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Abstract

Differentiation in the feedback is common practice in digital control. Yet, the fundamental behavior of the universally employed
backward difference of quantized signals has not been studied thus far. We show that velocity always oscillates when this
type of feedback is applied to a forced, linear second-order system for any system parameter. We then compute a bound
for the oscillation amplitude which can be easily computed given the parameters of the system. Experimental results are in
close agreement with the theory. If the system has dry friction, our study yields a sufficient condition for the quenching of
spontaneous oscillations.
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1 Introduction

Numerous control systems rely on the numerical differ-
entiation of the output measurement in order to provide
feedback. Most commonly, these control systems employ
proportional-integral-derivative (pid) control. In contin-
uous time, it is immediate from Fig. 1 that the measure-
ment noise, w, injected in the loop is amplified by differ-
entiation. Actual implementations remedy this problem
by augmenting strict differentiation with various filters
that attenuate high frequency noise. There are many
types, and names, of such filters (“dirty derivative”, “ap-
proximate derivative”, “band limited derivative”, and so
on), all causing phase lag.

Digitally-realized pid control, [14], is also affected by
noise and time delays whose occurrence is inherent in nu-
merical differentiation. Quantization error, often mod-
eled as noise, which accompanies any numerical imple-
mentation, is unavoidable. Even if the effects of analog
noise can be neglected, as with digital shaft encoders, or
when the analog noise is smaller than the quantization
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Fig. 1. Block diagrams of common types of pid control show-
ing how noise, w, is injected into the control loop via a signal
path shown in black.

step of a converter, the quantization noise should not be
neglected.

So severe is this problem that despite the continuing
importance of pid control—not fewer than 56 patents
on this topic have been granted worldwide between 1990
and 2000—, in actual practice 80% of pid controllers
have the derivative part omitted or switched off [2].

Other applications in which differentiation of the output
measurement is necessary include virtual reality systems
with haptic feedback. Such systems typically involve an
electromechanical device that responds to torque com-
mands with the objective to modify the dynamics of the
device to simulate the stiffness and viscosity of virtual
objects. The required modification is typically accom-
plished by feeding back suitably processed quantized po-
sition measurements as torque inputs.

Automatica, 47(11):2444-2450 doi:10.1016/j.automatica.2011.08.017



Figure 2 shows the minimum digital implementation of
the simulation of viscosity. A more detailed description
of the signals appearing in the figure is delayed until
Section 2. Referring to the signal path (in black) of Fig. 1,
notice that the zero-order-hold (zoh) sampling of the
derivative feedback loop of the pid would be identical.
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Fig. 2. Block Diagram of simulation of viscosity B at sam-
pling period h. Signal e represents a forcing input to the
system due to the user’s hand.

Quantizers are nonlinear elements that can be repre-
sented by several basic models according to implemen-
tation. Incremental encoders modify the content of a
pulse counter which is read at the instants of sampling.
Hysteresis may have to be accounted for because after
a velocity reversal the same incremental position corre-
sponds to counts that differ by one unit. However, mod-
ern circuits have a feature that suppresses the first count
after a reversal, eliminating hysteresis. In the latter case,
the single-valued floor function represents incremental
encoder quantization. For devices having analog sen-
sors and analog-to-digital converters, quantization can,
in certain cases, be better represented by the rounding
function whose value is obtained by adding 1

2 to the ar-
gument variable, before application of the floor opera-
tion. In other cases, 1

2 must be added after application
of the floor operation. The results of this paper are not
affected by these distinctions since only increments of
quantized values are considered. In other circumstances,
however, these distinctions are important [19].

The output signal of the system shown in Fig. 3 makes
it apparent that the backward difference of quantized
signals exhibits a peculiar nonlinear behavior giving a
choppy output even if a smooth, noise-free input is used.
It is also important to note that the velocity estimation
oscillates according to the fundamental velocity quan-
tum of ν , ∆/h that is nothing else but the Courant-
Friedrichs-Lewy critical velocity that participates in the
stability of systems quantized in time and space [20]. The
noise has a wide and time-varying spectrum that pre-
cludes devising simple design rules for smoothing filters.

