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Illusory Tactile Motion Perception: 
An Analog of the Visual Filehne 
Illusion
Alessandro Moscatelli1,2, Vincent Hayward3, Mark Wexler4,5 & Marc O. Ernst1,2,6

We continually move our body and our eyes when exploring the world, causing our sensory surfaces, 
the skin and the retina, to move relative to external objects. In order to estimate object motion 
consistently, an ideal observer would transform estimates of motion acquired from the sensory 
surface into fixed, world-centered estimates, by taking the motion of the sensor into account. 
This ability is referred to as spatial constancy. Human vision does not follow this rule strictly and is 
therefore subject to perceptual illusions during eye movements, where immobile objects can appear 
to move. Here, we investigated whether one of these, the Filehne illusion, had a counterpart in 
touch. To this end, observers estimated the movement of a surface from tactile slip, with a moving 
or with a stationary finger. We found the perceived movement of the surface to be biased if the 
surface was sensed while moving. This effect exemplifies a failure of spatial constancy that is similar 
to the Filehne illusion in vision. We quantified this illusion by using a Bayesian model with a prior for 
stationarity, applied previously in vision. The analogy between vision and touch points to a modality-
independent solution to the spatial constancy problem.

Spatial constancy refers to the ability of the perceptual system to gain stable estimates of the spatial 
configuration of external objects, even when the body—and thus the sensory receptors with which 
the objects are detected—is in motion1. To achieve spatial constancy, touch, like vision, requires 
movement-dependent transformations from somatotopic or retinotopic coordinates to world-centered 
coordinates. That is, an ideal observer should sum the relative motion measured on the sensory sur-
face, the skin or the retina, with the movement of the sensor, in order to estimate the movement of the 
object in world-centered coordinates. The transformations actually performed by human vision differ 
from strict velocity summation, leading to biased estimates of object motion during eye movements. For 
instance, a stationary background appears to move in the direction opposite to that of the gaze during 
smooth ocular pursuit, a failure of spatial constancy known as the Filehne illusion2.

The perceptual system often integrates sensory measurements with prior knowledge about the world, 
so as to increase the precision of the combined estimate3,4. However, either an occasional mismatch 
between this prior knowledge and the actual status of physical objects or an unexpected change in sen-
sory noise might lead to biases in the combined estimate and to perceptual illusions. Models invoking 
a prior for stationarity have been proposed to explain the Filehne illusion5,6, as well as analogous visual 
illusions for immobile3,4,7 and moving8,9 observers alike. According to these models, the observer assumes 
a priori that external objects are world-stationary. This assumption reflects our common experience that 
inanimate objects around us are usually at rest or in slow motion. A Bayesian model assuming a prior 
for stationarity predicts the Filehne illusion5, as follows. When pursuing a target stimulus, observers 
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estimate the velocity of the background as the sum of the target velocity and the relative velocity between 
target and background. The target velocity is estimated from eye movement and the relative velocity is 
estimated from retinal slip. In both cases, the sensory measurements are combined with a static prior 
reflecting a prior belief that the world is stationary. Both sensory measurements are contaminated with 
different amount of noise and, hence, are also differentially affected by the prior. The differences in noise 
associated to retinal and extra-retinal inputs thus generate the illusion when the two are combined.

Does a similar motion illusion also occur in touch? It is a common belief that the sense of touch 
is less prone to illusions than vision. In common language, real objects are “tangible” while mirages 
are indeed visible but not touchable. In accordance with that, many philosophers have argued that the 
sense of touch provides us with a more direct window onto the world10,11, and consequently should be 
less prone to illusions. To test this centuries-old intuition that touch is better at providing spatial con-
stancy than vision, we have investigated whether there is an analog of the Filehne illusion in touch. We 
determined that the perceived motion direction of a movable surface was biased during a pursuit hand 
movement, suggesting a failure of spatial constancy similar in touch as in vision. The analogy between 
the two sensory modalities points to a modality-independent solution to the spatial constancy problem.

Results
Observers estimated the direction of motion of a movable surface, either during a manual pursuit move-
ment (main task) or with the finger stationary (control task). The experimental procedures are repre-
sented in Fig.  1 and in the Supplemental Video. In the main task, observers tracked a ridged virtual 
surface that moved at a speed of 10 mm/s away from him or her in the horizontal plane (Fig. 1a). The 
surface was simulated by means of a tactile display (Latero, Tactile Labs, Inc.) that made it possible 
to modify its speed instantaneously. We simulated the movement of the ridged surface on the skin by 
oscillating in sequence the pins of the display (Methods). This generated a vivid sensation of tactile 
apparent motion for any speed of the virtual ridge. Following a displacement of 50 mm, the velocity of 
the surface changed suddenly but the observer was instructed to continue moving his or her finger at 
a constant speed, inducing a relative motion between the finger and the surface (Fig. 1b). At this point, 
observers judged whether the virtual surface moved toward or away from him/her. That is, they judged 
the velocity vector of the surface in an absolute reference frame. We coded the velocity of the surface 
vsurf >  0 if directed away from the participant, and vsurf <  0 otherwise. Maintaining a steady finger velocity 
past the transition was accomplished effortlessly and accurately (see Supplemental Data). This paradigm 
combined a tracking task with a perceptual task. The observers had to account for the velocity of their 
finger measured from proprioception, vprop, and for the relative velocity sensed by the cutaneous touch, 
vtact, in order to estimate the velocity of the surface in a world reference frame, vsurf. For an ideal observer 
performing the task veridically,

