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Abstract
This paper addresses the compensation of major and

minor hysteresis loops using an operator termed a phaser

which shifts the phase of a periodic signal by an amount �.

For periodic inputs, hysteresis can be approximated by a

phaser with a negative phase shift opening the possibility

of cascade compensation. Since in actual hysteresis the

phase shift varies according to the size of the input, giving

rise to minor loops, the possibility exists to handle the

compensation of minor loops by using phasers which vary

the phase shift according to the magnitude of the input in

an inverse fashion. In this paper, this technique is applied

to the compensation of a piezoelectric actuator.

1. Introduction
In recent years there has been considerably interest

in the modeling and control of hysteresis. Speci�c atten-

tion has been given to systems using shape memory al-

loy (SMA) and ceramic piezoelectric actuators. It is well

known that in both type of actuators, the relation of the

input-output signals is hysteretic. Hysteresis in those sys-

tems is a consequence of the properties of the materials.

Short of discovering new materials which are free of hys-

teresis, correction has to be done by control.

Modeling plays a crucial role in designing controllers

and can be approached in two di�erent ways, as is usu-

ally the case for the characterization of complex dynamical

systems [1]. The model of can be viewed as a collection, or

even a continuum, of components for which ideal models

can be derived from the principles of physics: the consti-

tutive approach [2, 3, 9, 11]. Another approach consists

of observing the overall qualitative behavior of the sys-

tem, and to select some best representative from a class of

models that exhibits desired and empirical observed prop-

erties: the phenomenological approach
1 [10, 12, 13, 18, 20].

In the literature on the control of hysteresis is cus-

tomary to obtain a model of the hysteretic plant, then use

this model to control it. So is usually the case for the

1Or the black-box approach

control of piezoelectric actuators. In [8], Ge and Jouaneh

use a combination of a feed-forward controller (including a

nonlinearity) with a feedback loop (PID) to reduce the hys-

teresis in the actuator represented by the Preisach model.

The inverse of this model is used as part of the controller

in the form of a look-up table. This technique is also used

in [10, 15] to compensate the hysteresis in solid state ac-

tuators.

Since in general the implementation of a controller is

complex, neural networks were also used to compensate

for hysteresis, for example hysteresis caused by backlash

in mechanical system [16]. Physical analysis of the system

nonlinearities and optimal control are used to design the

neural network structure.

Adaptive control is also used to control plants with

hysteresis behavior. Tao and Kokotovi�c [19] developed

control algorithms to reduce the e�ects of hysteresis-like

nonlinearities. The plant consists of a linear part preceded

by a hysteresis block representing the actuator. An adap-

tive hysteresis inverse is cascaded with the plant to cancel

the e�ects of hysteresis so that the remaining part of the

controller retains a linear structure. The plant is repre-

sented with two nonlinearities, one at the input and one

at the output. Model-based nonlinear control methods for

magnetostrictive materials are presented in [17]. These are

nonlinear optimal control methods which incorporate the

hysteresis and nonlinear transducer dynamics.

The present work adopts the phenomenological ap-

proach, but no speci�c model is used to develop a con-

troller, as long as the system can be described by a clas-

sical Preisach model. This model is by no means general,

but is a convenient tool to analyze the behavior of such

a system. It has also been applied successfully in a num-

ber of cases [6, 7, 14], gaining certain degree of generality

among several systems.

In a restricted frequency range, it is possible to con-

sider that hysteresis is rate independent and acts as an

additive disturbance on the linear dynamics of the sys-

tem. This is the case for SMA and piezoelectric actuators.

Here, a system with hysteresis is seen as a parallel connec-
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tion of a linear dynamical system with a rate independent

hysteresis with memory. In operator form the system can

be represented by [4]:

y = L[u] + �̂[u] (1)

where �̂ represents the rate independent hysteresis with

memory and L represents the dynamics of the system.

This may also be viewed as the two �rst terms of a Volterra

series expansion.

By reduction of hysteresis, we mean a reduction of

the area inside the hysteresis loop. If the reduction is

complete, an almost univalued relation between the input

and output should be obtained. The signals used herein

are reciprocating but can have a varying amplitude, this

overcomes limitations of controllers implemented in the

past [8].

