
Robotics Research

The Sixth International Symposium

edited by
Takeo Kanade
and
Richard Paul

The International Foundation for Robotics Research
Cambridge, USA.

2

Motion Planning

Jean-Claude Latombe
Robotics Laboratory, Department of Computer Science

Stanford University, Stanford, CA 94305, USA

One important goal in robotics is to make it possible
for robots to perfonn tasks whose goals are expressed in
high-level declarative terms. In this context, researchers
in motion planning develop algorithms to automatically
generate motions to achieve goals fonnulated as geomet­
ric arrangements of the robot and its workspace. Mo­
tions must avoid collisions with obstacles. They must
deal adequately with the laws of nature (e.g., friction,
gravity, inertia). They must also make enough infonna­
tion available to the robot controller, either by sensing
the environment or by reasoning about motion mechan­
ics, or both, so that the successive states of the robot
relative to its environment are reliably recognized.

The first paper, Robot Algorithms, by Jean-Claude
Latombe, takes the stand that, like computer science,
robotics is fundamentally about algorithms. Robot al­
g~rithms, however, differ in significant ways from com­
puter algorithms. Latombe's paper suggests that a
unique characteristic of robot algorithms is how they
combine a control component involving very basic con­
trol issues, such as controllability and observability, and
a planning component raising fundamental computa­
tional issues, such as calculability and complexity.

The second paper, Motion Planning for Mobile Robot.!:
From Academic to Practical Issues, by Jean-Paul Lau­
mond, investigates in more detail the relationship be­
tween controllability and complexity for one particular
class of robots: the mobile robots. Laumond stresses the
difference between holonomic motion planning, which
essentially lies in the realm of computational geome­
try and can now be solved efficiently, and nonholonomic
motion planning, which also raises control theory issue.
This comparison illuminates the relation between con­
trollability and motion planning complexity.

The third paper, Towards a Theory of Information In­
variants for Cooperating Autonomous Mobile Robot.!,
by Bruce Donald, James Jennings, and Daniela Rus
relates to the observability issue in robot algorithms.
More specifically, it considers cooperating robots push­
ing large, heavy objects. Donald, Jennings, and Rus
develop "information invariants" that make it possible
to establish some explicit trade-of equivalence between

the internal state retained by each robot, communica­
tion among robots, sensory information, and informa­
tion derived from task mechanics.

The fourth paper, Feeding and Sorting Algorithms for
the Parallel· law Gripper, by Ken Goldberg, explores al­
gorithms to orient and recognize parts with a parallel­
jaw gripper equipped with a passive translating bearing.
The algorithm orienting parts uses information derived
from task mechanics to iteratively reduce the set of pos­
sible orientations of a part. Part recognition uses a low­
cost linear sensor. Goldberg's work is a good demon­
stration that neatly designed robot algorithms may yield
efficient and cost-effective hardware implementation.

The fifth paper, A Safe Swept Volume Method for Col­
lision Detection, by Andre Foisy and Vincent Hayward,
addresses a basic problem in most motion planners,
namely collision detection. Foisy and Hayward propose
an elegant algorithm that detects collision along a given
robot path in a given environment. The algorithm is
both safe - it never classifies a subset of the path as
collision-free if it isn't - and reliable - if enough time
is available, it computes the colliding subsets of a path
with arbitrary precision.

These papers illustrate some of the major trends in mo­
tion planning research over the past few years. In par­
ticular, motion planning has evolved from the pure geo­
metric problem of finding collision-free paths in known
environments, to the more complicated problem of gen­
erating motion strategies involving sensory interaction
and physical reasoning. New basic issues have been
identified (e.g., the interaction between controllability
and complexity) and new algorithms have been pro­
posed (e.g., criticality-based discretization of continuous
spaces). Research now also attacks a wider variety of
challenging tasks, for example complex robot coordina­
tion. Concurrently, motion planning algorithms become
more efficient and researchers consider tasks of greater
practical significance.

~,....~
-.!~

A Safe Swept Volume Method for Collision Detection

Andre Foisy Vincent Hayward
McGill Research Center for Intelligent Machines,

3480 University Street,
Montreal, Quebec, Canada, H3A 2A7.

Abstract
This paper presents a collision detection method based

on a swept volume approach. The proposed method com­
putes a convex approximation (CSV) guaranteed to en­
compass the real swept volume (RSV). It is shown to be
robust, which means that small errors in the model re­
sult in small errors in the result. It is first shown to be
safe, which means that detections can ever be missed. It
is then shown to be reliable, meaning that the exact re­
sult can be approached as closely as desired for a known
cost.

