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Abstract. Many systems with hysteresis are adequately represented by the Preisach model.
Hysteresis in these systems can be very effectively reduced using the “phaser”, an ideal frequency
domain operator, in a feedback connection. The position stability of this type of control has not
yet been established in spite of the experimental evidence that the resulting systems are stable.
This paper shows the dissipativity for the relay operator, for the Preisach model, and then for the
lead approximation to the phaser. We then give a proof of stability for the feedback connection of
this phaser approximation with systems represented by the Preisach model of hysteresis.

1 Introduction

Actuators used in robotics and other applications often exhibit hysteresis which is detrimental to
performance. For example, it is well known that most hydraulic actuators have significant hysteresis
arising from the valve magnetic activation and friction in the seals [1]. Most strain-based actuators
also have hysteresis, specifically actuators based on materials like piezoceramics, shape memory
alloys, or magnetostrictive materials [9, 16].

To improve tracking precision, reduce steady-state error, and achieve other performance objec-
tives, feedback controllers have been proposed (for recent contributions among others see [2, 3, 4,
17]), however little has been said about their stability. Gorbet et al. have shown the stability of
velocity feedback control applied to the Preisach hysteresis model (Fig. 1a) [11], or in a similar
configuration as in [10], but nothing was said about position control (Fig. 1b).
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Figure 1: Control Systems Setup. a) Velocity configuration as in [11]. b) Position configuration as
discussed here. H1 represents the controllers, H2 represents the plant and Γ the Preisach model.

In this paper, we investigate the dissipativity of the Preisach model, in such a manner that
stability of a feedback connection with a given controller can be tested using dissipativity theory [12].
The phaser is an ideal operator in the frequency domain which shifts the phase of a signal by a given
amount but leaves the magnitude unchanged and was shown experimentally to be very effective at
reducing hysteresis present in strain-based actuators [5]. An ideal phaser cannot be implemented
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but can be approximated by a causal filter. One attractive possibility is a multiple lead network
which is easy to design given performance specifications. Stability is investigated for this case, but
other choices could be used as well as long as they satisfy the conditions stated in Section 3.

The Preisach model is a popular model for rate-independent hysteresis. It is constructed from
the combination of an infinite number of elementary relays that serve as “atoms of hysteresis” [14].
All the relays receive the same input and there is one relay for each possible pair (α, β) of ‘on’ and
‘off’ switching thresholds. The outputs of all the relays are combined using a weighted sum over all
the values of α and β. The weighting function entirely specifies a particular hysteresis. This model
is briefly reviewed in the next section.

Dissipativity analysis begins with that of a single relay operator. This allows us to show the
dissipativity of the Preisach model. We introduce a new representation of the relay operator, in
terms of the feedback connection of two singular nonlinearities. With this, dissipativity can be
obtained and extended to the dissipativity of the Preisach model. The lead approximation to the
phaser can be shown to be dissipative too. In Section 4, we use a theorem by Hill and Moylan for
the single-input single-output case to show that the feedback connection of the Preisach model and
the approximation to the phaser is stable [12].

2 The Preisach model

The Preisach model results from the combination of relay operators such as the one shown in
Fig. 2a.
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Figure 2: a) Relay operator. b) Equivalent representation of a relay using a feedback connection.

The real-valued weighting function µα,β, the Preisach function, with support H in α ≥ β,
describes the relative contribution of an infinite collection of relays sharing the same input. The
hysteresis output using the Preisach model is written:

y(t) = Γ̂[u(t)] =
∫∫

H
µα,β γ̂αβ [u(t)] dα dβ (1)

In α, β coordinates, each point of the half plane α ≥ β is identified with only one particular γ̂-
operator whose on and off switching values are respectively found at the α and β coordinates of
the point (γ̂αβ : R 7→ {−1, 1}). The weighted output of a particular relay will be identified by
yαβ(t) = µαβ γ̂αβ [u(t)]. In practice, the support for µαβ is finite [11, 14]. This means µαβ = 0
outside the triangle α = u2, β = u1, α = β. This can be thought of as restricting H to a triangle,
as in Fig. 3b.
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Figure 3: Limiting triangle for the Preisach model.