This paper extends the work in [4, 5] where the con-

cept of phaser and variable phaser are used. An implemen-

tation of the phaser is used to reduce a single hysteresis

loop in a nonsaturating piezoelectric actuator. Also an im-

plementation of the variable phaser is used to reduce the

hysteresis with saturation found in an SMA actuator at a

speci�c frequency. In both cases the resulting controller

relies on the knowledge of the frequency of the input sig-

nal. Here, another implementation of the variable phaser

is developed and implemented to reduce all the hysteresis

loops in a piezoelectric actuator. The implementation of

the controller is based on the lead approximations of sev-

eral phasers, which makes the design easy to understand

and implement even if it is a nonlinear controller.

2. The Piezoelectric Actuator, a System

with Hysteresis
As has been reported in the past [6, 7, 10, 14], hystere-

sis is a major limitation of piezoelectric actuators. Figure

1 shows the characteristic of a given actuator for a de-

creasing alternating signal, which increases in frequency

as the magnitude decreases.
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Figure 1: Hysteresis loops of a piezoelectric actuator.

Hysteresis loops are seen as a phase shifts between

input and output of the system. Each hysteresis loop in

Figure 1 has a di�erent phase angle, which depends on

the magnitude of the input. For larger inputs, the phase

angle decreases with the magnitude of the inputs. This

can be better seen in Figure 2, where the empirical trans-

fer function estimates are presented for two di�erent input

magnitudes. The Bode phase plot shows an almost con-
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Figure 2: Empirical open loop transfer function. Large

input = 6.5 Volts and Small input = 1 Volt.

stant angle over the low frequency range for each input

magnitude. The bandwidth of this piezoelectric actuator

is around 10 Hz.

The objective of the present work is to demonstrate

that hysteresis (Figure 1) can be compensated using a

variable phaser as a controller.

3. The Phaser and the Variable Phaser
In [4], an elementary operator termed a phaser (Lpa)

shifts its periodic input signal by a constant angle � > 0,

with a constant magnitude of 1, independent from the

frequency or the magnitude of the input signal.

The frequency domain representation of the phaser is

an imaginary number:

Lpa(j!) = a+ jb

jLpa(j!)j = 1 & ^Lpa(j!) = �
(2)

a =
tan�p

1 + tan2 �
& b =

1p
1 + tan2 �

Since it is impossible to realize a causal system that

shifts a signal by a constant angle over the whole frequency

range, an approximation to the phaser is taken using a

series of lead controllers (see Figure 3). This controller

shifts the input signal over a �nite frequency range, which

is chosen to be the bandwidth of the system (usually low

frequencies). When the shift angle is small, the phase and

magnitude error are quite small. For example, for a shift

of 5 degrees and a phase error smaller than a tenth of

a degree, the magnitude error is about 1 dB per decade

covered.

2
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Figure 3: Frequency response: a) An ideal phaser. b) An

approximation to the phaser over a certain frequency range.

In the design of a practical compensator, � is the only

parameter to be determined. One way to obtain � is to

produce an open loop Bode plot of the system (speci�cally

the phase plot in the low frequency range, where the phase

is never 0 or a multiple of 90�). This method was experi-

mentally applied to a piezoelectric actuator [4], but it has

been observed that the phase shift between the input and

the output changes as a function of the magnitude of the

input. This means that a phaser with a constant angle is

not able to reduce all hysteresis loops equally well.

An approximation to the variable phaser was used in

[5], to reduce single hysteresis loops with saturation found

in smart materials at speci�c frequencies. In the frequency

domain, the ideal variable phaser has the form

Lpa(j!; juj) = a(juj) + jb(juj)
jLpa(j!; (juj))j = 1

^Lpa(j!; juj) = �(juj)

9=
; (3)

a(juj) =
tan�(juj)p

1 + tan2 �(juj)

b(juj) =
1p

1 + tan2 �(juj)
;

in which the compensation angle varies with the input.

The variable phaser can be viewed as an inverse function

of the Bode phase plot of Figure 2, while the magnitude

is constant for all amplitudes. This can be called phase

correction or phase compensation. Since the angle of a

variable phaser is varied as a function of the input mag-

nitude, the variable phaser will have di�erent phase angle

Bode plots for di�erent input magnitudes and its magni-

tude plot will be kept constant at 0 dB

4. Approximation to the Variable Phaser

Two approximations to the variable phaser are given.