= + . ( )v v v 1surf prop tact

The control task was similar, with the only difference that the observers moved in the first part of the trial 
and then stopped and kept their finger stationary during the second part, vprop =  0, vtact =  vsurf, eliminat-
ing the necessity to account for the motion of the finger to estimate the world-centered surface motion.

Humans can estimate vprop
12–14 and vtact

15–17 accurately when presented in isolation. Therefore, observ-
ers could in principle estimate vsurf in the main task as well as in the control task, provided that they were 
able to correctly sum cutaneous and proprioceptive sources of information, as expressed by equation (1). 
Hence, the null hypothesis was that the estimate v̂surf  of the signal vsurf was accurate in the main as well 
as in the control task. An alternative hypothesis was that the integration of the two cues, by analogy with 
vision, produced a biased estimate in the main task but v̂surf  remained accurate in the control task. To 
test these hypotheses, we fitted the responses of each individual observer with psychometric functions of 
the form,

( ) β β= = Φ( + ), ( )P Y v1 2j 0 1 surf

where Φ (⋅ ) is the cumulative normal distribution function. For each trial, j, the response variable Yj had 
the value 1 if the observer reported that the surface was moving away from her, and 0 otherwise. We 
analyzed the data of all 10 observers using a Generalized Linear Mixed Model (GLMM), a hierarchical 
model extending the psychometric function to the group level18,19. Then, we evaluated the accuracy of the 
response to address our main question whether pursuit induced a bias in perceived motion in touch. To 
this end, we computed the point of subjective equality (PSE) and the 95% confidence intervals (CI) using 
the bootstrap method described in19. The PSE corresponds to the stimulus value yielding a response 
probability of 0.5 (dashed lines in Fig. 2a). Therefore, accurate responses should generate PSE estimates 
that do not differ significantly from zero.

Figure  2 shows the results of two representative observers (a) and the PSE estimates in the group 
data of all 10 observers (b). The PSE was significantly larger than zero in the main task, 6.8 ±  1.2 mm/s 
(estimate ± SE), while it did not significantly differ from zero in the control task, − 1.6 ±  1.8 mm/s. The 
bootstrap-based 95% CIs ranged from − 5.8 to 1.2 mm/s in the control task and from 4.3 to 9.1 mm/s in 
the main task (Fig. 2b). We computed the 95% CI of the difference in PSE between conditions to test if 
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the two were statistically significant. This CI ranged from 5.7 to 12.1 mm/s. Crucially, the interval did 
not comprise zero, which means that the difference was statistically significant. The fact that the PSE in 
the main condition is significantly larger than zero and greater than in the control condition demon-
strates the existence of a tactile Filehne illusion. The GLMM fit to the individual data is illustrated in the 
Supplemental Figure S2.

In summary, a stationary surface was perceived to be moving in space in the direction opposite to 
that of the movement of the finger. The tactile illusion described in this study is a putative equivalent of 
the visual Filehne illusion. In touch, as in vision, the perceived movement of a stimulus is biased during 
smooth pursuit of a target and a stationary background is perceived to be moving in the direction oppo-
site to the movement of the target. The strong bias during active motion suggests, like in vision, a weak 
spatial constancy in touch. In vision, retinal motion during fixation needs to be slower by around 50% 
to achieve the perceived-speed match with pursued motion5. We estimated the gain factor to quantify 

Figure 1. Procedure (main task). (a) Observers tracked a moving ridge in the proximal to distal direction. 
In the tracking phase of the stimulus, vprop (the red arrow) provides an estimate of the initial surface’s 
velocity. (b) The velocity of the surface changed in the distal portion of the workspace, causing vtact (the 
light blue arrow) to deviate from zero. The observer, moving his or her hand at the same speed, reported 
the perceived direction of motion with respect to the world reference frame. (c) For comparison, the Filehne 
illusion in vision. The red and light blue arrows represent the target speed (estimated from eye pursuit) and 
the relative speed between target and background (estimated from retinal slip), respectively. Figure in panel 
c is adapted with permission from Ernst (2010).6
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the illusion in touch, as follows. If PSEmain is the PSE of the main task (estimated as 6.8 mm/s)  
and v prop is the average finger velocity (calculated to be 10.8 mm/s), then the ‘haptic Filehne gain’ is 
( )− /v1 PSEmain prop . This quantity was estimated to be 1 −  (6.8/10.8) ≈  0.4. Therefore for a biased 
observer, equation (1) becomes,