In systems which have nonzero slope outside the loop, such as some magnetic materials, de-
generated relays must be added along the diagonal α = β in order to complete the model. Even
in this case, physical limits such as control signal saturation, say at usat, allow H to be effectively
bounded (Figure 3a). The gray area indicates the contributing relays, and the finite support H for
µ is delimited by the dotted line.

For physical hysteresis (e.g. shape memory alloys, piezoceramics actuators, magnetostrictive
actuators), it is reasonable to assume that H is bounded in α ≥ β. It is also clear that µ must be:

• non-negative, otherwise an increase in input could cause a decrease in output, and

• finite, since the major hysteresis loop is closed in the input-output plane.

Assumption 2.1 (Finite Support [11])
It will be assumed that the Preisach weighting function µ is finite, non-negative and has finite
support: H = {(α, β)|α ≤ u2, β ≥ u1, α ≥ β}, with u2 > u1.

2.1 Background

Here, we follow the presentation of Subsection 2.2 in [11]. The mathematical background can be
found for example in [8], however the notation used in [11] is employed for convenience.

L2(R) is the set of all functions f : R 7→ R such that
∫∞
−∞ f(t)2dt < ∞. It is known that L2(R)

is a normed vector space with the L2-norm defined by ‖f‖ = (
∫∞
−∞f(t)2dt)1/2. For any T ≥ 0,

consider the subset L2[0, T ] of L2(R) defined by L2[0, T ] = {f : R 7→ R| f(t) = 0 ∀ t /∈ [0, T ]}.
The subset L2[0, T ] with ‖f‖ of L2(R) is also a normed vector space. For every f ∈ L2[0, T ],
‖f‖ = (

∫∞
−∞f(t)2dt)1/2 = (

∫ T
0 f(t)2dt)1/2. Consequently ‖f‖T = (

∫ T
0 f(t)2dt)1/2 is a norm for

L2[0, T ]. Define the truncation of f ∈ L2(R), for any T ≥ 0, to be fT (t) = f(t) for 0 ≤ t ≤ T
and fT (t) = 0 for t > T . The extended space L2e is composed of functions fT (t) for which∫∞
0 fT (t)2dt < ∞. Given two functions f and g in L2(R), the inner product of these two functions

is defined as 〈f, g〉 =
∫∞
−∞f(t)g(t) dt. For f and g in L2[0, T ], 〈f, g〉T = 〈xT , yT 〉 =

∫∞
−∞f(t)g(t) dt =∫ T

0 f(t)g(t) dt.
Hysteresis is a nonlinearity with memory which implies that the output may be affected by

the entire history of past inputs. The same input applied to a hysteretic system at t0 > 0 may
yield different outputs, depending on the input history over [0, t0]. This makes it difficult to define
a “relaxed state”, as is typically done in passivity analysis. This is because the natural physical
interpretation of relaxation: setting the input to zero and letting t → ∞, may lead to different
equilibria at any point along the axis where the input is zero. The relaxed state for such a system
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is not unique, and may correspond to an entire set of outputs. Relations are introduced in order
to deal with the multi-valued nature of the output, and to avoid having to define a unique relaxed
state.

Definition 2.1 (Relation [11])
A relation H on L2[0, T ] defines a set of ordered pairs (x, y) ∈ L2[0, T ]×L2[0, T ]. The domain and
range of H can be defined as follows:

Do(H) = {x ∈ L2[0, T ] | ∃y ∈ L2[0, T ] s.t. y = Hx},
Ra(H) = {y ∈ L2[0, T ] | ∃x ∈ L2[0, T ] s.t. y = Hx},

A relation may be multi-valued, meaning that for any x ∈ Do(H), there may be several y ∈
L2[0, T ] such that y = Hx, and this multi-valued property makes the relations useful in describing
hysteretic systems. When something is said to hold (or is required to hold) for Hx, without
qualification, it will be understood that it holds (or is required to hold) for all possible outputs
corresponding to the input x. It is also important to note that H need not be defined on the whole
of L2[0, T ].

Definition 2.2 (Sobolev Space)
The Sobolev Space W 2

1 [0, T ] is the space of functions u ∈ L2[0, T ] for which the Sobolev norm is
finite:

‖u‖W 2
1

=

√∫ T

0
(u̇2 + u2)dt. (2)

Clearly, if u ∈ W 2
1 [0, T ], then u̇ ∈ L2[0, T ].

