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Abstract Estimation of the gravitational vertical is a fundamental
problem faced by locomoting biological systems and robots alike. A
robotic model of a vestibular system is suggested with the purpose
of explaining an observed phenomenon—head stabilization during
locomotion. The mechanical model of the vestibular system com-
prises a damped inclinometer and an inertial measurement unit
which are mounted on an actuated orienting platform (a robotic
head). Generic linear control is employed to stabilize the head-
platform while the vestibular system exercises an extended Kalman
filter algorithm to estimate the gravitational direction in space. It
is demonstrated that stabilization of the head-platform is essential
in achieving accurate verticality estimation as it attenuates the dis-
turbances generated by locomotion and simplifies state observation
in a non-inertial frame, without the need for fixed external beacons.

1 Introduction

Mobile robotic systems including humanoids, mobile robots, or drones typi-
cally employ accelerometers and gyrometers packs (known as ‘inertial mea-
surement units’ or imu) to obtain information useful for navigation, ori-
entation, balance, attitude control, and other needs, independently from
references to external, fixed landmarks [2].

Most humanoids have an imu attached to their trunk, near the center of
mass, to provide balance information [4]. In humans and animals, however,
the vestibular system is head-located. This organ is known to serve many
functions [1], including gaze stabilization, spatial orientation, and others.
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It has been proposed by Pozzo and Berthoz [8, 9] that, through head stabi-
lization in orientation, the inertial measurements provided by the vestibular
system facilitate the creation of a ground-independent, quasi-inertial, mo-
bile frame from which postural control can be more effectively performed.

With the purpose of clarifying this observation further, a nonlinear me-
chanical model for gravitational vertical estimation is introduced including
an inclinometer combined with an imu, as proposed in [4]. Here, a more gen-
eral model of such a robotic vestibular system is presented and the nonlin-
ear gravitational verticality estimation problem is solved using an extended
Kalman filter (ekf).

2 Robotic and Human Verticality Estimation

Accelerometers typically report noisy measurements because they pick-up
vibrations added to the low frequency components of the signal. Gyroscopic
measurements also suffer from bias and are highly sensitive to dynamic er-
rors. To combat these problems, state observers and sensor fusion methods
have been proposed [2]. In reference [5], a Kalman filter was used to esti-
mate the vertical direction from tilt measurements in the linearized, planar
case. Kalman filters were also applied to attitude estimation of accelerated
rigid bodies in three dimensions from fused measurements of gyroscopes
and accelerometers [10]. In reference [7], a nonlinear observer for attitude
estimation based on gyroscope measurements is described, but only kine-
matic relationships are considered. A similar problem is solved in [3], where
a nonlinear observer combined inertial and visual information is employed.
None of these works consider the full system dynamics.

Studies have shown that humans spontaneously stabilize their heads dur-
ing various locomotion tasks: free walking, walking in place, running in place
and hopping [8, 9]. This behavior may reflect the existence of a synergis-
tic interaction between the measurement of rotations by the semi-circular
canals and the measurement of translations by the utriculus and sacculus
organs. The plane of head stabilization generally is determined by the task
and is linked to the gaze direction. At the neural level, it is believed that
the estimation of the vertical direction from various sensor inputs is a fun-
damental brain function and their neural correlates have been studied in
humans and animals models [1].

It is an enticing idea to replicate the head stabilization behavior in
robots, which is investigated here. Besides suggesting improved robotic
design, such replication may provide new insights in the brain functions
related to vestibular inputs.
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3 Model

Key aspects of the function of the vestibular system can be emulated by a
liquid-based inclinometer (Model A900 from Applied Geomechanics). The
sensing element is a glass vial partially filled with a conductive liquid, see
Figure 1, left panel. When the sensor is level, the four internal electrodes are
immersed in the liquid at equal depths; otherwise, the depth of immersion
of the electrodes changes, altering the electrical resistance between matched
pairs of electrodes. The sensor is mounted on a oriented platform modeled
here as a gimble mechanism with two actuators, M1 and M2. A damped
pendulum in space with concentrated massm, viscous damping β and length
l, see Fig. 1 right panel, can be used as a mechanical model of the sensor.
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Figure 1. Inclinometer. Left: Liquid partially-filled vial with electrodes.
Verticality measurements are affected by fictitious forces when the frame is
not Galilean. Middle: actuated gimble mechanism as a model for a head
articulated with respect to an arbitrarily moving trunk located by frame T.
Frame I is the inertial frame. The platform also supports an imu (not
represented) located near its center. Right: Frame H, in medium gray, is
attached to the head and has its origin at C, the center of mass of the
platform. Frame S, in light gray, is attached to the pendulum modeled as
concentrated mass m located at the end of vector Sl = [0 0 l]>, aligned with
unit vector kS, having its origin in C, and g is the acceleration of gravity.