= . + , ( )v̂ v v0 4 3surf prop tact

where v̂surf  stands for the perceived surface velocity. In accordance with equation (3), the PSE in the main 
condition was smaller than the mean finger speed and the different was statistically significant, which 
implies that finger motion was taken into account in judging surface velocity, but with a gain smaller 
than one. Our finding implies that, on the average, observers perceived a stationary surface as moving 
opposite to their finger movement, with a speed equal to roughly 60% of the finger movement, which is 
comparable to the size of the illusion in vision, but slightly stronger.

Model. In vision, a Bayesian model assuming the existence of a prior for stationarity can predict the 
occurrence of the Filehne illusion5,6. When pursuing a target stimulus, observers estimate the velocity 
of the background as the sum of the target velocity and the relative velocity between the target and the 
background (Fig. 1c). The target velocity is estimated from eye movement (red arrow) and the relative 
velocity is estimated from retinal slip (light blue arrow). In both cases, the sensory measurements are 
combined with a static prior, S, reflecting a prior belief that, due to ubiquitous friction force, object 
around us are more likely at rest rather than in motion3–6,8,9. The sensory measurements are associated 
to different noise levels, hence are differentially affected by the prior S. The different noise associated to 
retinal and extra-retinal inputs generate the illusion when they are combined.

A crude analogy between vision and touch might consider that the finger is like the eye and the fin-
gertip skin is like the retina. It can be independently established that the proprioceptive inputs from the 
upper limb are noisier than the tactile inputs, the difference in noise reported in the literature ranges 
from 10% to 50%12–14,17. Thus, we wondered if the noise difference in the two sources of information 
could account for the observed effect. To this end, we fit our data to the model proposed in vision 
(Fig. 3). In the following discussion, a lower case letter denotes a random variable (e.g., v̂0 in Fig. 3a) and 
a capital letter a probability distribution (e.g., V̂ 0).
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Figure 2. Experiment 1: Results. (a) Psychometric functions (n =  2: observers LI and MO). In both 
observers, the psychometric functions were centered around zero in the control task. Their PSE estimates 
were − 1.5 ±  2.4 and − 2.9 ±  1.0 mm/s (estimate ±  SE). In the main task, the PSEs were significantly shifted 
toward positive values: the estimates were 11.5 ±  2.2 and 12 ±  1.1 mm/s. (b) PSE estimates (n =  10) were 
equal to 6.8 and − 1.6 mm/s in the main and control task, respectively. Vertical bars represent the bootstrap-
based 95% CIs.
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Figure 3. Bayesian Model. v̂0 is the estimate of the initial velocity (from hand pursuit), Δv is the estimate 
of the velocity change (from tactile slip), v̂surf  is the world-centered estimated of the surface velocity, S is the 
static prior. (a) The model transforms the difference in noise between proprioception and touch in a 
difference in accuracy (Estimation stage). The combination of the two estimates (Combination stage) 
generates a bias. (b) We extended the model to a continuous interval of the physical velocity, by modeling 
the fused estimate, v̂surf , as a linear function of the physical velocity, vsurf, plus Gaussian noise. The 
parameters of the linear equation and the Gaussian noise are fully specified by the variance of the prior and 
of the two sensory measurements (Supplemental Data). (c) Finally, we related the observed model to the 
measured psychometric function defined in equation (2) by posing Yj =  1 if >v̂ 0surf  and Yj =  0 otherwise.
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Some adjustment were necessary to account for the differences between visual and tactile experimen-
tal paradigms. Freeman et al.5 assumed simultaneous processing of absolute and the relative velocities. 
Differently from vision, our stimuli had two distinct phases, the initial phase, where the finger pursued 
the surface and the movement on the skin was zero, and the subsequent phase where the movement 
could be non-zero. Therefore, we expressed our model as a sum of two terms, an estimate of the initial 
velocity of the surface and an estimate of its velocity change—v̂0 and Δv, respectively. In order to esti-
mate the initial and relative velocity, the observer fused the proper sensory measurement with the prior 
belief about the object’s motion (the Estimation stage in Fig.  3a). Since pursuit was accurate, the 
proprioceptive-based sensory measurement V̂ vprop 0 (Fig. 3a) is a proper substitute for v0. The notation 
‘|v0’ stresses that the distribution is conditional to a specific value of the physical stimulus. Likewise, the 
tactile-based sensory measurement ΔV̂ vtact  can be assumed to be an accurate substitute for Δ v, given 
that the velocity of the finger remained unchanged between the initial and the final portion of a trial 
(Supplemental Data). We assumed that each of the two sensory measurement was corrupted by zero-mean, 
normally-distributed noise. As in the study in vision5, we used a zero-centered, normal distribution to 
model the prior belief that the surface was stationary, the static prior S. Each of the two measurements 
was combined with the static prior to produce the estimate of the initial velocity and of the velocity 
change (the posterior distributions):