The �rst one depends on the frequency and magnitude of

the input signal. The second one is more robust because

it can handle input signals of di�erent amplitudes and

frequencies between a certain frequency range.

4.1. PD Implementation
Equation (2) can be rewritten as [5]:

Lpa(j!) = cos(�) +
sin(�)

!
s (4)

where in this case cos(�) = a, sin(�) = b and s = j!, or

in the time domain:

y(t) = cos(�)u(t) +
sin(�)

!
_u(t) (5)

where y(t) is the output, � is the phase lag between the

input and the output, ! is the frequency of the input

signal, and u(t) is the input signal. This representation

has the form of a PD controller.

If the angle � varies with the input magnitude, equa-

tion (4) becomes

Lpa(j!; ju(t)j) = cos(�(ju(t)j)) +
sin(�(ju(t)j))

!
s (6)

where the angle varies as a function of the input magni-

tude, to yield a variable phaser. This implementation was

used in [5]. This controller must be designed for an spe-

ci�c input frequency, and if the input contains more than

one frequency, the controller will not compensate well for

that signal. Nevertheless, if it is known that the signal has

a given frequency, this implementation gives very good re-

sults.

4.2. Lead Implementation
The phaser can also be implemented by a linear �lter

of the form

Lpa(s) =
sn + an�1s

n�1 + : : :+ a1s+ a0

sn + bn�1sn�1 + : : :+ b1s+ b0
(7)

where the coe�cients are chosen such that the phase of

the �lter is almost constant around the design parameter

� within an operational range of frequencies !1 and !2

(see Figure 3). This �lter can be implemented by �xing

the values of its n zeros to lie between !1 and !2. Then,

the n poles are found to achieve a phase angle centered on

�, between !1 and !2.

The phase angle �var(juj) for the variable phaser de-

pends on the magnitude of the input signal. The opera-

tional range is as before, !1 and !2. To achieve an ap-

proximation to the variable phaser independent of the in-

put frequency, the denominator is made to depend on the

magnitude of the input signal.

Lpa(s; ju(t)j) =
sn + an�1s

n�1 + : : :+ a1s+ a0

sn + bn�1(ju(t)j)sn�1 + : : :+ b0(ju(t)j)
(8)

The coe�cients bi(juj) are derived from several

phasers with di�erent angles �, corresponding to di�er-

ent magnitudes of the input signal. Their numerators are

3
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kept �xed since all phasers are designed for the same op-

erating range, and because the denominators determine

the phase angle. For m di�erent input magnitudes, the

following �lters are designed:

Lpa1
(s) =

sn + an�1s
n�1 + : : :+ a1s+ a0

sn + b1
n�1

sn�1 + : : :+ b1
0

Lpa2
(s) =

sn + an�1s
n�1 + : : :+ a1s+ a0

sn + b2
n�1

sn�1 + : : :+ b2
0

...
...

Lpam
(s) =

sn + an�1s
n�1 + : : :+ a1s+ a0

sn + bm
n�1

sn�1 + : : :+ bm
0

;

with di�erent phase angles. A function bi(juj) is �tted

using all the values b
j

i
corresponding to each magnitude

j, for i = 0; : : : ; n � 1 and j = 1; : : : ;m, where n is the

order of the �lter and m the number of input magnitudes

considered. The variation of Lpa(s; ju(t)j) with the size

of the input signal means that the phase angle will vary

with the size of the input signal, which is done by vary-

ing the coe�cients of the denominator. The complexity

will depend on the type of approximation taken to obtain

bi(juj).
If individual phasers are designed to be stable such

that poles and zeros are located in the left hand side of the

complex plane, with proper interpolation, the resulting

variable phaser will be stable too since the coe�cients will

never leave the left hand side of the complex plane.

To end this section, the phase loops of a constant and

variable phasers are compared in Figure 4. The loop of

the variable phaser is deformed whereas the loop of the

constant phaser is perfectly elliptic.
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Figure 4: Loops of the phaser and variable phaser.

The small distortion which is noticed on the loop of

the variable phaser in Figure 4 is due to the fact that the

angle varies continuously with the input whereas it should

change only at extrema of the input. In practice, this de-

fect is corrected by the feedback regulation, as will be

demonstrated by the experimental results. However, the

variable phaser implementation can be further improved

by changing the angle at reversals only, that is when the

input goes through a local extremum and when this ex-

tremum is smaller than the previous one. This additional

complication is not necessarily needed in practice, since

if its is implemented the output will not be smooth and

some jumps will appear at the time the phaser changes its

phase angle [5].