The following definitions are needed for the next theorem [11]. Define Rα and Rβ, horizontal
and vertical strips in H, and the function k as follows:

Rα(λ, ξ) , {(α, β) ∈ H|λ ≤ α ≤ λ + ξ}
Rβ(λ, ξ) , {(α, β) ∈ H|λ ≤ β ≤ λ + ξ}

k(ξ) , sup
λ∈R,R∈{Rα,Rβ}

∫∫
R

µαβ dα dβ

Theorem 2.1 (in [11])
Suppose µ is finite and non-negative on H. The Preisach operator maps W2

1[0, T ] into itself if and
only if there exists C > 0 such that k(ξ) ≤ Cξ for all ξ > 0.

The conditions of the above theorem hold if the support H is finite, and µ is finite and non-negative.

Corollary 2.1 (Claim 2.1 in [11])
If H is finite and 0 ≤ µαβ < ∞ for all (α, β) ∈ H, then there exists C > 0 such that k(ξ) ≤ Cξ for
all ξ > 0.

Given the above Claim and Assumption 2.1, Theorem 2.1 applies and Γ̂ : W2
1[0, T ] 7→ W2

1[0, T ].
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2.2 The Phaser Controller [5]

Assume that the input to a hysteretic system varies periodically between two values. The Preisach
model predicts that a loop is produced in the input-output graph. It is then possible to speak of
phase shift between input and output. The loop and the output will have the same period as the
input and the effect can be viewed as phase lag between input and output. Moreover, the phase
lag angle φ is constant if rate independence holds [6]. Consider the following:

Definition 2.3 (in [5])
A Phaser Lpa is an operator that shifts a periodic input signal by a constant angle, and has unity
gain.

The phaser operator can be seen as the counterpart of the proportional controller for which
the phase is zero but the magnitude is adjusted according to design specifications. The phaser
keeps the magnitude constant but applies a given phase shift at all frequencies according to design
specifications.

The effect of the phaser used in a feedback loop can be intuitively appreciated by considering
a Fourier series expansion of the input signal. Periodic signals can be decomposed into a combina-
tion of sinusoidal signals with frequencies 1

T , 2
T , . . . , k

T where 1
T is the fundamental frequency. All

components of a signal distorted by rate independent hysteresis are shifted the same way and all
are corrected the same way. Since it is only an approximation, the correction cannot be perfect, so
an error term e (distortion) is formed for further correction by feedback. Moreover, when dealing
with nonlinear systems, in some cases, it is possible to only consider the fundamental component
of the output (as in the describing function analysis).

A phaser is an idealization that cannot be implemented because no causal physical system can
provide a constant phase shift over an infinite frequency range. However, a phaser can be approx-
imated by causal linear filters. Among other choices, the following transfer function represents a
phaser controller approximated by a lead network, with all the factors covering adjacent frequency
bands:

L̂pa(s) =
(

s + pn

s + qn

)(
s + pn−1

s + qn−1

)
. . .

(
s + p1

s + q1

)
, (3)

where the pi and qi are greater than zero for i = 1, . . . , n. This fraction can be rearranged such
that pi > qi for all i’s. Properly designed, the phase of L̂pa(s) will be nearly constant within a wide
frequency range. A phaser L̂pa(jω) in the complex plane has a Nyquist plot as in Fig. 4 for any n.

Im

Re

Figure 4: Nyquist plot of the linear approximation to the phaser as in Eqn (3).

It is clear that the real part of L̂pa(jω) is always positive and different from zero for all ω, and
that it has a well defined lower bound (it is continuously bounded). Also note that ||L̂pa(jω)|| is
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bounded above by 1 for all ω. The product L̂pa(jω)L̂pa(−jω) is also positive since each factor in
Eqn (3) will be multiplied by its corresponding complex conjugate, yielding a positive number.

L̂pa(jw)L̂pa(−jw) =
(

jω + pn

jω + qn

)(
−jω + pn

−jω + qn

)
. . .