In the foregoing, vector and tensor quantities that are sensitive to the
frame in which they are expressed receive a left superscript to indicate it.
Thus, a rotation transformation written as BRA is a rotation matrix that
transforms, by left multiplication, vectors expressed in frame A into vectors
expressed in some frame B. Alternatively, it expresses the orientation of B
with respect to A. If B is a frame moving with respect to A and Aq is a posi-
tion vector expressed in frame A, then dBq/dt = dAq/dt+BωA×Aq, where
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BωA is the angular velocity of frame A relatively to B, expressed in frame
B. Given a vector q, the symbol [q]× is used to denote the corresponding
skew-symmetric matrix, facilitating differentiation.

The angular momentum of a body, h, is the product of a tensor of inertia,
J, and an angular velocity, ω, where the angular velocity and the tensor
are expressed in the same frame. If the tensor is expressed in a body-fixed
frame, the formulae become much simpler since the tensor is constant.

The model requires the definition of four frames: (i) frame I is the in-
ertial frame with unit vectors,

{
IiI,

IjI,
IkI

}
; (ii) frame H is the body-fixed

head frame with unit vectors,
{
IiH,

IjH,
IkH

}
and with origin at point, C,

coinciding with the center of mass of the head; (iii) frame S is the body-fixed
pendulum coordinate frame with unit vectors,

{
IiS,

IjS,
IkS

}
such that its

kS axis is aligned with the arm of the pendulum and the pivot coincides
with C; (iv) finally, frame T is the frame attached to the trunk of the robot
to which the head is attached and that can move in arbitrary ways.

A spherical pendulum is attached to the head which is translated with
acceleration Ia. A torque, Hτ , is applied to the head platform by the actu-
ated gimbal. The time derivatives of the angular momenta of the pendulum
and of the head are,

ḣS =
d

dt

(
SJS

IωS

)
= SJS

Iω̇S + IωS × SJS
IωS,

and ḣH =
d

dt

(
HJH

IωH

)
= HJH

Iω̇H + IωH × HJH
IωH.

The influence of the pendulum on the motion of the head is disregarded,
as the mass of the pendulum is considered negligibly small, however, the
viscous torque resulting from the difference of the angular velocities of the
two bodies must be accounted for. Under these assumptions, the sum of all
the moments acting on the pendulum-head system are,

SJS
Iω̇S =− IωS × SJS

IωS +mg Sl× SRI kI

−m Sl× SRI
Ia− β

(
IωS − IωH

)
, (1)

HJH
Iω̇H =− IωH × HJH

IωH + Hτ .

where SRI
Ia is the measurement returned by the imu’s accelerometer. The

rates of change of the rotation matrices obey the kinematic relationships,

d IRS

dt
=

[
IωS

]
×

IRS,
d IRH

dt
=

[
IωH

]
×

IRH. (2)

The inclinometer readings correspond to two angles which describe the ori-
entation of the liquid surface, denoted by a normal vector with respect to
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its base. These angles can be expressed through cross products of the corre-
sponding unit vectors of the inclinometer’s and head’s frame. The outputs
of the system comprise the inclinometer readings,

y1 = arcsin
∥∥IjH × IjS

∥∥ = arcsin
∥∥IRH

HjH × IRS
SjS

∥∥ ,
y2 = arcsin

∥∥IiH × IiS
∥∥ = arcsin

∥∥IRH
HiH × IRS

SiS
∥∥ . (3)

Note that that in steady state inclinometer readings correspond to the
head’s orientation with respect to the vertical: pitch angle, Θx, and roll
angle, Θy. The imu’s rate gyros measurements are also included in the
system’s output because they relate directly to the sought unknown states,
namely, the head orientation with respect to gravity,

{y3, y4, y5} = components
(
HRI

IωH

)
, (4)

which completes the model by collecting (1)–(4). The system states are the
elements of the matrices IRS and IRH and of the vectors IωS and IωH.

A crude decentralized ‘joint space’ control, see [6], is employed to find
the motor torques, m = [m1,m2]T, that stabilize the head in the horizontal
place given an estimate of IRH. The map, TRH = Λ(θ1, θ2), relates the mo-
tor shaft angles, θ = [θ1, θ2]T, to the orientation of the head with respect to
the trunk. The head is horizontal when IRH = IR(kI) where IR(k) repre-
sents the rotation about vector kI that cannot be effected. The orientation
TRH can be known from the joint angles. If θ1, θ2 < π/4, then Λ is invertible
and we compute the desired joint angles by solving θd = Λ−1(IR(−kI)IRH).
When the servo error is zero, the head orientation, IRH = IRT

TRH, be-
comes IRT

IR(−kI)IRH ⇒ IRH = IR(kI). The motor torques are obtained
from the outputs of proportional-derivative controllersm = PD(θd−θ) that
achieve regulation of θ to the desired value θd. If M denotes the Jacobian
matrix of Λ, Hτ = M−Tm completes the ‘joint space’ control action.