∝ , ( )ˆ ˆV SV v 40 prop 0

∆ ∝ ∆ . ( ) ˆV SV v 5tact

These are represented in Fig. 3a as the dark red and blue distributions. According to standard results in 
mathematical statistics, with a greater variance of the sensory inputs, comes a greater influence of the 
prior on the posterior estimates20,21. Since the proprioceptive inputs are noisier than the tactile inputs12–14,17, 
the stationarity prior has a different influence on each of the two posterior distributions. Therefore, the 
mean of V̂ 0 should be closer to zero than that of ΔV .

Finally, we modeled the fused estimate of the velocity of the surface, v̂surf , as the sum of its perceived 
initial velocity v̂0 and of the perceived velocity increment Δv (the Combination stage in Fig. 3a),

= + Δ . ( )ˆ ˆv v v 6surf 0

We assumed that the fused estimate v̂surf  is the sum of two random samples from the posterior distribu-
tions V̂ 0 and ΔV . Due to the difference in mean between the posteriors, the estimated surface velocity, 
v̂surf , is attracted by vtact, producing the perceptual bias.

The model described above is conditional to a specific value of the physical stimuli, vsurf =  0 in Fig. 3a. 
It can be extended to a broader range of velocities in order to relate the model to empirical psychometric 
functions. To this end, we made the following assumptions: (i) In the sampled range of velocities, each 
of the two sensory measurements is an unbiased estimator of the corresponding physical stimulus. 
Therefore, the mean of each of the two likelihoods is a linear function of the physical stimulus, and 
corresponds to the identity line. According to15, for stimuli ranging from ten to hundred millimeters per 
seconds, a linear model described tactile velocity perception in humans reasonably well. (ii) The variance 
of the two sensory measurements varies slowly with speed, and can be approximated to a constant in the 
sampled range. (iii) The variance and the mean of the prior are constant. It follows from (i-iii) that v̂surf  
is a linear function of the physical velocity vsurf plus zero-mean Gaussian noise (Fig. 3b). Note that, for 
each value x of vsurf, the perceived velocity has the conditional distribution ( = )V̂ v xsurf surf . Finally, we 
related the observed model to the measured psychometric function defined in equation (2) by posing 
Yj =  1 if >v̂ 0surf  and Yj =  0 otherwise (Fig. 3c). Therefore, the probability of responding “away”, P(Yj =  1), 
is equal to the probability that the estimated surface is larger than zero, ( > )ˆP v 0surf .

We fit the Bayesian model via maximum likelihood and used a parametric bootstrap procedure to 
estimate its parameters and the PSE (Experimental Procedures). In the main task, the Bayesian model 
yielded an estimated PSE equal to 7.2 mm/s (95% CI 1.8–10.4 mm/s), which is close to the estimate pro-
vided by the GLMM (6.8 mm/s). Furthermore, the model predicted an unbiased response (PSE =  0 mm/s) 
in the control task, where the hand was stationary. Accordingly, the PSE estimated from the GLMM was 
not significantly different from zero (95% CIs ranging from − 5.8 to 1.2 mm/s). In summary, the predic-
tions of the Bayesian model were comparable with those of the descriptive model.

The Bayesian hypothesis assumed that the tactile Filehne gain was caused by a difference in noise 
between proprioception and touch. To test if this was the case, we predicted separately for propriocep-
tion and touch the noise of the response, and compared these predictions to the values reported in the 
literature. We adopted the same Bayesian model to predict the response of the observer in two simulated 
unimodal discrimination tasks. We assumed that the signal from proprioception was discarded during 
the ideal tactile discrimination task, and vice versa. Therefore, the slope of each psychometric function 
depended on the variance of the prior and on the variance of the respective sensory measurement, either 
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from proprioception or from touch. The values of the slopes predicted by the model were equal to 0.02 
for proprioception and 0.06 for touch. This corresponds to a Just Noticeable Difference (JND) equal to 
33.75 mm/s and 11.25 mm/s, respectively. Thus, in order to generate the observed bias, proprioceptive 
velocity discrimination had to be three-fold noisier than tactile velocity discrimination. However, com-
paring the results across different studies12–14,16,17, the response noise in cutaneous touch was no more 
than 50% larger than in proprioception.