To attenuate quantization error, the use of the inverse-
time method [23,17,16], adaptive fir filters [12], Kalman
filtering [3], or else observers such as that in [21,22] have
been advocated both for control purposes and for virtual
reality applications. All of these methods involve trade-
offs. Inverse time methods require special hardware, in-
troduce variable time delay, fail to account for rapid sig-
nal variations, and break down at high velocities. Adap-
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Fig. 3. Effects of backward difference of quantized sinusoidal
signal. Here, ∆ = 0.002, h = 0.01, ω = 2π, and ν = 0.2.

tive filters address these problems better but require
tuning. The Kalman filter and observer approaches are
slow in response or must rely on accurate models of the
system and of disturbances which are rarely available.

The need to compensate for quantization noise is not
restricted to electromechanical systems. It arises when-
ever the time derivative of a state must be estimated
from measurements. Regarding the generality and im-
portance of the problem, the question of the effect of
quantization on discrete differentiation has been men-
tioned as early as in [24], where it was noted that it could
induce oscillations in feedback systems. Rigorous analy-
sis of the phenomenon has so far been addressed mostly
via stochastic approaches [10,13].

Many previous results pertaining to the behavior of
closed-loop quantized systems are available, addressing
mostly the question of stabilization [7,18,15] or channel
rate, see [11], for a rcent survey, but these works do not
address explicitly the problems due to differentiation of
quantized signals in the feedback.

Motivated by this discussion, the aim of this paper is to
rigorously address the essence of the problem of oscilla-
tions inherent in digital control systems. Since complex
system dynamics is often well approximated in terms of
the dynamics associated with the dominant poles, the
oscillatory behavior of digital systems is analyzed here
while employing the simplest meaningful model—a lin-
ear second order system with feedback involving digi-
tal differentiation. Nonlinear and higher order models
have not yet been studied under similar conditions as
the analysis of these models are likely to involve complex
phenomena such as chaos.

The fundamental behavior of the universally employed
backward difference of quantized signals in feedback to a
forced second-order system is hence studied as depicted
in the diagram of Fig. 2, where G(s) represents the first
order lag,

G(s) =
1

ms+ b
.

2



The system considered is not merely an idealization but
actually happens to coincide with many electromechan-
ical systems with pid control or with the virtual reality
systems alluded to.

It is shown that such forced second-order system in-
cluding a feedback loop with discrete differentiation of a
quantized output fails to reach a steady-state, while pro-
ducing sustained oscillations. These oscillations exist for
any value of the system parameters unless the forcing in-
put is zero. Unlike position feedback, where the effects of
delay and quantization can be eliminated if viscosity is
sufficiently high, or if the sampling period is sufficiently
short [6,1,8], the oscillatory effects of quantized differen-
tiation cannot be eliminated by increasing viscosity.

They can be reduced, however, and a bound for the os-
cillation amplitude can be expressed in terms of the pa-
rameters of the continuous system: the sampling period,
the size of the quantization step, and the magnitude of
the forcing input.

The results are validated by means of an experimental
setup in the area of haptic rendering where all the rele-
vant parameters can be continuously adjusted by vary-
ing viscosity. The results obtained in the experiments
are in agreement with numerical simulations and remain
in close agreement with the theoretical bound.

2 Genesis of Oscillations Rooted in the Lack of
Steady-State

Employing the simplest example of a digitally controlled
system, as in the diagram in Fig. 2, it will be shown that
the essence of the problem of persistent oscillations lies
in the absence of a well-defined steady state. More pre-
cisely, it will be shown that in the absence of external
noise and under constant forcing signals, the set of sys-
tem parameters for which the system possesses a steady
state velocity is of measure zero. External disturbances
being unavoidable, the system velocity cannot converge
to any steady state even if it is stable, exhibiting some
pattern of oscillatory behavior.

Let h represent the sampling period, ∆ the quantiza-
tion step, and x the measured output. Notice that in
the aforementioned two cases, a velocity loop is forced
by an exogenous, slow-varying signal, e, arising from
the proportional-integral feedback and in virtual reality
from the force applied by the user’s hand. A signal, x(t),
sampled at time t = kh is noted xk. For convenience, let
σ = x/∆ be the displacement normalized to the quan-
tizer resolution. The diagram shown in Fig. 2 represents
the following system:

mẍ(t) + bẋ(t) = e(t)−Bν (bσkc − bσk−1c+ ε(t)) , (1)

∀k ∈ N, t ∈ [kh, (k + 1)h), where b·c stands for the
standard floor operator returning the smallest integer

value not exceeding the value of its argument, and ε(t)
represents analog noise.