1 Introduction
The configuration space is called CS and the free

space F S. The collision detection problem is defined as
follows:

Def.: 1 Given a path 'I1(t) : [0, 1] ~ CS for a robotic
system, a collision detection algorithm partitions the in­
terval [0,1] into I =11 ,12 , ... ,In such that 'I1(1i) C F S,
non-overlap, or '11(1;) C CS\FS, overlap. A solution to
an instance of the collision detection problem is the set
of overlap intervals.

Robotic systems and their surroundings are often
modeled using polyhedra, convex or concave bounded
flat faced geometrical objects. In this paper, only convex
polyhedra, known as polytopes, are considered. Poly­
topes are defined as bounded sets created by the inter­
section of some finite number of half spaces in R 3

. Any
object which is not convex is decomposed into convex
shapes, each one being modeled by a polytope.

The collision detection technique presented here is an
"off-line" method based on a swept volume approach.
In contrast with other swept volume approaches, the
result of the calculations are convex approximations
(CSV), hence polytopes, guaranteed to encompass the
real swept volume (RSV).

The calculation of the convex approximation involves
finding the bounding volume of a moving point. To
ensure that the algorithm is safe and reliable. bounding
values are computed using the theory of interval analysis
[Moore 66, Moore 79].

The main design criterion is stated in section 2. Sec­
tion 3 is a short review of collision detection methods

akin to ours. Section 4 introduces the definitions of the
CSV and RSV operations. Section 5 presents the basic
relations between the CSV and RSV. Section 6 presents
a form of decomposition which trades off computations
of the CSV against goodness of fit. Section 7 shows how
the basic computations of the CSV operations can be
carried out by a digital computer to ensure safety and
reliability. Section 8 describes the collision detection
algorithm. Section 9 illustrates the application of the
algorithm to an open kinematic chain. Finally, section
10 offers some concluding remarks.

2 Design Criterion
It is well known that any model of a physical object is

approximate. For example, the position of a vertex may
be known only within a tolerance. Moreover, the coordi­
nates of a vertex are generally represented in a computer
as an approximation. This suggests the definition of a
design criterion for a collision detection algorithm called
robustness.

Def.: 2 A collision detection algorithm is said to be ro­
bust if it does not fail to detect any true overlaps and
degrades gracefully as errors accumulate.

Robustness conveys an idea of resistance to pertur­
bations. The sources of these perturbations, or more
generally errors, are multiple:

• Collision detection algorithms are developed to
solve real physical problems. Hence, the first source
of errors is the modeling of the moving parts and
of the surroundings. Of course, a bad model can­
not be improved by a computer, it can only make
it worst.

• The model is the input data to a series of compu­
tational problems that require numerical solutions.
Because these problems are solved with digital com­
puters, small perturbations in the coefficients may
appear. These perturbations are a source of errors
which can degenerate into unbounded discrepancies
in the solution if the problem itself is ill-defined
[Young et al. 72].

• An important source of errors comes from the al­
gorithm itself. Certain algorithms or steps of an
algorithm may propagate errors very rapidly.

62 A Safe Swept Volume Method for Collision Detection

In the light of the previous enumeration, we propose
that robustness, a desirable property of a collision de­
tector, conveys the ideas of safety (no misses) and of
reliability (convergence to the exact solution).

With ;"ect to an input model, a collision detection
problem always has an exact solution, one for which each
bound is known with infinite precision. Let this set of
intervals be noted Co, then:!

Der.: 3 A collIsion detection algorithm is partially safe
if its solution to an instance of the problem, C!, includes
the exact solution, Co ~ C!.

Der.: 4 A collision detection algorithm is safe if it is
partially safe for all instances of the collision detection
problem.

In other words, a collision detection algorithm is safe
if it never classifies an overlap interval as a non-overlap
interval.

Whether there are errors or not, safety is a required
property, but safety alone is not enough. Indeed, a colli­
sion detection algorithm that always classifies any com­
plete trajectory as an overlap is surely safe but useless.
Thus. it is desirable that the outcome of a algorithm be
reliable.