The relationship between bias and noise predicted by the model only holds if we assume that the prior 
for the absolute motion is the same as the prior for the motion change. If we introduce in the Estimation 
stage (Fig.  3a) two priors, Sprop and Stact, with zero mean but different variances, the model would fit 
the data, i.e. it would fit the observed bias even when the tactile and the proprioceptive posterior noise 
are comparable. Relaxing the assumption that the two variances are the same is reasonable as the prior 
statistics of the initial velocity and velocity change will likely differ in the spread of the distribution, 
although they will be equally distributed for left and right motion and thus centered at zero. Still, the 
model predicts a reduction of the motion bias if tactile variance increases, with other parameters being 
unchanged, because in such a situation the prior will have more influence on the tactile estimate. Hence, 
we ran a second experiment to verify this prediction.

Testing Model Predictions: Tactile Noise Modulates the Illusion. In the first experiment, we 
elicited a tactile motion illusion akin to the Filehne illusion in vision. A Bayesian model implying a 
stationarity prior successfully predicted the illusion in vision. It would be possible to extend the model 
to the tactile task by assuming two zero-mean priors, each with different variance, for the estimate of 
the initial velocity and the velocity change. According to the model, the illusion should be smaller as the 
tactile measurement becomes noisier, with other parameters being unchanged. We tested this prediction 
in the following experiment.

A modulation of the signal contrast is a well-established procedure to modulate perceptual noise 
in vision4. Here we changed the amplitude of oscillation of the pins in order to modulate the tactile 
signal-to-noise ratio, i.e. the tactile contrast. The experimental procedure was the same as in the main 
task of the first experiment (Fig. 1a,b). Observers (N =  10) pursued the moving surface in the first half 
of the trial and then kept moving in the second half. After each trial, they reported whether the surface 
moved towards or away from them in the second half of the trial. This time, we modulated the reliability 
of the tactile stimulus in the second half of the trial by varying the oscillation amplitude of the pins. The 
amplitude was always equal to 0.1 mm in the first half of the trial during pursuing, whereas it was either 
0.1 mm or 0.04 mm in the second half (high and low amplitude condition, respectively).

We fit the data of Experiment 2 with the GLMM model (8). First, we estimated the perceptual noise 
from the fixed slope of the model (see Methods). As expected, the response was significantly noisier in 
the low amplitude compared to the high amplitude condition (p <  0.001). The Bayesian model predicted 
that the increase in the tactile noise should lead to a smaller motion bias. That is, the PSE should be 
closer to zero. Results were consistent with this prediction (Fig. 4). The bias was about the same as in 
Experiment 1 for the high oscillation amplitude (PSEhigh =  6.7; 95% CI from 3.9 to 8.8 mm/s) and non 
significantly different from zero for the low oscillation amplitude (PSElow =  3.0; 95% CI from − 6.6 to 
7.4 mm/s). We used a a bootstrap procedure to test whether this difference in PSE between conditions, 
PSEhigh −  PSElow, was statistically significant. The estimated difference was equal to 3.76 mm/s, 95% CI 
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Figure 4. Experiment 2: Results. PSE estimates (n =  10) were equal to 6.7 mm/s (95% CI from 3.9 to 
8.8 mm/s) for the high oscillation amplitude and 3.0 mm/s (95% CI from − 6.6 to 7.4 mm/s) for the low 
oscillation amplitude. Vertical bars represent the bootstrap-based 95% CIs.
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ranging from 0.43 to 11.05 mm/s. Since its 95% CI did not include the zero, we concluded that the dif-
ference in PSE was statistically significant in accordance with the model prediction.

Finally we run a tactile velocity discrimination task to confirm that, in analogy to the modulation 
of the stimulus contrast in vision, modifying the oscillation amplitude of the pins modulated the tactile 
contract and thus the reliability of the tactile estimate (Experiment 3). In each trial, observers (N =  8) 
maintained the hand world-stationary and reported in which of two subsequent intervals the surface was 
moving faster. The amplitude of pin oscillation changed between trials and was either 0.1 mm or 0.04 mm. 
As in Experiment 2, the response was significantly noisier for the lower oscillation amplitude (p <  0.01). 
The estimated JND was 5.9 ±  0.7 mm/s for the high amplitude (JND ±  Std. Error) and 8.3 ±  1.4 mm/s for 
the low amplitude. Refer to the Supplemental Data for further details on Experiments 2–3.

Discussion
In the current study, we measured the perceived direction of a moving surface sensed with a hand that 
was either stationary or in motion. We observed a large bias when the hand was in motion, such that for 
the particular stimulus used a world-stationary surface would seem to move in the opposite direction as 
the hand, with a speed roughly equal to 60% of the speed of the hand. The reported illusion is surprising 
since we do not feel objects move in the direction opposite to the movement of a finger sliding on them. 
This discrepancy might be apparent only. The confidence that we have a priori that inanimate objects are 
world-stationary is strong since it is seldom the case that objects move when interacting with them with 
a light touch. Moreover, in natural conditions, vision often contributes powerfully to a fused estimate of 
movement during object exploration.