(
jω + p1

jω + q1

)(
−jω + p1

−jω + q1

)
. (4)

Therefore the product will be also bounded by a finite positive number and will be different from
zero. Thus we have

∀ω, A = 2max
ω

(
L̂pa(jω)L̂pa(−jω)

Re[L̂pa(jω)]

)
> 0, B = max

ω

(
π

Re[L̂pa(jω)]

)
> 0 (5)

which we will use in Section 3.3.

3 Dissipativity

Definition 3.1 (Dissipativity, modified from [13])
Given a relation G on L2e, with y = Gu, and q, r, s ∈ R, G is said to be (q, r, s)-dissipative iff,

〈y, qy〉T + 〈y, su〉T + 〈u, ru〉T ≥ 0 (6)

for all u ∈ Do(G) and all T ≥ 0.

3.1 Dissipativity of the Relay Operator

Consider one single relay y = yαβ and the scalars q, s, and r. Assume u is in the Sobolev space,
i.e. u ∈ W2

1[0, T ], and the Preisach function µαβ is finite, then y = yαβ is also finite. A relay
operator can be replaced by a feedback connection as in Fig. 2b. If m = α−β

2 and b = −α+β
2 then,

this system is equivalent to that in Fig. 2a. In both cases y2(t) = α−β
2 sgn(u1(t)) − α+β

2 . Also, in
Fig. 2b, the following holds:

u(t) = u1(t)− y2(t) (7)
u1(t)u2(t) = |u1(t)| (8)

y2(t) = m u2(t) + b. (9)

Note also that a weighted relay operator is represented by yαβ = µαβ γ̂αβ . For simplicity take
µαβ = 1 and y = γ̂αβ , then the product u y is:

u(t)y(t) = u(t)γ̂αβ = u1(t)y1(t)− u2(t)y2(t)
= u1(t)sgn(u1(t))−m u2

2(t)− b u2(t)
= |u1(t)| −m u2

2(t)− b u2(t). (10)

Expressing −m u2
2(t) − b u2(t) in terms of α and β, with u2

2(t) = 1, u2(t) = ±1, m = α−β
2 , and

b = −α+β
2 , we get

−m u2
2(t)− b u2(t) = −m− b u2(t)

=
{
−m− b = −α−β

2 + α+β
2 = β for u2 = 1

−m + b = −α−β
2 − α+β

2 = −α for u2 = −1
(11)
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Therefore Eqn (10) can be expressed as,

u(t)y(t) =
{
|u1(t)|+ β for u2 = 1
|u1(t)| − α for u2 = −1

(12)

Now, the dissipativity result.

Lemma 3.1 (Dissipativity of a relay operator)
Let the real-valued function u(t), and the relation γαβ, (y(t) = γαβ [u(t)]) be in W2

1[0, T ]. The
weighted relay operator is dissipative with respect to:

q = 0, (13)
for some r � 1, (14)

and s = min
(α,β∈H,∀µαβ)

1
max(µαβ |α|, µαβ |β|)

> 0. (15)

That is:

s

∫ T

0
u(t)y(t)dt + r

∫ T

0
u2(t)dt ≥ 0 (16)

∀t, 0 ≤ t ≤ T , ∀T ≥ 0, and u ∈ Do(γαβ).

Proof: For all T ≥ 0, and all α and β in H, and u ∈ Do(H), the following equality holds,

r

∫ T

0
u2(t)dt + s

∫ T

0
u(t)y(t)dt =

∫ T

0

(
r u2

2(t) + s|u1(t)| − sm u2
2(t)− s b u2(t)

)
dt, (17)

by using Eqn (10). We must prove that the right hand side of Eqn (17) is greater than or equal to
zero. Using Eqn (12), it is equivalent to show that

r u2
2(t) + s|u1(t)| − sm u2

2(t)− s b u2(t) =
{

r u2(t) + s|u1(t)|+ s β for u2(t) = 1,
r u2(t) + s|u1(t)| − sα for u2(t) = −1.

Consider now both cases independently, choose r > 0 and s > 0, and take into account that
u1(t) = u(t) + y2(t),

u2(t) = 1

For this case u1(t) = u(t)− β, then we have

r u2(t) + s|u1(t)|+ s β = r u2(t) + s |u(t)− β|+ s β. (18)

Consider here the following subcases:

• β ≥ 0: In this case r u2(t) + s |u(t)− β|+ s β ≥ 0 for any value of u(t).