Der.: 5 Given an instance of the collision detection
problem and given C! and C 2 , two solutions to the same
problem from two different algorithms. Then, the first
algorithm is partially more reliable than the second al.
gorithm If d(Co, Cd < d(Co, C 2).

Der.: 6 A collision detection algorithm is reliable, com­
pared to another algorithm, if it is partially reliable for
all instances of the collisIOn detectIon problem.

It is important to notice that a robust collision de­
tection algorithm is not guaranteed to refrain from pro­
ducing spurious overlap intervals, termed glitches. The
most common sources of numerical glitches are calcu­
lations on inaccurate representations. For a collision
detection algorithm. a glitch should always be a safe de­
cision. When in doubt it is better to produce a spurious
overlap interval than to cause a collision inadvertently.

3 Review
The simplest collision detection method consists of

sampling the trajectory and to check for static inter­
ferences [Boyse 79, Hurteau et al. 83, Dobkin et al. 83,
Dobkin et al. 85. Gilbert et al. 85, Gilbert et al. 88,
Rimon et al. 92]. However, this approach cannot be safe
because the motion between samples is not checked for
potential collisions.

1 The notion of ordering and 'of a metric for intervals are easily
derived and weU described in [Moore 66. Moore 79]

The swept volume approach is an improvement over
the sampling approach. A swept volume algorithm takes
the description of a moving object in two or three dimen­
sions as input, and produces another object in two or
three dimensions that contains the volume swept by the
moving object. The resulting swept volume is checked
for static interference with other swept volumes.

The intersection of two swept volumes is not a neces­
sary and sufficient condition to infer a collision. If the
moving objects collide, their swept volumes obviously
intersect, but if they do not collide, their swept volume
may still intersect. The use of relative motion between
objects transforms the swept volume intersection test
into a necessary and sufficient condition. However, if
the computed swept volume is an approximation of the
real swept volume, the intersection test is at best a suf­
ficient condition.

A swept volume approach to collision detection differs
from an extrusion technique [Cameron 85, Cameron 90,
Canny 86, Foisy et al. 92). A collision detector build
on extrusion works in space-time, whereas an algorithm
built on the swept volume approach only works in the
space in which the problem is given.

Of interest to the method developed in this pa­
per are the methods of Cameron [Cameron 85], Ganter
[Ganter 85) and Von Herzen [Von Herzen et al. 90).

Cameron and Ganter compute approximations that
are not sure to encompass the real swept volume of the
moving object. For example, Ganter approximates the
real swept volume by taking the convex hull of successive
samples.

In contrast, Von Herzen develops a approach applica­
ble to time dependent parametric surfaces. He presents
two techniques, both of which depend on Lipschitz val­
ues (the constant in a Lipschitz condition), themselves
depending on bounds on the velocity. The first approxi­
mation is a sphere called a "Lipschitz bounding sphere"
and the second approximation, which is a tighter bound
than the sphere, is a bounding box called a "J acobian
bounding box" .

The algorithm developed by Von Herzen is not di­
rectly applicable to polyhedra, however, the previous
bounding techniques are applicable in the framework of
the algorithm developed in this paper. Indeed, the basic
computational step is to bound the motion of a point.
Thus, the methods of Von Herzen are directly applicable
and so is the method of the reachable set constrained by
bounds on the acceleration presented in [Foisy et al. 90].

4 Definition of the RSV and CSV Op­
erations

The swept volume of a moving polyhedron is defined
as the trace of that moving polyhedron in Euclidean
space. It is described by the following set of points:

Andre Foisy and Vincent Hayward 63

RSV(f(1), P) = {p I 3(q E P, t E 1) (p = f(t)q)}.

CSV(f(I), P) = {p

Figure 2: Inclusion of the RSV in its CSV.

P =PIP2,
3ql E P (PI E BB(T(I)q,),

3q2 E P (P2 E BB(T(I)q.)}.

5 Basic Relations Between RSV and
CSV

Def.: 8 Given a displacement f(t), t E I ~ [0,1], and
a polyhedron P, the CSV(f(I), P) is the convex hull of
the bounding boxes of the vertices of P. 2

The set of points defined by the CSV operation is:

Def.: 9 Given a displacement f(t), tEl C [0,1), and
a polyhedron P, then the CSV of definition 8 is

(b)(8)

Figure 1: Construction of the CSV; (a) the bounding
box of a point, (b) the convex hull of all the vertices of
the bounding boxes.