Remark 1 System (1) represents a hybrid, discrete and
continuous time nonlinear system with time delay, and as
such, does not lend itself to immediate assessment with
regard to its qualitative and quantitative behavior. One
could represent the output, bx(t)c, by x(t) + q(t), with
x(t) denoting the continuous-time input to the quantizer
and q(t) the discontinuous quantization error. With this
substitution, (1) is ‘transformed’ into a sampled-data lin-
ear system with two inputs, e(t) and q(t). However ap-
pealing is the substitution, it does not represent a stan-
dard sampled-data system since q(t) is not exogenous. It
is a function of the parameters, of the sampling interval,
and of initial conditions. For this reason, stochastic and
frequency domain approaches are unable to precisely ad-
dress the question of oscillations since such approaches
effectively omit the feedback that links x(t) to the error
in the system velocity estimate.

First consider a restricted noise-free system (1) forced
by a constant, non-zero input e, written in the form

ẋ(t) = v(t),

m v̇(t) + b v(t) = e−Bν (bσkc − bσk−1c) , (2)

∀k ∈ N, t ∈ [kh, (k + 1)h), with any given initial
conditions x(0) = x0, v(0) = v0, while assuming
that the unforced system mv̇(t) + bv(t) = 0 is sta-
ble. The analog counterpart of this system is given
by ẋ(t) = v(t);mv̇(t) + (b + B)v(t) = e with ve-
locity response v(t) = v0e

−αt + v∞[1 − e−α], where
v∞ = e/(b + B) represents the steady-state of the ve-

locity subsystem and α , (b + B)/m. Neglecting the
transients, the position varies as a linear function of time
x(t) = x0 + v∞t. By analogy, the digitally implemented
system is said to possess a steady-state velocity, v∞, if
the position function x(t) = x0+v∞t, t ≥ 0, satisfies (2).

The parameters in (1) are not restricted in any way,
the poles of the system are arbitrary provided that the
unforced system is stable.

Theorem 1 (Existence of a steady state) For sys-
tem (2), with stable unforced system mv̇(t) + bv(t) = 0,
there exists a steady-state velocity if and only if

e

ν(b+B)
∈ N. (3)

If this condition is satisfied, the steady-state velocity is

v∞ = e/(b+B). (4)

Remark 2 Following Remark 1 the proof must be car-
ried out in the time domain and Condition (3) must be
necessary and sufficient to ensure that the errors incurred
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by quantization of the state at two succeeding sampling
instants k − 1 and k produce a constant error in the ve-
locity estimate. Any noise or inaccuracy in a practical
implementation will cause (3) to fail, compelling the sys-
tem to oscillate since the set of steady state velocities is
of measure zero.

Proof. Suppose that Condition (3) holds. Then v∞
given by (4) satisfies v∞/ν ∈ N. Let x(·) satisfy ẋ(t) =
v∞, so xk = x0 + v∞kh, k ∈ N. Then, ∀k ∈ N,

bσkc − bσk−1c =
⌊
σ0 +

v∞
ν
k
⌋
−
⌊
σ0 +

v∞
ν

(k − 1)
⌋

= bσ0c − bσ0c+
v∞
ν

=
v∞
ν
, (5)

since for any numbers a ∈ R, i ∈ N, ba+ ic = bac + i.
Consequently, if v∞ is given by (4) then x(t) = x0+v∞t,
satisfies (2) confirming that v∞ is indeed the steady state
velocity of the system.