• β < 0: We will make the value of s s.t. s|β| < 1 for all β, and the value of r � 1.
Then if
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I u(t) ≥ 0: Eqn (18) can be expressed as

r u2(t) + s |u(t) + |β| | − s|β| ≥ 0 (19)

I u(t) ≤ −1: Since r � 1 and s|β| < 1, Eqn (18) is greater than zero.
I −1 < u(t) < 0: Eqn (18) attains its minimum for u(t) ∈ (−1, 0) and any β.

Because r � 1 and s|β| < 1, Eqn (18) is always positive.

u2(t) = −1

For this case u1(t) = u(t)− α, then we have

r u2(t) + s|u1(t)| − sα = r u2(t) + s |u(t)− α| − sα. (20)

Consider the following subcases and use similar arguments as for u2(t) = 1

• α ≤ 0: r u2(t) + s |u(t)− α| − sα ≥ 0, for any u(t)

• α > 0: Again take s such that s|α| < 1 for all α, and r � 1, then

I u(t) ≤ 0: Eqn (20) is equal to (r u2(t) + s|u(t)− α| − sα) ≥ 0
I u(t) ≥ 1 and u(t) ∈ (−1, 0): Similarly, Eqn (20) attains its minimum for u(t) ∈ (0, 1)

and any α. Because r � 1 and s|α| < 1, Eqn (20) is always positive.

The value of s can be:
s = min

(α,β∈H)

1
max(|α|, |β|)

(21)

which clearly satisfies the conditions stated above, and it is never zero since α and β are finite
numbers. It has been proven that the argument of the integral in the r.h.s. of Eqn (17) is greater
than or equal to zero for all α and β in H and u ∈ Do(H). Therefore Eqn (17) is always positive:

r

∫ T

0
u2(t)dt + s

∫ T

0
u(t)y(t)dt =

∫ T

0

(
r u2

2(t) + s |u1(t)| − sm u2
2(t)− s b u2(t)

)
dt ≥ 0 (22)

for any T ≥ 0.
For a weighted relay operator the result holds, since y is multiplied by an arbitrary µαβ which

is always positive. This will alter the expression in the r.h.s. of Eqn (17) where s will be multiplied
by a positive and finite number µαβ . We can take sµαβ |α| < 1 and sµαβ |β| < 1 for all possible
values of α and β. Now s can be expressed as:

s = min
(α,β∈H,∀µαβ)

1
max(µαβ |α|, µαβ |β|)

(23)

This concludes the proof.
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3.2 Dissipativity of the Preisach Model

The dissipativity of the Preisach model is now derived.

Lemma 3.2 (Dissipativity of the Preisach model)
Let the real-valued function u(t), and the relation Γ, (y(t) = Γ[u(t)]) be in W2

1[0, T ]. The Preisach
model is dissipative with respect to q = 0, r = srelay rrelay

∫∫
H µαβ dαdβ > 0 and s = srelay > 0, i.e.

s

∫ T

0
u(t)y(t)dt + r

∫ T

0
u2(t)dt ≥ 0

for all 0 ≤ t ≤ T , for all T ≥ 0 and u ∈ Do(Γ) and all points in H. srelay and rrelay are the values
found in lemma 3.1.

Proof: First evaluate:

s

∫ T

0
u(t)y(t)dt = s

∫ T

0
u(t)

(∫∫
H

yαβ dαdβ

)
dt

= s

∫ T

0
u(t)

(∫∫
H

µαβ γ̂αβ dαdβ

)
dt

= s

∫∫
H

µαβ

(∫ T

0
u(t)γ̂αβ dt

)
dαdβ

Using the fact that a relay operator is dissipative for every point in H, and all u ∈ Do(Γ) as in
lemma 3.1, yields

srelay

∫ T

0
u(t)y(t)dt ≥ srelay

∫∫
H

µαβ

(
−rrelay

∫ T

0
u2(t)dt

)
dαdβ

= −
∫ T

0
u2(t)dt · srelay

∫∫
H

µαβ rrelay dαdβ

≥ −r

∫ T

0
u2(t)dt (24)

The value r = srelay rrelay

∫∫
H µαβ dαdβ is always positive since µαβ is positive and finite. Therefore

the Preisach model is dissipative.