Def.: 7 Given a displacement r(t), t E I ~ [0,1), and
P a polyhedron, the RSV(f(1), P) is

In practice, displacements or rigid body motions are ex­
pressed in projective space and represented as 4x4 ma­
trices in homogeneous coordinates.

Clearly, for a general displacement, the RSV of a
moving polyhedron is difficult to compute. In practice,
a convex approximation of the RSV will be computed,
namely the CSV.

Before defining the CSV, consider the construction
of a bounding volume encompassing the trajectory of a
point. As we have seen in the review section, there are
many methods for bounding the trajectory of a point.
To accommodate the development of the forthcoming
sections, a bounding volume is required to converge to
the point itself as the width of the interval on which
it is computed goes to zero. In this paper, we propose
a simple method which does not depend on kinematic
quantities. It will be shown (section 7) that it is readily
computable using interval analysis methods.

Since a displacement cannot send a Euclidean point
to infinity, it is possible to find a box aligned on the
axis of the coordinate system frame that includes the
trajectory of a point. The set of points defined by this
bounding box is noted BB(T(1)p), where T(1)p is the
expression of the moving point in some coordinate sys­
tem.

Building on the bounding box, the CSV is defined to
be (see figure 1) .

The first basic relation between the RSV and CSV
is the cornerstone of a safe and reliable implementation
(see figure 2).

Theorem 1 Given a displacement f(t), t E I C
[0,1], and a polyhedron P, then RSV(f(I), P) ~

CSV(f(I), P)

Proof: By definition, the segment between any two
points of a convex set is comprised in that convex set.
In particular, this is true for any moving segment be­
cause its vertices are comprised in bounding boxes. Fi­
nally, the CSV operation takes the convex hull of the
bounding boxes that contain the moving vertices of P.
It follows that the motion of P must be included in its
CSV. qed.

The second basic relation between the RSV and the
CSV is one that enables us to compute a better approx­
imation of the RSV by taking the union of a sequence of
CSVs. Each CSV of the sequence is computed over as
subtrajectory. The union of the subtrajectories is such
that it covers the entire trajectory (see figure 3).

Theorem 2

RSV(f([O, 1]), P) ~ U CSV(f(Ii), P),
i=l..n

where Ii is [ai-l ..ai] with °= ao < ai < an = 1.

2 Notice that the convex hull operation is assumed to return a
set of points encompassing its interior and its boundary.

64 A Safe Swept Volume Method for Collision Detection

Figure 3: Using many CSVs to describe a RSV.

Proof: The RSV can be written as

RSV(r«(O, 1]), P) = U RSV(f(I;), P),
&=1..n

and by theorem 1

RSV(f(l;}, P) <; CSV(f(1;), P) qed.

To see that the union of CSV becomes a better ap­
proximation as n grows, consider the case n =00:

U CSV(f(1i), P) = U CSV(r(t), P) =
i=l ..oo "'tEIO,1]

U CH(f(t), P) = RSV(f([O, 1]), CH(P)).
"'IEIO,l)

Notice that equality is only possible with polytopes,
however, it is enough to motivate the decomposition of
non convex polyhedra into polytopes (see figure 4).

6 Basic Property
A transform f can be quite complex. The follow­

ing paragraphs outline how the decomposition of f into
simpler transformations leads to simpler computations
of the CSV over P. The price to pay is that the succes­
sive CSVs are not as good a fit as CSV(f, Pl·

Theorem 3 Given a polyhedron P and a displacement
ret) =fdt),"', fn(t), tEl <; [0,1], then

RSV«f1 ·· ·fn)(1), P) <;
RSV«f 1 ... f n-I)(1), RSV(fn(1), P)),

CSVUf1" ·fn)(1), P) <;
CSV«f 1 ... f n-1)(1), CSV(fn(1), P)).

Proof: By definition,

RSV«r 1 ..• fn)(1), P) =
{pl(3q E P) /\ (3t E I <; (O.I]),p =fl(t)··· fn(t)q}.