We now demonstrate that any error in the satisfaction of
Condition (3) precludes the existence of a steady state

velocity. Call Dk , {dk}k∈N the integer sequence such
that

dk = bσkc − bσk−1c , ∀k ∈ N. (6)

Suppose that (3) does not hold but that some v0 is a
steady state velocity for the system. By definition, x(t) =
x0 − v0t satisfies (2) requiring that the sequence Dk is
constant with terms dk satisfying ∀k ∈ N,

dk =
e− bv0
B ν

=
⌊
σ0 +

v0
ν
k
⌋
−
⌊
σ0 +

v0
ν

(k − 1)
⌋
. (7)

If v0/ν ∈ N then a calculation identical to that in (5)
would show that dk = (e− bv0)/(B ν) = v0/ν implying
that v0 = v∞ and the validity of Condition (3), which
is a contradiction. Hence v0 is not a multiple of ν, and
without the loss of generality, x0 is not a multiple of ∆
(for if not then one could consider x(t) to defined on
some restricted interval of time [t′,+∞), t′ > 0.) Then
x0 = ∆(k1 + ε1) and v0 = ν(k2 + ε2), with k1, k2 ∈ N
and ε1, ε2 ∈ [0, 1). Noting that ε2 > 0, ∀k ∈ N,

dk = bk1 + ε1 + kk2 + kε2c−
bk1 + ε1 + (k − 1)k2 + (k − 1)ε2c

= k2 + bε1 + kε2c − bε1 + (k − 1)ε2c .

Suppose first that ε1 + ε2 < 1. Then,

d1 = k2 + bε1 + ε2c − bε1c = k2. (8)

Let k to be the smallest integer such that ε1 + kε2 ≥ 1.
Then,

dk = k2 + bε1 + kε2c − bε1 + (k − 1)ε2c
= k2 + 1− 0 = k2 + 1. (9)

Equations (8) and (9) imply that Dk is not a constant
sequence. Suppose now that ε1 + ε2 ≥ 1 and let n be the
smallest natural number such that,

ε1 + n(ε2 − 1) + ε2 < 1. (10)

Such a natural number exists because ε2 − 1 < 0. It
follows that

ε1 + (n− 1)(ε2 − 1) + ε2 ≥ 1

⇒ ε1 + (n− 1)ε2 + ε2 − (n− 1) ≥ 1

⇒ ε1 + n(ε2 − 1) ≥ 0.

Defining ε′1 , ε1 + n(ε2 − 1), implies

ε′1 + ε2 = ε1 + n(ε2 − 1) + ε2 < 1.

Then, consider a new shifted sequenceD′k = {d′k}, k ∈ N
defined in terms of ε′1 such that

d′k = k2 + bε′1 + kε2c − bε′1 + (k − 1)ε2c
= k2 + bε1 + n(ε2 − 1) + kε2c

− bε1 + n(ε2 − 1) + (k − 1)ε2c
= k2 + bε1 + nε2 + kε2c − bε1 + nε2 + (k − 1)ε2c
= k2 + bε1 + (n+ k)ε2c − bε1 + (n+ k − 1)ε2c
= dn+k.

Then,

dn+1 = d′1 = k2 + bε′1 + ε2c − bε′1c = k2. (11)

Similarly, let l be the smallest integer that is such that
ε′1 + lε2 ≥ 1. It follows that

dn+l = d′l = k2 + bε′1 + lε2c − bε′1 + (l − 1)ε2c
= k2 + 1 + 0 = k2 + 1. (12)

Again, (11) and (12) imply that Dk is not a constant
sequence. This completes the proof. 2

Remark 3 The introduction of digital position or digital
integration terms in the system feedback do not change
the “non-robust” nature of the system steady-state. To
see this, suppose that the second order system is controlled
by full digital pid compensation:

mẍ(t) + bẋ(t) = kp hν (bσdk
c − bσkc)

+ ki hν

k∑

i=0

(bσdk
c − bσic)

− kdν (bσkc − bσk−1c) , (13)

∀k ∈ N, t ∈ [kh, (k + 1)h), where σd is the desired nor-
malized system state. First let ki = 0. If v∞ is some
non-zero steady-state velocity of the system then the se-
quence of samples associated with position would diverge
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as |b σkc| = |b σ0 + v∞/νkc| → ∞ with k → ∞ un-
less v∞ = 0. The sequence of digital estimates of the
velocity, Dk = {bσkc − bσk−1c}k∈N, however, would re-
main bounded. Hence, the rhs of (13) could only be
zero if v∞ = 0. The corresponding steady state posi-
tion would then be any x∞ such that bσ∞c = bσdc.
It is not reasonable to expect that Dk = {0}k∈N ex-
actly, so oscillations would be imminent. With an inte-
gral term, ki 6= 0, v∞ would similarly have to be zero,
implying that the quantized position would have to sat-
isfy kphν (bσdc − bσ∞c) + kih(k + 1) (bσdc − bσ∞c) =
0, k ∈ N, hence implying the absence of steady-state reg-
ulation error with the precision of quantization, that is
bσssc = bσdc. Similarly, oscillations would arise from
any deviation from the condition Dk = {0}k∈N.