5. Case Study
A 4cm lead zirconate titanate bimorph piezoceramic

actuator has been used to implement the variable phaser

described above. Its characteristics were presented in Fig-

ure 1 using a signal which generates major and minor

loops2. The signal contains several frequencies so the dy-

namic behavior of the controller can be tested. They lie

in the bandwidth of the system and within the range of

action of the controller.

The bandwidth of the actuator is around 10 Hz so the

controller is designed to lie between !1 = 0:05 Hz. and

!2 = 5 Hz. The order of the lead controllers was chosen to

be n = 4 and the number of input magnitudesm = 3. The

variation of the phase angle � used in the implementation

of the variable phaser is presented in Figure 5.
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Figure 5: Variation of the phase angle as a function of the

input magnitude |u(t)|.

The form of the variable phaser is:

Lpa(s; ju(t)j) =
s4 + 39:87s3 + 277:65s2 + 373:28s+ 73:05

s4 + b3(ju(t)j)s3 + : : :+ b0(ju(t)j)

b3(ju(t)j) = �0:0456ju(t)j2 + 0:5964ju(t)j+ 41:569

b2(ju(t)j) = �0:5622ju(t)j2 + 7:4784ju(t)j+ 298:248

b1(ju(t)j) = �1:0929ju(t)j2 + 14:9302ju(t)j+ 414:089

b0(ju(t)j) = �0:3143ju(t)j2 + 4:3630ju(t)j+ 84:741

The implementation of a constant controller with

� = 3, is used to compare the performance of the vari-

able phaser. The constant phaser is:

Lpa(s; ju(t)j) =
s4 + 39:87s3 + 277:65s2 + 373:28s+ 73:05

s4 + 42:88s3 + 314:89s2 + 447:95s+ 94:81

Note that the numerator in both constant and variable

phasers is the same, since the phase will be given by the

denominator.
2The input signal had magnitudes of 6.5, 4.5, 3.0 and 1.0 volts,

with corresponding frequencies 0.05, 0.1, 0.5 and 1 Hz respectively

4
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Using the same input as before, Figures 6, and 7 are

obtained after using the constant and variable phasers.

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4
Amplitude = 6.5, Frequency=0.05 Hz

input

ou
tp

ut

<−−const. phaser

var. phaser−−>

−4 −3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Amplitude = 4.5, Frequency=0.1 Hz

input

ou
tp

ut

<−−const. phaser

var. phaser−−>

b)

a)

Figure 6: Hysteresis loop after using the constant and variable

phaser for a) an amplitude = 6.5 V and Frequency = 0.05 Hz,

and b) an amplitude = 4.5 V, Frequency = 0.1 Hz.
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Figure 7: Hysteresis loop after using the constant and variable

phaser for a) an amplitude = 3.0 V, Frequency = 0.5 Hz, and

b) an amplitude = 1.0 V, Frequency = 1 Hz.

These resulting �gures show a better compensation

when using a variable phaser than when using a constant

phaser. Using an increasing signal, similar results are ob-

tained as the ones obtained with the decreasing signal.

The empirical transfer function Bode plots are pre-

sented in Figure 8.
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Figure 8: Empirical closed loop transfer function. Dashed

line: using a constant phaser; continuous line: using a variable

phaser.

The magnitude and phase uncertainties between !1

and !2 is smaller when a variable phaser is used than

with the constant phaser.

A set of �gures showing the performance of both con-

trollers for di�erent input magnitudes and frequencies is

presented in Figure 9.

6. Conclusions
A control design strategy has been introduced to re-

duce hysteresis. The approach uses the so-called variable

phaser, an operator that shifts its periodic input signal by

a phase angle � that depends on the magnitude of the in-

put signal. An approximation to the ideal variable phaser

was introduced by using the lead controller with a denom-

inator with variable coe�cients. A variable phaser was

designed to reduce the hysteresis found in piezoelectric

actuator. The results are remarkably good, since almost

a linear input-output relation was obtained, for any in-

put amplitude and any frequency between the operational

range of the controller.

Current work is carried out toward the development

of a measure of performance, to quantify and compare

di�erent controllers.
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