Figure 4: A RSV and its relation to an infinity of CSVs.

But for tEl,

Hence,

Since this is true for all q E P, the desired result
follows.

The proof for the CSV operation follows a similar
pattern. qed.

When applied to translations, the CSV definition is
simplified and a direct link between the RSV and the
CSV can be established.

There is a direct link between the RSV of the convex
hull of a polyhedron and the CSV of that polyhedron
when the motion is a translation parallel to an axis of the
coordinate system. Indeed, the trace and the interval
bounded by the minimum and maximum coordinates
along an axis of the coordinate system are the same.

Lemma 1 Given T(t), tEl <; [0,1], a translation par­
allel to an axis of the coordinate system, and P a poly­
hedron, then

RSV(T(I) , CH(P)) = CSV(T(1), P)

Proof: Without loss of generality, consider the motion
of a point of CH(P). The trace of the moving point

Andre Foisy and Vincent Hayward 65

An extremum is found in I if its bracketing interval in­
tersects I. This behavior ensures that the robustness
criterion is enforced.

8 Algorithm

The results of the previous sections lead to a simple
algorithm for collision detection. First, the complete
trajectory is tested for collisions. If a collision is found,
then the trajectory is split and the algorithm is recur­
sively called for each subinterval. This process continues
until no collision occurs or the tested subinterval is too
small [Hayward 86].

Thus, it is now possible to evaluate functions com­
posed of simple arithmetic and trigonometric operators.
For example, the evaluation of a polynomial P(I) yields
an interval that bounds all the possible values of P(I).

7.2 Computing the Bounding Boxes

To compute the bounding box of a moving vertex it
is necessary to compute the extrema of each parameter
dependent coordinate of the Cartesian trajectory of the
vertex. Without loss of generality, let {(x, l) be the set
of relative extrema of x(t), tEl. Then, the extremal
values of x(t) on I = [b 1 ,b2] ~ [0,1] are given by:

and

otherwise.

Der.: 11

cos([a, b]) =
[-1,1],
[-1, max(cos(a), cos(b))],

[min(cos(a), cos(b», 1],

[mintcos(a), cos(b)),
max(cos(a), cos(b))),

7.3 Evaluation of the Extrema

To compute the extrema, any numerical or algebraic
method is valid, but even with interval methods the
computational cost is high. A simpler method would
be to approximate the extremal values of x(t) on I by
simply evaluating x(I). If this is carried out with in­
terval analysis methods, the result is an interval sure to
contain the maximum and minimum values of x(t) on
I. However, it is not clear which of the two methods of
evaluating extrema is more efficient.

Interval analysis methods suffer from numerical swell.
Interval bounds tend to become very large as the number
of evaluated inclusion functions grows. This translates
into intervals that still include the theoretical result but
for which the interval bounds are very distant. In our
algorithm this translates into more and more evaluated
subintervals to get the desired precision.

The implementation being underway, it is difficult to
judge which method of evaluating extrema is best.

fa, bJ +
f~:~ - fa+e,b+~,

a,b - a - d, b - e ,
[a, b] * [c, d] - [min(ac, ad, be, bd),

max(ae, ad, be, bd)],
[a, b] I [c, d] - [min(alc, aid, b/e, bid),

max(a/c. a/d, b/e, bid)],
O~[e,d].

It is important to mention that the bounds of an in­
terval may be real numbers not representable on a dig­
ital computer. Since a bound cannot be an interval, it
must be a correctly rounded approximation either to­
ward +00, for the upper bound, or toward -00, for the
lower bound. In practice, this problem is solved using
the round-oo and round+oo modes of the IEEE floating
point standard.

Also, for other operators, namely the trigonometric
operators sine and cosine, it is simple to construct their
interval functions once their monotonicity intervals are
known [Snyder 92]: .

7.1 Interval Analysis Methods

7 Computing the CSV of a Polytope

CSY(T(I), P) =
RSY(T,,(I), RSY(Ty(I), RSY(Tz(I), CH(P)))).

along an axis of the coordinate system has a width equal
to the difference of the extremal values taken on that
axis. Since this is true for all points of CH (P), the de­
sired result follows. qed.

Following definition 8, the computation of the
CSV(r(l), P) entails the computation of the bounding
boxes around the vertices of P, and then, the computa­
tion of the convex hull of these bounding boxes.