3 Boundedness of Oscillations

Conditions for bibo stability of the system depicted by
Fig. 2 can be derived to yield an explicit bound for the
oscillations. The derivation is, again, performed in the
time domain since a frequency-domain approach would
neglects the internal coupling between the quantization
error and the system dynamics. A time-domain evalua-
tion based on summation of a von Neumann series de-
livers a more precise bound than the Parseval’s equality.

Let l∞, l1 denote the spaces of bounded real sequences
X , {xk}k∈N such that ‖X‖∞ , supk∈N |xk| < ∞
and ‖X‖1 ,

∑
k∈N |xk| <∞, respectively, let L∞[0,∞)

denote the space of all essentially bounded, Lebesgue
integrable, real functions f : [0,∞) → R such that

‖f‖∞ , ess supt∈[0,∞) |f(t)| <∞, and consider the nat-

ural discretization of system (2) with time step h. In the
foregoing let {ηl}∞l=0 be the sequence of discretization

errors, ηl , bσlc − σl, ∀l ∈ N. Recall that the uncon-
trolled system has a damping coefficient b which is to
be augmented by B. Call τn = m/b and τb = m/B the
natural and artificial time constants, respectively. Let
α(t) , exp(−(t − kh)/τn) be the free response at step
k and αh = exp(−h/τn) be the response after one sam-
pling period. It is convenient to introduce κ = B/b, the
proportion of artificial to natural damping, ρ = 1/∆,
and ξ = 1/h, the quantizer spatial frequency and the
sampling frequency, respectively. Recall that ν = ∆/h
is the critical velocity quantum.

Theorem 2 (Boundedness) The noise-free sys-
tem (2) is L∞-bibo stable if

r(Φ) , max
i=1,2
{|λi(Φ)|} < 1. (14)

For a constant forcing input e, the velocity output defined

as the sequence {vk}k∈N is asymptotically bounded,

‖{vk}k∈N‖∞ ≤ |e|
∣∣C(I − Φ)−1Γ1

∣∣
+ ‖{ηl+1 − ηl}∞l=0‖∞

∥∥{CΦlΓ2}∞l=0

∥∥
1

+O(k), where

Φ =

(
−κ (1− ξτn(1− αh)) ρτn(1− αh)

−κν(1− αh) αh

)
,

Γ1 =

(
ν/b (1− ξτn(1− αh))

1/b(1− αh)

)
,

Γ2 =

(
κ (1− ξτn(1− αh))

κν(1− αh)

)
, C = [0 1].

Moreover, Condition (14) is also necessary whenever
[Φ,Γ1] is controllable, that is when the natural discretiza-
tion of the system is non-pathological.

A shortened proof is delegated to the Appendix as it is
straightforward.

4 Experimental Validation

To investigate the validity of the results of Theorems 1
and 2, experiments were completed with both numerical
simulations and a physical apparatus.

4.1 Apparatus

Figure 4 shows a machine that was built to be mod-
eled by (1). Two high-quality dc motors (model re25-
118751, Maxon Motors ag) are mounted co-axially and
coupled together. Each motor is driven with a sepa-
rate current amplifier (model lcam, Quanser Consult-
ing, Markam, on, ca). One of the motors represents e, a
slowly varying force. The second motor receives feedback
via B. To modify conveniently the system parameters,
an eddy-current damper is also mounted co-axially with
the two motors. Such dampers are capable of precise and
adjustable production of pure viscosity [9] and permit-
ted to adjust the system’s natural time constant, τn, over
a wide range of values. An optical encoder (model r119,
Gurley Precision Instruments, Troy, ny, usa) monitors
the rotation of the common axis.