The phenomenon described here is putatively equivalent to the Filehne illusion in vision. Following5, 
we fit the data with a Bayesian model where the posterior estimates of the velocity of the external surface 
were obtained from the combination of the noisy measurements from proprioception and touch with a 
stationarity prior. The stationarity prior reflects our common experience that inanimate objects around 
us are usually at rest or in slow motion. Prior assumption that objects are usually world-stationary does 
not only affect motion perception, but it also has a strong influence on human reasoning and cognition. 
For millennia, from Ancient Greece to Middle Ages, human’s prescientific theories of motion were based 
on the idea that stationarity is the natural state of inanimate objects and motion is a temporary deviation 
from this natural state22. Medieval theorists believed that a projectile was moved by an internal force 
called impetus and as soon as this internal force dissipated the projectile would return to its natural, 
resting state. Nowadays, the idea that stationarity is the natural state of inanimate objects often remains 
as implicit thought in naïve physical reasoning22,23.

According to a Bayesian model, sensory noise plays a crucial role in generating the illusion. Sensory 
noise may arise both internally (e.g., due to the stochasticity of synaptic releases or to the chaotic dynam-
ics of neural networks) and externally (e.g., due to the stimulus noise). An approximation in the com-
putations performed by the nervous system, such as suboptimal inference, can also increase the sensory 
noise and contribute to the variability in the perceptual judgment24. In a Bayesian framework, the noisy 
sensory measurements and the prior knowledge are modeled as probability distributions4,5,20. This raises 
the question whether probability distributions can be represented by the activity of a population of 
neurons. Several studies24,25 proposed a probabilistic population code, where latent stochastic processes 
underlie the spike trains of each neuron and thus generate probability distributions. In a previous study25 
the response distribution simulated from a probabilistic neural network was described reasonably well 
by a Poisson or by a Gaussian distribution, which justifies the Gaussian approximations in equation 
(5)–(4). Changes in the external noise modulate the variance of the response of the neural population24. 
Accordingly, in Experiment 2 we reduced the reliability of the tactile signal in order to increase the 
variance of the likelihood, which thereby increased the behavioral noise as was measured with the psy-
chometric function.

The Bayesian model made three simplifying assumptions, namely (i) that the relationship between 
the perceived and the physical speed was locally linear, (ii) that the same prior accounted for both the 
relative and the absolute speed, and (iii) that the likelihoods were unbiased. Within the tested range of 
stimuli, the linearity assumption is in accordance with previous results in the literature of tactile speed 
perception15,16. At its core, our model assumed that the probit function of the response probability (i.e., 
the inverse function of a cumulative Gaussian function) was a linear function of the physical speed of 
the surface (S8). Essick et al.16 run a velocity discrimination task to test this assumption. Inspection of 
Fig. 4 of the original article reveals an excellent fit of the linear model to the data. Accordingly, within a 
velocity range of 10–100 mm/s, the perceived speed was approximated reasonably well by a linear func-
tion of the stimulus15. The linear assumption might fail when exposing the observer to a wider range of 
stimuli. For instance, for a stimulus ranging from 50 to 2560 mm/s a power function provided a better 
fit to the data16. However, we would like to stress that the assumption in our model is to provide a local 
approximation of the function within the limited range of velocities tested in the study. GLMMs (7)–(8), 
which rely on the same linearity assumption, provided a good fit to our data, as attested by the model 
plots of the individual participants in Supplemental Data.

The second assumption stated that the prior for the absolute velocity of the target (the initial velocity 
in our task) was the same as the prior for the velocity relative to the background (the velocity change). 
Assuming a single prior, the Bayesian model would predict a large difference in the sensory noise 
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between proprioception and cutaneous touch. Several earlier studies have shown that this is not nec-
essarily the case12–14,17. Introducing two zero-mean priors with a different variances in each of the two 
estimates would extend the model to fit datasets like ours, where the difference in JND between the two 
discrimination tasks is small. Such an extension would be reasonable since the statistics of the relative 
and absolute velocities, although centered on zero, as all directions are equally probable, will likely differ 
in their magnitude and thus variance. Still, the model predicts a reduction of the motion bias if tactile 
variance increases, with other parameters being unchanged. Accordingly, we found that increasing the 
external noise in touch reduced the strength of the illusion (Experiment 2).