To enforce our design criterion, we resort to interval
analysis.

To compute f(l) over interval I, it is necessary to
have interval expressions for the functions composing
f(l). An interval expression of a function is called an
inclusion function and the simplest ones are those for
the arithmetic operators.

Building on the previous results it is also possible to
show that

Corollary 1 Given a polyhedron P and a translation
T(t) =T,,(t)Ty(t)Tz(t), tEl ~ [0,1], then

Def.: 10 Let the intervals [a, b] and [c, d] be subsets of
n, with a :s band c :s d. Then, the inclusion functions
of the arithmetic operators are

66 A Safe Swept Volume Method for Collision Detection

ColDet(0 10 flo 02, f 2): RETURN
A list of collision subintervals.

- OJ: set of polytopes modeling an object.
- fj: trajectory of an object.

RETURN
U PolytopeColDet(PI, f I, P2, f 2)

P,EO,
P,EO,

END

PolytopeColDet(Ph flo P2, f 2): RETURN
A list of collision subintervals.

- Pj is a polytope.

RETURN ColDetlnt(PI, f l , P2, f 2 , [0,1])
END

ColDetInt(Ph f l , P2, f 2 , I): RETURN
A list of collision subintervals.

- This is the function that really does the work.
- Pj is a polytope and I is the subinterval.

IF Interference(CSV(PI . f l , 1), CSV(P2, f 2 , I))
AND NotTooSmall(I) THEN
Split I in II and h
RETURN

ColDetlnt(PI , f l , P2 , f 2 , 1J) U
ColDetInt(PI , f l , P2 , f 2 , h)

ELSE IF lnterference(CSV(PI , 1), CSV(P2 , I))
AND TooSmall(I) THEN
RETURN I

ELSE
RETURN 0

END

Interference(C h C2): RETURN Boolean.
- Returns true if there is an interference.
- Cj: a polytope.

Interference is detected using one of the mentioned
methods in the review:

linear programming,
computational geometry methods,
distance computation (quadratic programming) ...

END

CSV(f(1), P): RETURN
A polytope encompassing the RSV.

- P is the input, a moving polytope.
- [(1). I C [0,1]. is the trajectory.

BB =0
for each vertex p of P

BB = BB U ComputeBoundingBox(f(1), p)

RETURN ComputeConvexHull(BB)
1* For the convex hulL use a known algorithm

as long as interval analysis methods
are applied. */

END

9 Application to an Open Kinematic
Chain

To put into perspective the material of the previous
sections, consider its application to an open kinematic
chain with n degrees of freedom. The transforms of
the kinematic chains are T I (t) ... T n(t), where T;(t) is
the local transform from frame {i} attached to link i to
frame {i - I} attached to link {i - I}.

The following computations are necessary to deter­
mine if a collision occurs on the interval I. Apply the
collision detection algorithm of section 8 to each link.
More precisely, let 0 be the set of polytopes modeling
the manipulator and the obstacles, and let £; be the set
of polytopes modeling link i, then:

For i =n .. l do
For each P E £; do

For each 0 E 0\£; do
ColDet(P, fl' "C, 0, r)

end
end

end

Notice that computations for link i only necessitate
the knowledge of the transforms fl(t)··· f;(t) and that
the following (n - i) links are not involved.

Since computing the CSV is generally a complex task,
the application of theorem 3 will ease the computational
burden at the expense of the goodness of fit of the out­
put ofthe CSV. Indeed, successive CSVs generate larger
and larger swept volumes which generate more and more
collisions. Thus, to counteract the volume growth and
to reach the desired precision, the interval I will be split
into finer and finer subintervals.

If the open kinematic chain is composed of revolute
and prismatic joints, then the simplicity of the trans­
forms greatly facilitates the computation of the CSV
(see next subsection). Then, the partioning of I into
finer and finer subintervals is not a very high price to
pay. Surely, an optimum tradeoff should be achieved be­
tween the repeated use of theorem 3 and the complexity
of computing a CSV for more complicated transforms.