3.3 Dissipativity Of The Lead Approximation Of A Phaser

To prove that the lead approximation to the phaser is dissipative, a proof using Parseval’s theorem
similar to the proofs of passivity in linear systems is used [8, 18]. We consider that the transfer
function that approximates the ideal phaser is rational with relative degree 0, and causal. This
compensates a hysteretic system by providing phase in the feedback that is always smaller then or
equal to 90o.

Lemma 3.3 (Modified from [8])
The linear system L : W2

1 → W2
1 defined by

Lu = l ∗ u, where L is causal and u ∈ W2
1 (25)

is said to be passive iff Re[L(jω)] ≥ 0, ∀ω ∈ R.
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The lead approximation to the phaser is causal and passive, i.e. strictly stable. We use this
result to show that the controller is also dissipative.

Lemma 3.4 (Dissipativity of the lead approximation)
The lead approximation to the phaser L̂pa : W2

1 → W2
1, causal and strictly stable (passive), is

dissipative with respect to

r < 0
q ≤ −α r2 < 0 and

s ≥ −qA− rB, A = 2max
ω

(
L̂pa(jω)L̂pa(−jω)

Re[L̂pa(jω)]

)
, B = max

ω

(
π

Re[L̂pa(jω)]

)
, (26)

i.e. r

∫ T

0
u(t)2dt + s

∫ T

0
y(t)u(t)dt + q

∫ T

0
y(t)2dt ≥ 0

∀t, 0 ≤ t ≤ T , ∀T ≥ 0 and u ∈ W2
1, r2 being the r found in the dissipativity of the Preisach model.

The value of q is taken to meet the stability conditions of the feedback connection of the Preisach
model with a dissipative controller as will be shown in the next section. The value of s and r are
obtained as follows.

Assume that y(jω)/u(jω) = L̂pa(jω), is initially at rest (y ≡ 0). If the input u is zero for all
t > T and t < 0, then using the passivity property of the system we have:∫ T

0
y(t)u(t)dt =

∫ ∞

−∞
y(t)u(t)dt, (27)

=
1
2π

∫ ∞

−∞
y(jω)u∗(jω)dω. (28)

The first equality holds because u(t) = 0 for t > T and for t < 0. The second equality comes from
the Parseval’s theorem, with the superscript * referring to complex conjugation. Since y(jω) =
L̂pa(jω)u(jω), then ∫ T

0
y(t)u(t)dt =

1
2π

∫ ∞

−∞
L̂pa(jω)|u(jω)|2dω (29)

Since Lpa is the transfer function of a real system, its coefficients are real and thus L̂pa(−jω) =
[L̂pa(jω)]∗, then ∫ T

0
y(t)u(t)dt =

1
π

∫ ∞

0
Re[Lpa(jω)]|u(jω)|2dω (30)

(This also follows from the fact that the system is passive).
Note also that ∫ T

0
y(t)2dt =

2
π

∫ ∞

0
L̂∗

pa(jω)u∗(jω)L̂pa(jω)u(jω)dω, (31)

=
2
π

∫ ∞

0
L̂pa(jω)L̂pa(−jω)|u(jω)|2dω, (32)
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which is obtained after using the same arguments (u(t) = 0 for t > T and t < 0 and the Parseval’s
theorem).

Expressions (30) and (32) are used to prove the dissipativity of the lead approximation to the
phaser. It has to be shown that,

r

∫ T

0
u(t)2dt + s

∫ T

0
y(t)u(t)dt− q

∫ T

0
y(t)2dt

= r

∫ ∞

−∞
|u(jω)|2dω + s

1
π

∫ ∞

−∞
Re[L̂pa(jω)]|u(jω)|2dω + q

2
π

∫ ∞

−∞
L̂pa(jω)L̂pa(−jω)|u(jω)|2dω

=
∫ ∞

−∞
|u(jω)|2

[
s
1
π

Re[L̂pa(jω)] + q
2
π
L̂pa(jω)L̂pa(−jω) + r

]
dω ≥ 0

The previous inequality will be greater than or equal to zero if r < 0 and

s ≥ −2qL̂pa(jω)L̂pa(−jω)− rπ

Re[L̂pa(jω)]
(33)

for all ω. Note that Re[L̂pa(jω)] > 0 for all ω, and 0 < L̂pa(jω)L̂pa(−jω) < ∞. Therefore, s can
be expressed as

s ≥ −qA− rB, A = 2max
ω

(
L̂pa(jω)L̂pa(−jω)