Finally, the third assumption stated that the two likelihoods were unbiased and, therefore, the illu-
sion arises uniquely from their difference in noise. However, results from the literature26–28 suggest that 
other factors, beyond the perceptual noise and the stationarity prior, might play a role in the illusion. 
For instance, it stands to reason that the nature of the surface on which the finger slips, real or virtual, 
can affect the estimated slip velocity15. Similarly, in vision the estimated speed of a moving background 
is affected by its spatial frequency, so that the higher is the frequency, the faster the estimated motion27. 
Since the noise of the velocity estimate in touch is also affected by the nature of the surface, it remains 
to be seen whether the biases observed with different surface textures can be explained with a Bayesian 
Model assuming unbiased estimates. Therefore, in our model we maintained the assumption of unbiased 
prior. Allowing for a biased likelihood for fitting our data would introduce two further parameters in 
the model (the mean of the two likelihoods), at the cost of a possible over-fitting. However, in future 
studies, the effect of the background texture and surface properties may need to be studied systematically 
in order to investigate whether tactile velocity estimation can be fully explained by this simple model 
assuming a stationarity prior or whether it has to be extended to allow for additional biases in the sen-
sory estimates.

In conclusion, touch—like vision—shows rather poor spatial constancy29,30, leading to motion illu-
sions during active hand movement, akin to the Filehne illusion. Motion processing shows other remark-
able analogies between vision and touch. For example, in both sensory modalities, the perceived speed 
is affected by the spatial frequency of the stimulus15,27 and modulated by a motion after-effect31,32. The 
analogy between vision and touch is surprising, given the profound differences in the physics of the 
two signals and in the physiology of the two sensory modalities. Our study support the hypothesis that, 
despite the huge differences in stimulus encoding, vision and touch would share common mechanism of 
motion processing at a higher level of representation.

Methods
Participants. Twelve naïve participants took part in Experiment 1 (6/12 females, 26 ±  7 years old, 
mean ±  SD). One observer produced a paradoxical response pattern in one condition, possibly due to a 
misunderstanding of the response coding. A second observer produced a constant response probability, 
which was at chance-level irrespectively of the stimulus. These two observers were excluded from further 
analysis. Ten naïve participants took part in Experiment 2 (5/10 females, 24 ±  4 years old). Eight naïve 
participants took part in Experiment 3 (4/8 females, 25 ±  5 years old).

The testing procedures were approved by the “Comité de protection des personnes Ile-de-France 
II” permit 2011-06-16 (IRB registration 1072), in accordance with the guidelines of the Declaration of 
Helsinki for research involving human subjects. Informed written consent was obtained from all partic-
ipants involved in the study.

Stimuli and Procedure. The stimuli were produced with the Latero stimulator33 (Tactile Labs, tac-
tilelabs.com). The active surface consisted of an 8 by 8 array of laterally moving pins, actuated by min-
iature piezoelectric bending motors. The active area of the display was 1.2 cm2. We simulated the 
movement of a ridged surface on the skin by actuating the rows in sequence with a 20 Hz oscillatory 
signal generating a vivid sensation of tactile apparent motion for any speed of the virtual ridge. The 
amplitude of the oscillation was 0.1 mm. The position, pt1

 at time t of the actuated row was related to the 
position of the previously actuated row by,

= + Δ ,−Δp p v tt t t tact

where vtact was the desired apparent velocity of the surface with respect to the skin, and Δ t was the 
refresh period (1.5 ms) of the display. The distance between the ridges of the simulated surface was equal 
to 12.8 mm, corresponding to the distance between the first and the last row of the array plus 1.6 mm. 
This ensured that only a single moving ridge was felt at any given time. The vibration of the next row 
started immediately when stopping the prior row without cross fading. The display was supported by a 
carriage sliding on a smooth Teflon surface. The position of the carriage was measured with an accuracy 
of 50 m from which vprop could be precisely determined.

Experiment 1 consisted of a main and a control task. Each of the two tasks was tested in a separate 
block within the session and the order of the two tasks was counterbalanced between observers. Training 
sessions preceded the experimental sessions. Observers sat in a dimly lit room with the right arm parallel 
to the motion path. Pink auditory noise was delivered to the observers via earphones throughout each 
experimental session in order to mask external sounds. In the main task (Fig. 1), observers touched the 
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display with the tip of the right index finger and felt the ridged stimulus moving in the distal direction. 
They were instructed to move their hand in order to track it. The speed of the ridge had a fixed value of 
10 mm/s during the first 50 mm of finger displacement. Past this distance the velocity changed suddenly 
in a pseudo random fashion (velocities ranging from − 30 to 30 mm/s, including 0). A trial ended when 
the finger reached a total displacement of 100 mm. After each trial, the observer reported whether the 
virtual surface was moving away or towards her. This corresponds to the direction of the red arrow in 
Fig. 1b. The control task was similar to the main task, with the difference that the observer brought the 
hand to rest in the second portion of the path. The observer first performed a tracking movement as in 
the main task but stopped moving past a visible marker, so that vsurf =  vtact. The trial terminated seven 
seconds after having crossed the border so that the presentation time was comparable to the presentation 
time in the main experimental task. The velocity range was also from − 30 to 30 mm/s, not including 
zero. Each experimental session consisted of 195 trials (105 in the main and 90 in the control task).