Concretely, one must be guided by the architecture
of the manipulator. For example consider a wrist parti­
tioned manipulator, like the PUMA-560. Let the trans­
forms be TI(t)·· ·T6(t). The computation could be,

Wrist:
• Big payload - Compute the CSV of the polytopes
rigidly attached to the end-effector. Apply theorem
3 to the wrist,

1

I
I
Ix

Andre Foisy and Vincent Hayward 67

9_2lt

0<9<zlt9=0

It<9<2lt

OD

yaxis

Figure 5: The bounding boxes of an arc.

Body: There are not many variations possible for the
first three links, because they generally induce large
displacements compared to the links of the wrist.
Hence, compute the CSVs of the first three links
and take as input the CSV output from the wrist.

The first of these decomposition computes the CSV
as seen from frame 3 and then takes that CSV as a
starting point to compute the final CSV seen from
the base. The second decomposition successively
computes the CSVs from frame 6 to frame 3.

• Small payload - The links of the wrist are small
and may be modeled by a single polytope. Thus
no CSVs are computed for the links in the wrist
and the modeling polytope is taken to be attached
rigidly to the third link.

Csv(r1(/)··· r 3 (/),

CSV(r4(/), CSV(r5(I), CSV(r6(I), P»».

or to each part of the wrist,

9.1 Bounding Box Computations for Pris­
matic and Revolute Joints

Most manipulators are constructed with prismatic
and revolute joints. As a consequence of using the
Denavit-Hartenberg notational scheme, it is rather easy
to compute the bounding boxes and hence the CSV of
a prismatic or a revolute joint.

Prismatic Joint: To define the bounding box of a
vertex translating along the z axis, it is necessary to find
the minimum and maximum values on that axis. This is
quite simple if the variation of z is monotonic, otherwise
the extrema must be estimated.

1. No displacement - When there is no displacement,
the bounding box is the point itself.

2. 0 < () ~ 7l' - The point on the arc furthest away
from the segment joining a and b is attained at
() /2. This corresponds to the middle vector

c = (II a II cos((}/2 + 00), II a II sin(0/2 + (0)).

One side of the optimal bounding box passes by
a and b, the other passes by c, parallel to b - a.
Hence the four following points

a, b
c + b/2 - a/2, c + a/2 - b/2.

or letting al. a vector perpendicular to a,

4. () 2: 27l' - When the angular displacement is greater
than 211', then any square of side 2 II a II is a good
bounding box. For example, picking the square
aligned on the axes of the local coordinate system
gives the bounding box,

3. 7l' < () < 211' - In this case, the middle vector c is still
usable but the vectors a and b are not corners of
the bounding box. The vector d =(II a II sin(0/2+
(}o), -II a II cos(0/2 + (}o)), which is perpendicular
to c, is used to define the bounding box:

Revolute Joint: A rotating vertex traces an arc in
the x - y plane of its local coordinate system. To com­
pute the bounding box of an are, the minimum and max­
imum values of its angle is computed. If the angle vari­
ation is monotonic, this is a simple task, otherwise the
extrema must be calculated.

9.1.1 The Bounding Box of an Arc

Since revolute joints are so common, we propose a
method for the derivation of the optimal bounding box
of an arc in local coordinates. Four cases occur: no
angular displacement, an angular displacement smaller
than or equal to 7l', strictly bounded by 7l' and 27l', and
greater then or equal to 27l' (see figure 5).

Without loss of generality, let a and b be the end­
points of an arc expressed in two dimensional Cartesian
coordinates. Also, let 0 be the angular displacement be­
tween a and b and let (}o be the angular displacement
of a with respect to the x axis. .

c+d,
a/2+ b/2 + d,

(II a II. II a II),
(II a II, - II a II),

al. + a,
_al. + a

c+-d
a/2 + b/2 + -d.

(- II a II. II a II)
(- II a II, - II all),

al. +-a
_al. + -a.

68 A Safe Swept Volume Method for Collision Detection

10 Conclusion

This paper presented a safe and reliable algorithm
to implement a collision detection method based on the
swept volume approach.

The algorithm is safe in the sense that the convex
approximation (CSV) of the real swept volume (RSV)
is sure to encompass the RSV. Moreover. the algonthm
is safe because it relies on interval analysis methods.

Further work needs to be done on the bounding box
computations, a better bounding box implies a better
CSV.

Finally, the practicality of the algorithm will be es­
tablished when its implementation is finished and tested.