Re[L̂pa(jω)]

)
, B = max

ω

(
π

Re[L̂pa(jω)]

)
. (34)

Given Eqn (5), Eqn (34) is a sufficient condition for passivity and for dissipativity.

4 Stability

Consider Fig. 5 to be the configuration of the feedback system.

H1

Γ
u2

u1

y2 e2

e1 y1

H2 = ˆ

Figure 5: Feedback configuration.

Theorem 4.1 (in [12])
Suppose that the two subsystems H1 and H2 = Γ̂ are dissipative with respect to supply rates

wi(ui, yi) = y′i qi yi + 2y′i si ui + u′i ri ui, i = 1, 2 (35)

(consider H1 and H2 = to be relations). Then the feedback system is stable (asymptotically stable)
if the matrix

Q̂ =
[

q1 + αr2 −s1 + αs2

−s1 + αs2 r1 + αq2

]
(36)

is negative semidefinite (negative definite) for some α > 0.

11

Transactions of the CSME, Vol. 29, No. 2, pp. 129-142, 2005.



The dissipativity conditions of the previous theorem when H2 is the Preisach model and H1 is
the lead approximation to the phaser are satisfied given the conditions of Section 3. The following
Subsection presents the proof of the stability of the feedback connection of these two subsystems.

4.1 Stability with the Lead Approximation to a Phaser

It was found in the previous section that both the Preisach model and the lead approximation
to the phaser are dissipative. It remains to be shown that the matrix Q̂ is negative semidefinite
(negative definite) for some α > 0. Also note that since H1 and H2 are relations, the input u2 in
Figure 5, will be in W2

1[0, T ] and it will also offset the initial conditions on y1, so that e2 ∈ Do(H2)
and the dissipativity of H2 can be exploited.

Let H1 = L̂pa and H2 be the Preisach model. From Section 3, it is known that the Preisach
model is dissipative with respect to q2 = 0, r2 > 0 and s2 = srelay > 0. For the lead approximation,
s1 ≥ −q1A− r1B as in (34), q1 ≤ −αr2, and r1 < 0.

Theorem 4.1 can be easily applied if the terms Q̂12 and Q̂21 of the matrix Q̂ are equal to zero.
This is achieved for an α > 0, if s1 − αs2 = 0 as follows:

α =
s1

s2
≥ −q1A− r1B

s2

≥ αr2A− r1B

s2
since − q1 ≥ αr2

α ≥ −r1B

s2 − r2A
, (37)

and since −r1 > 0, we just need to set the value of s2 to be s2 > max{srelay, r2A}, to ensure that
α will be always positive. Then the matrix Q̂ can assume the value

Q̂ =
[

q1 + αr2 0
0 r1

]
. (38)

Since r1 < 0, we see that when q1 = −αr2, the matrix is negative semidefinite (eigenvalues smaller
than or equal to zero), and when q1 < −αr2 it is negative definite (eigenvalues smaller than zero).
Hence the feedback connection of the lead approximation to the phaser with the Preisach model is
stable (asymptotically stable).

5 Conclusion

There is strong experimental evidence that the feedback connection of a system with hysteresis and
a lead-type compensator is stable. The lead approximation to the phaser has been used successfully
in the reduction of hysteresis in a piezoceramic actuator [6], and a shape memory alloy actuator
[7]. Different types of lead controllers were shown to greatly improve the control of a system with
magnetic hysteresis as reported in [15]. In all these cases, the feedback connection was stable.

Given this evidence, it was felt that it was possible to prove the stability of the Preisach model
with a certain types of dissipative controllers, and in particular for the lead approximation of a
phaser controller. The results obtained for the feedback-equivalent relay operators are of particular
interest and further research should be focused on the stability of the Preisach model with more
general classes of feedback controllers.
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