitely sampled
loop, is expressed using as

(21)

It is easily computed directly from logged measurements. If the
limit exists

where and are distances from the ascending to the
descending path in theand coordinates.

is such that , since a distance is al-
ways positive, and it will be zero when is such that the paths
overlap, which is precisely when a rate independent system does
not have memory. This provides us with an additional property.
It is possible to use the average measure to obtain ametric space,
where the elements are loops, the distance function isand
the zero element is defined.

This measure gives a better insight into the similarity of the
loop to a function, which was not the case for the measure.
If the measure is zero for all possible inputs, then a perfect re-
duction has been achieved, and the controller is said to have the
best performance.

C. Remarks

does not give a sense of how much reduction in the loop
can possibly be achieved, while is bounded by zero, but both
can be used to measure the performance of a given controller for
a range of inputs. With a specified magnitude, the input–output
response can be measured while varying the frequency, say from

to . If the performance is evaluated in terms of the ampli-
tude instead, while keeping the frequencyconstant, a set of
measures will be obtained for all possible amplitudes within a
certain range from to . If the performance of controller
is to be measured for different , and ,
then the following expression is proposed:

(22)

VIII. E XPERIMENTAL RESULTS

The design parameters were derived from phase shift esti-
mation in the frequency domain. The experimental plots were
obtained using a Siglab Model 2022 system analyzer. The
identification procedure used a sine sweep excitation signal.
The output signal was processed by a narrow band-pass filter to
detect the first harmonic. Phase and amplitude were estimated

Fig. 13. Displacement versus current hysteresis of antagonistSMA actuators.
Left: 0.01 Hz. Right: 0.1 Hz.

Fig. 14. Open-loop frequency response of theSMA actuators.

by input–output cross-correlation. Amplitudes were always
peak-to-peak.

A. Fixed Phaser

An antagonist configuration using twoSMA actuators was
used at McGill University for experiments. See [12] for details.
Two different hysteresis loops at different frequencies are shown
in Fig. 13. They exhibit 1) hysteresis; 2) saturation; and 3) a
dead-band.

The empirical open-loop frequency response shown on
Fig. 14 clearly exhibits a phase lag of 38at low frequency.

The operational range of the actuator is selected to be
. A fourth-order linear approximation

to the phaser, with the operational range mentioned above
is designed and applied to this system. Fig. 15 shows the
frequency response of the controller

(23)
The approximation to an ideal phaser is not very precise

since it is a low-order approximation, but it provides the angle
needed. The closed-loop response using the phaser designed

above, produces a frequency response as in Fig. 16.
The phaser in closed loop reduces the phase lag from 38

to almost nothing over the operating frequency range. The
bandwidth is now wider by an order of magnitude. To further
examine its effect, some input–output plots are obtained (see
Fig. 17). Further efforts with a variable phaser had little effect
on the final result.
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Fig. 15. Phaser controller for the SMA actuator (� = 38 degrees).

Fig. 16. Closed-loop frequency response using a constant phaser.

B. Variable Phaser

A variable phaser was designed to reduce hysteresis in a 4-cm
lead zirconate titanate bimorph piezoceramic actuator. Fig. 18
shows the input–output response for an alternating signal de-
creasing in amplitude and increasing in frequency. The frequen-
cies are in the flat range of the actuator, limited upward by
a sharp resonance. Each loop has a different phase angle, ac-
cording to the magnitude of the input. This can be better seen in
Fig. 19, where experimental transfer function estimates are pre-
sented for two different input amplitudes. The Bode phase plot
shows an almost constant angle over the low-frequency range
for each input amplitude.

The lead filter was designed to provide a phase of
between Hz and Hz. The order was

(24)

A variable phaser was also designed to compare its performance
with the fixed one. The order is and the number of input
amplitudes . The variation of the phase anglewith
magnitude is shown in Fig. 20. The expression of the variable

Fig. 17. Compensated phase loops at 0.01 and 0.1 Hz.

Fig. 18. Hysteresis of a piezoelectric actuator and input signal.

Fig. 19. Open-loop transfer functions. Inputs are in a 1:7 ratio.

phaser is for

(25)

The same input signal was used to observe the effects of the
phaser and of the variable phaser. The responses are plotted on
Figs. 21 and 22.

There seems to be an improvement over the fixed compen-
sator, but of course, it is hard to appreciate graphically: an addi-
tional justification for the use quantitative measures (see Sec-
tion IX). The empirical transfer function Bode plots are pre-
sented in Fig. 23. The amplitude and phase uncertainties be-
tween and are smaller.
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Fig. 20. Variation of the phase angle as a function of the input magnitude
ju(t)j.

(a) (b)

Fig. 21. Closed-loop control with fixed and variable phaser. (a)A = 6:5;
F = 0:05 Hz. (b)A = 4:5; F = 0:1 Hz.

(a) (b)

Fig. 22. Closed-loop control with fixed and variable phasers. (a)A = 3:0;
F = 0:5 Hz. (b)A = 1:0; F = 1:0 Hz.

C. Performance

These results were obtained without any tuning other than
the selection of a loop gain, according to the following design
procedure.

1) Obtain experimental Bode plots for several amplitudes.
2) Determine phase lag(s) in the quasistatic range.
3) Select an operational range. For small ones, use the

Hilbert FIR transformer implementation, for narrow
ones use the PD implementation, otherwise use a lead
approximation and trade filter order with phase and gain
accuracy.

4) Select the loop gain to be as high as the control authority
and the phase margin allow. In our experience, control
authority was the limiting factor, not stability.
and were calculated for cases in the two previous

sections, see Tables I and II.

Fig. 23. Closed-loop transfer function for small and large input. Dashed line:
fixed phaser; continuous line: variable phaser.

TABLE I
COMPARISON OFMEASURES FOR THESMA ACTUATOR

TABLE II
COMPARISON OFMEASURES FOR THEPIEZOCERAMIC ACTUATOR

IX. CONCLUSION

We have proposed a design methodology based on a phase op-
erator for compensation of hysteresis in systems that can be rep-
resented by a parallel connection of a linear filter and a rate in-
dependent hysteresis block. Such a representation is applicable
to transducers based on smart materials. We then proposed three
causal approximations for the implementation of this ideal op-
erator. The sole parameter needed for the design of the compen-
sator is an estimate of the phase angle. Making the phase de-
pend on input magnitude allowed us to generalize this approach
to address minor loops.

Two different measures have been introduced to quantitatively
describe performance. One measure,, depends on the length
of the looparc,andtheother, ,ontheaveragedistancebetween
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the two paths of a loop. gives a better insight on the reduction
of the hysteresis loop, but cannot be easily computed online.

The effectiveness of the approach could then be demonstrated
for two types of actuators based on smart materials. It is ex-
pected that open-loop compensators of the type described would
also effective at correcting hysteresis in sensors with hysteresis,
such strain gauge force sensors.

Experimental studies were also carried out with more general
signals, namely band-limited random signals and good results
were obtained as well. In such cases, the performance of the
compensators was examined in the time domain. These results
are left to future reports.
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