The experimental procedure was the nearly same in Experiment 2. This time, the amplitude of the 
oscillation of the pins was equal to 0.1 mm in the first half of the trial, while pursuing, whereas it was 
either 0.1 mm (high amplitude) or 0.04 mm (low amplitude) in the second half. The experimental session 
consisted of a single block of 200 trials. High and low oscillation amplitude were randomly intermixed 
within the same session.

Descriptive model. For each observer, we recorded the proportion of “away-from-me” responses 
over the total number of responses, as a function of the actual value of vsurf. We modeled participant’s 
responses using model (2). Next, we performed a group analysis by means of a generalized linear mixed 
model (GLMM, see18,19). The GLMM is an extension of the general linear model (i.e., the psychometric 
function) to clustered data, here the repeated responses of each single observer. The GLMM is a hierar-
chical model, including fixed and random-effect parameters. For a single experimental condition (either 
main or control task) the model was,

( ) ( )θ θ= = Φ

+ + + 


. ( )P Y u u v1 7ji 0 0 1 1 surfi i

Similarly as in model (2), the response variable on the left side of the equation is the the probability of 
responding “away-from-me”. The fixed-effect parameters θ0 and θ1 are the fixed intercept and the fixed 
slope, accounting for the effect of the experimental variable vsurf. The random-effect parameters u0i

 and 
u1i

 accounted for the variability among different observers. Having two random-effect parameters, the 
model assumed that in each observer, i, the intercept and the slope of the response function are sampled 
from a bivariate Gaussian distribution. We fit simultaneously the main and the control condition using 
a multivariable GLMM18,19. The routine lme4 of the R programming language was employed to fit the 
model34. From model (7) we estimated the PSE and the 95% confidence interval in the two experimental 
conditions, as described in19. The distribution of the difference in PSE was estimated with the same 
bootstrap procedure.

We fit data of Experiment 2 with the a GLMM. For each oscillation amplitude, the model had the 
form:

( ) η η= = Φ + + ( + ) 
. ( )P Y u u v1 8ji 0 0 1 1 surfi i

We fit simultaneously the high and low amplitude condition using a multivariable GLMM (for simplicity 
we reported in equation (8) the univariable version of the model, referred to a single oscillation ampli-
tude). The fixed slope parameters η1 estimates the perceptual noise, the higher the slope the smaller the 
noise. We tested whether the parameter was significantly different between the high and low amplitude 
using the Likelihood Ratio Test. As for Experiment 1, we estimated the PSE and the 95% confidence 
interval in the two amplitude condition, as well as the distribution of the PSE difference.

Bayesian model. The Bayesian model as formulated in S8 (Supplemental Data) belongs to the family 
of general nonlinear model. The right-hand-side of the equation is a nonlinear function of the two pre-
dictors vprop and vtact and it has three free parameters corresponding to the variance of the prior, and the 
variance of the two likelihoods. We used the R function gnm35 to fit S8 (Supplemental Data) to the data. 
Maximum likelihood estimation was employed to fit the model to the data produced by each participant 
and a parametric bootstrap procedure was used to estimate the parameters for the whole population as 
follows: In the main and the control task, the responses were simulated from a binomial distribution, 
(n, p), where p was Φ (b0 +  b1vsurf) and n was equal to the number of trial repetitions. The parameter b1 
was equal to the slope either in the control or in the main task, as estimated in the descriptive model. 
We set the intercept b0 assuming that the responses were unbiased in the control task (− b0/b1 =  0 mm/s) 
and positively biased in the moving task (− b0/b1 =  6.8 mm/s). We repeated the simulation to provide 
one thousand bootstrap repetitions and fit the model equation S8 (Supplemental Data) to each simulated 
dataset. When the difference between the likelihood and the prior variances is large, a large change in 
the parameters produces only a small change in the corresponding weighting factor jeopardizing conver-
gence. The parameters of the prior were therefore constrained during the fitting procedure. The estimated 
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likelihood variances were 34 mm2/s2 for the proprioceptive measurement (95% CI 12–225 mm2/s2) and 
11 mm2/s2 for the cutaneous measurement (95% CI 8–14 mm2/s2). We verified that constraining the vari-
ance of prior to different values did not modify the estimated ratio between kinesthetic and tactile noise. 
The GLMM analysis revealed a significant difference in slope between the control and the main task, 
the slope being significantly larger in the former (p <  0.001). To account for that, we assumed that the 
observer discarded proprioceptive information when the finger was stationary (i.e. in the control task). 
Freeman et al.5 assumed that the variance of the two sensory measurement was a non-linear function of 
the velocity. This would also account for the difference in slope between our two tasks, however would 
require adding four more parameters to the model.
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