11 Acknowledgments

This work has been supported in part by a research
contract with SPAR Aerospace Ltd of Toronto, and by
grants from FCAR (Fonds pour les Che~cheurs et Aide.il.
la Recherche) and NSERC (National SCIences and EngI­
neering Research Council). Additionalsupport was pro­
vided bv the Department of MathematIcs and Computer
Science- of the Universite du Quebec aTrois-Rivieres.

References

[Boyse 79] Boyse, J. W. 1979. Interference detection
among solids and surfaces, CommumcatJOns of the
ACM, Vol. 22, pp. 3-9.

[Cameron 85] Cameron, S., 1985. A study of the clash
detection problem in robotics, IEEE Int. ConE. on
Robotics and Automation, St-Louis, MO, pp. 488­
493.

[Cameron 90] Cameron, S., 1990. Collision Detection by
Four-Dimensional Intersection Testing, IEEE TI-ans­
actions on Robotics and Automation, Vol. RA-6, No.
3, pp. 291-302.

[Canny 86] Canny, J. 1986. Collision detection for mov­
ing polyhedra, IEEE PAM!, Vol. 8, No.2, pp. 200­
209.

[Dobkin et al. 83] Dobkin, D.P, and ~irkpatr~ck, D.G.
1983. Fast detection of polyhedral mtersectlOn, The­
oretical Computer Science, Vol. 27, pp. 241-253.

[Dobkin et al. 85] Dobkin, D.P. and Kir~patrick, D.G.,
1985. A linear algorithm for determmmg the sepa­
ration of convex polyhedra, Journal of Algorithms,
Vol. 6, pp. 381-392.

[Foisy et al. 90] Foisy, A.. Hayward, V., and Aubry, S.
1990. The use of "awareness" in collision predic­
tion. IEEE Int. ConE. on Robotics and Automation,
Cincinnati, OH, pp. 338-343.

[Foisy et al. 92] Foisy, A., Hayward, V. 1992. Final Re­
port for Development of Collision-Free Motion Plan­
ning Technique for the MCPL, the MSS Command
and Programming Language, Contract #09021 TF
with SPAR Aerospace Ltd, Toronto.

[Ganter 85] Gartner, M.A. 1985. Dynamic collision De­
tection using Kinematics and Solid Modeling Tech­
niques, Ph.D. Thesis (Mechanical Engineering), Uni­
versity of Wisconsin.

[Gilbert et al. 85] Gilbert, E.G. and Johnson, D.W.,
1985. Distance functions and their application to
robot path planning in the presence of obstacles,
IEEE J. of Robotics and Automation, Vol. 1, No.
1.

[Gilbert et al. 88] Gilbert, E.G, Johnson, D.W., and
Keerthi, S.S., 1988. A fast procedure for comput­
ing the distance between complex objects in three­
dimensional space", IEEE Journal of Robotics and
Automation, Vol. 4, No.2, pp. 193-203.

[Hayward 86] Hayward, V., 1986. Fast collision detec­
tion scheme by recursive decomposition of a manip­
ulator workspace, IEEE Int. Conf. on Robotics and
Automation, San-Francisco, CA, pp. 1044-1049.

[Hurteau et al. 83] Hurteau, G., and Stewart, N.F.,
1983. Distance Calculation for Imminent Collision
Indication in a Robot System Simulation, Robotica,
Vol. 6, pp. 47-51.

[Moore 66] Moore, R.E. 1966. Interval Analysis, Pren­
tice Hall, Englewood Cliffs, New Jersey.

[Moore 79] Moore, R.E., 1979. Methods and Applica­
tions of Interval Analysis, SIAM, Philadelphia.

[Rimon et al. 92] Rimon, E. and Boyd, S. P., 1992.
(February) Efficient Distance Computation Using
Best Ellipsoid Fit, Tech. Rep., Stanford University,
Dept of Electrical Engineering.

[Snyder 92] Snyder, J. M. 1992. Generative Modeling
for Computer Graphics and CAD, Academic Press.

[Von Herzen et al. 90] Von Herzen, B., Barr, A., and
Zatz, H. R. 1990. Geometric collisions for time­
dependent parametric surfaces, Computer Graphics,
vol. 24, no 4, pp. 39-48.

[Young et al. 72] Young, D. and Gregory, R. 1972. A
Survey of Numerical Mathematics, Addison Wesley.