The damping coefficient, b, was calibrated from the
steady-state velocity when giving a constant torque
input. Damping coefficients for each coil current were
recorded and averaged. The calibration was accurate to
approximately 5%. The inertia, m, was fine-tuned by
matching the first order response to a step input. The
high resolution encoders, having 216 counts per revolu-
tion, can resolve 9.59 × 10−5 rad. In order to observe
the oscillations due to quantization with a single sensor,
the software was set to decimate pulses by a factor 1 000
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Fig. 4. Experimental Apparatus. Two parallel coupled tor-
quers with an eddy current damper.

to mimic lower resolutions, while recording the trajec-
tories at full resolution, causing the effective resolution
to be 0.096 rad.

4.2 Results

Theorem 2 predicts that the oscillations of the sys-
tem are bounded if and only if λ(Φ) ≤ 1. Taking
b = 1.26 mN·m·s, m=0.14 g·m2, e = 50.0 g·m2, the
system matrix was such that λ(Φ) was 0.9 or 1.1, by
setting h = 0.10 and 0.15 s, or B = 4.0 and 5.5 mN·m·s,
respectively. Figure 5 shows the results in the two cases.
The simulation and the experimental results show that
stability is well predicted despite some uncertainty in
the system parameters. When the system is stable, in
simulation like in experiments, oscillations diminish un-
til they reach a sustained regime. When the system is
unstable, the experimental oscillations grow until satu-
ration, and the simulated oscillations grow indefinitely.
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Fig. 5. System stability in two conditions where the system
eigenvalues are smaller and larger than one.

Theorem 1 shows that a steady state velocity exists if
and only if the steady-state velocity lies exactly on a ve-
locity quantum. Velocity quanta are fixed by the sensor
resolution and the sampling period, but the steady state
velocity is related to the physical and virtual damping

characteristics. Tiny variations in the physical damping
coefficient prevented a steady state velocity from ever be-
ing reached. Experimental and simulation results agree
with this finding, in that it was impossible to find pa-
rameters values where oscillations did not exist.

Table 1
Parameters used in Fig. 6.

cases

(a) (b) (c)

b [mN·m·s] 7.4 1.26 7.4

B [mN·m·s] 3.0 2.0 11.0

v∞ [rad/s] 4.7 15.0 2.7

nearest quanta [rad/s] 3.9,4.8 14.5,15.5 1.9,3.8

Using the same m, ∆, and e as in the previous experi-
ment, and h = 0.1 s, Figure 6 shows the results obtained
with the three sets of parameters as per Table 1. Fig-
ure 6(a) shows the case where v∞ is close to a velocity
quantum: the oscillations are intermittent but persist. In
Fig. 6(b) v∞ is between two quanta: the oscillations are
frequent. Figure 6(c) shows an example where the sys-
tem flips between two different oscillation magnitudes.
It is important to note that the simulated case was ex-
tremely sensitive to variations in the parameters of B
or b. To achieve a good match between the simulation
and the experiment b were tuned by approximately 5%,
which is within the experimental error.

2
4
6
8

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
time (s)

ve
lo

ci
ty

 (r
ad

/s
)

experiment

experiment

experiment

simulation

13
15
17
19
21

ve
lo

ci
ty

 (r
ad

/s
)

ve
lo

ci
ty

 (r
ad

/s
)

0
2
4
6
8

simulation

simulation

(a)

(b)

(c)

Fig. 6. Three specific cases of oscillations with parameters as
per Table 2. To prevent the plots to fall on top of each other,
the simulation plot was shifted upward. (a) Intermittent os-
cillations. (b) Frequent oscillations. (c) Complex oscillations.

The bounds established by Theorem 2 can be compared
in simulation and in experiments. Table 2 collects the re-
sults. It is clear that the theoretical bound does indeed
bound the maximum oscillation velocity when the initial

6



transients have vanished. It is also clear that the bound
can be loose depending on the conditioning of the sys-
tem. For example, the conditioning for Fig. 6(c) yields
a maximum eigenvalue that is very close to 1, so the
bound considerably overestimates the maximum veloc-
ity in stable oscillation because the geometric sequence
from (25) is slow to converge.