4 Extended Kalman Filter

Define a state vector x =
(
IωS

IRS
IωH

IRH

)T
made of the elements of the

vectors where the matrices are arranged in a single vector. The system is
then conveniently expressed in the form,

xk = f(xk−1,uk−1,wk−1), yk = h(xk,νk),

where u =
(
IaHτ

)T
is an input due to the movement of the robot combined

with the torque applied to the head. The random variables wk and νk

represent the process and measurement noise. The function f that relates
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the state at step k−1 to the state at time step k comprises (1) and (2). The
output function, h, relates the state xk to the measurement yk comprises
(3) and (4). Linearizing around an estimate gives,

xk ≈ x̃k +A(xk−1 − x̂k−1) +Wwk−1,yk ≈ ỹk +H(xk−1 − x̂k−1) + V νk.

where xk are the actual state, x̃k its estimate, yk the measurement, ỹk its
estimate, x̂k the a posteriori state estimate. The matrices are,

A =
∂f

∂x
(x̂k−1,uk−1,0), W =

∂f

∂w
(x̂k−1,uk−1,0),

H =
∂h

∂x
(x̃k,0), V =

∂h

∂ν
(x̃k,0).

The state update equations are

x̂−k = f(x̂k−1,uk−1, 0), P−k = AkPk−1A
T
k +WkQk−1W

T
k ,

Kk = P−k H
T
k (HkP

−
k H

T
k + VkRkV

T
k )−1, x̂k = x̂−k +Kk(yk − h(x̂−k , 0)),

Pk = (I −KkHk)P−k .

5 Simulation Results

The parameters were given reasonable values, m = 50 g, l = 0.06 m, SJS =
mdiag[l2, l2, 1

20 l
2], HJH = diag[0.125 0.125 0.125] kg·m2, β = 0.001 N·ms.

The controller was tuned for a critically damped response, with kp =
32 N·m/rad and Kd = 5 N·m·s/rad. The sampling period was 1 ms. Esti-
mation was updated every 20 ms. The initial conditions for the ekf differed
from that of the system by 0.1 rad. The standard deviation of the process
noise, wk, was set to ±0.001 and that of the measurement noise, vk, to
±0.02. Moreover, to test robusteness, the model parameters known to the
ekf were assumed to differ substancially from the true values, m̃ = 60 g,
l̃ = 0.04 m, HJ̃H = diag[0.15 0.15 0.15], β̃ = 0.0005 N·ms.

The tests involved a scenario, A, where the head underwent an oscillatory
movement which resulted in a three-dimensional trajectory, Fig. 2a. A
sudden impact at time 5 s which led to an 30 m/s2 acceleration spike after
which the robot was stopped. In a first condition, the head was rigidly
attached to the trunk, that is, TRH = I at all times. In a second the head
was stabilized in the horizontal plane using the control outlined earlier. The
estimation errors were much smaller when the head was stabilized although
the measurement was similarly perturbed.

In another scenario, B, the robot jumped in the x-direction as in Fig. 2d.
At ‘take off’ the robot was accelerated in the upward z-direction and at
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‘landing’ the robot experienced an impact from the ground, after which the
robot was stopped, Fig. 2d) and (Fig. 2e). The estimation errors were also
smaller for the case of horizontally stabilized head. For clarity, the results
are presented in Fig. 2 with the noise removed, but noise was present during
the simulations.
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Figure 2. Simulation results. a, periodic trajectory and sudden impact at
t = 5 s. b, non-stabilized head orientation. c, stabilized head orientation.
d, jumping trajectory with two acceleration spikes. e, non-stabilized head
orientation. f, stabilized head orientation. Angles θx and θy denote the
head orientation around kI and kI respectively.

6 Conclusion and Discussion

Locating the vestibular system in the head has a number of combined ad-
vantages, including providing a flexible platform that assists seeking and
tracking targets with vision and audition. Here, we developed a dynamic
model of what could be called a “robotic vestibular system” comprising a
damped inclinometer and an imu. With this model, we showed that locat-
ing the vestibular system in the head enabled inertial stabilization with the
consequence of a reduction of the number states to be estimated, while pro-
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viding a quasi-inertial reference frame that can facilitate control. We also
found that stabilization was especially helpful in the face of uncertainty in
the system model. We would like to argue that head stabilization would
be of benefit to any robot operating in a non-inertial frame and that such
feature should be replicated in their designs.
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