Table 2
Comparaison between prediction and experiments.

cases

(a) (b) (c)

intermittent frequent complex

theoretical bound [rad/s] 5.78 18.65 98.6

simulation [rad/s] 5.06 15.6 6.60

experiment [rad/s] 5.15 15.7 6.80

max(λi(Φ)) – 0.27 0.64 0.92

cond(Φ) – 3.80 4.11 35.7

5 Conclusion

Anyone who has tuned pid digitally-implemented con-
trollers in the laboratory or in the field remembers hav-
ing heard screeching or rumbling noises arising from the
step-up when the d-gain is accidentally set too high; of-
ten at values considerably lower than those suggested by
computer-aided tuning. The theory developed in this pa-
per is an attempt to explain this phenomenon. It shows
that oscillations are not only possible, but are in essence
unavoidable. The theory that we developed allowed us to
develop a bound for the magnitude of these oscillations
that is entirely expressed in terms of system parameters.
Simulations and experiments showed that this bound
is an accurate predictor of actual oscillations that can
exhibit an extraordinary variety of patterns; although
these oscillations appear to be periodic in the determin-
istic case (see Fig. 7 for some other simulated examples).
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0.447
0.448
0.449

4
5

0.818
0.819

8
9

Dk0.8915
0.8905

Fig. 7. Menagerie of oscillation figures obtained by simulating
system (2) with various values (arbitrary units).

The period of the oscillations can nevertheless be arbi-
trarily long and the slightest imperfections or noise in the
system can, in certain cases, cause it to switch from one
regime to another. Such analysis could be approached by
the study of peak-to-peak dynamics but the full analysis

of these oscillations and of their possibly chaotic char-
acter is beyond the scope of this article.

As commented, oscillations in electromechanical sys-
tems with differentiation in the feedback arise in prac-
tice when the gain is high enough. This occurrence is
easy to explain following the fact that the movements of
such systems are often impeded by dry friction, however
small, present whenever two surfaces in contact undergo
relative movement. Dry friction, fC, added to (2) can
extinguish or prevent oscillations whenever

fC >
e

Bν
,

in which case the state of the system can be constant
from (2),(6) since the steady-state velocity can be zero.

As a final comment, it is possible to relate the system
under study to the oversampling analog-to-digital con-
verter or sigma-delta converter that operates on the prin-
ciple of feeding the difference of time-shifted quantized
outputs back to an integrator [4]. Such systems have
been studied mostly through stochastic approaches since
the objective is noise-reduction. A direct approach, as
employed here, may also prove to be useful to study these
systems.
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6 Appendix

Proof of Theorem 2 The noise-free system,

mv̇(t) + b v(t) = e(t)−Bν (bσkc − bσk−1c) , (15)

∀k ∈ N, t ∈ [kh, (k + 1)h), is assumed to be at rest
for times prior to zero, i.e. x(t) = 0, ẋ(t) = 0,∀t <
0 the class of admissible forcing inputs is limited to
L∞([0,∞)). The solution to (15) is computed in a piece-
wise manner. It is easily verified that, for all t ∈ [kh, kh+
h), and for all k ∈ N,

x(t) = κνdk(t− hk) + xk (16)

− (−κνdk − ẋk) τv(1− α(t)) + g1(t),

v(t) = −κνdk(1− α(t)) + vkα(t) + g2(t),

g1(t) ,
1

m

∫ t

0

∫ kh+s

kh

α(τ)e(τ)dτds,

g2(t) ,
1

m

∫ kh+t

kh

α(τ)e(τ)dτ.
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Let the sampled values of the state and velocity xk and
vk at points t = kh be defined in terms of left limits.
Defining zk , σk − σk−1 and introducing the quantiza-

tion error, ηk , bσkc − σk,allows one to write the dis-
cretized solution (16) in the re-arranged form,

(
zk+1

vk+1

)
= Φ

(
zk

vk

)
+

(
F1

F2

)
+

(
δ1k

δ2k

)
, (17)

Φ ,

(
−κ (1− ξτn(1− αh)) ρτn(1− αh)

−κν(1− αh) αh

)
,

(18)

F1 , ρg1(h) = ρ

∫ h

0

g2(s)ds, F2 = g2(h), (19)

δ1k , −κ (1− ξτn(1− αh)) (ηk − ηk−1), (20)

δ2k , −κν(1− αh)(ηk − ηk−1). (21)

Inputs F1 and F2 are uniformly bounded as follows

|F1| = ρ|g1(h)| ≤ ρek
m

∫ h

0

∫ kh+s

kh

e(ς−kh)/τndςds

≤ ek
bν

(1− ξτn(1− αh))

|F2| = |g2(h)| ≤ ek
m

∫ hk+h

hk

e(ς−kh)/τndς

≤ ek
b

(1− αh).

where ek , ess supk=0,∞{e(t); t ∈ [kh, (k + 1)h)}. It is
convenient to write (17) with a piecewise constant input
defined by {ek}∞k=0,

(
zk+1

ẋk+1

)
= Φ

(
zk

ẋk

)
+ Γ1ek − Γ2(ηk − ηk−1), (22)

where,

Γ1 =
1

b

(
ν−1 (1− ξτn(1− αh))

(1− αh)

)
,

Γ2 = κ

(
(1− ξτn(1− αh))

ν(1− αh)

)
.

It is noticed that the control transformation

ek = uk −Bν(ηk − ηk−1), (23)

brings (22) into a system without quantization drift,

(
zk+1

ẋk+1

)
= Φ

(
zk

ẋk

)
+ Γ1uk. (24)

Since the quantization error sequence is bounded, the
bibo stability of (22) is equivalent to the bibo stabil-
ity of (24). If the discretization (15) into (24) is non-
pathological in that the sampling period is selected to
ensure that the controllability of (17), (22), and (24) is
preserved and the pair [Φ,Γ1] is controllable.

It follows that (24) isL∞-bibo stable from the input ek if

and only if r(Φ) < 1, with r(Φ) , maxi=1,2{|λi(Φ)|}, the
spectral radius of matrix Φ [5]. The L∞-bibo stability of
the system in continuous time follows from the stability
of the discretized system (is in fact equivalent) when
xk = x(kh), vk = v(hk), ∀k ∈ N. The application of
the Bellman-Gronwall Lemma delivers a bound for the
state of the system in between discretization instants.
Specifically, there exists a constant K such that |x(t)| ≤
K|x(kh)|, |v(t)| = K|v(hk)|, ∀t ∈ [kh, (k + 1)h), k ∈ N.

An explicit bound for the trajectories of (22) can then
be derived. The solution of (22) and, specifically, its ve-
locity component, is obtained by using the variation of
constants formula,

vk = C

(
zk

ẋk

)
= CΦk−1

(
z1

v1

)
+

k−1∑

l=1

CΦk−l−1Γ1el

−
k−1∑

l=1

CΦk−l−1Γ2(ηl − ηl−1)

= CΦk−1
(
z1

ẋ1

)
+

k−1∑

l=1

CΦl−1Γ1ek−l

−
k−1∑

l=1

CΦl−1Γ2(ηk−l − ηk−l−1).

For large k, the effect of the initial condition decays to
zero, and restricting to a constant input, e, yields the
bound for the discretized velocity,

‖{vk}∞k=1‖∞ ≤ O(k) + |e|

∥∥∥∥∥
∞∑

l=1

CΦl−1Γ1

∥∥∥∥∥
∞

+

∥∥∥∥∥
∞∑

l=1

CΦl−1Γ2(ηk−l − ηk−l−1)

∥∥∥∥∥
∞

≤ |e|
∣∣C(I − Φ)−1Γ1

∣∣

+ ‖{ηl+1 − ηl}∞l=0‖∞
∥∥∥
{
CΦlΓ2

}∞
l=0

∥∥∥
1

(25)

whereO(k) represents a discrete-time function such that
O(k)→ 0 as k →∞, because for any {an}∞n=0 ∈ l1 and
{bn}∞n=0 ∈ l∞, ‖

∑∞
n=0 anbn‖∞ ≤ ‖{an}‖1 ‖{bn}‖∞.

In view of the sum of the von Neumann series∑∞
l=1 CΦl−1Γ1 = C(I − Φ)−1Γ1 which is valid if

r(Φ) < 1. The effect of the initial condition is captured
by O(k), as claimed. 2
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