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AbstractÐThis paper presents an inverse dynamic formulation by the Newton±Euler approach for the
Stewart platform manipulator of the most general architecture and models all the dynamic and gravity
e�ects as well as the viscous friction at the joints. It is shown that a proper elimination procedure
results in a remarkably economical and fast algorithm for the solution of actuator forces, which makes
the method quite suitable for on-line control purposes. In addition, the parallelism inherent in the
manipulator and in the modelling makes the algorithm quite e�cient in a parallel computing environ-
ment, where it can be made as fast as the corresponding formulation for the 6-dof serial manipulator.
The formulation has been implemented in a program and has been used for a few trajectories planned
for a test manipulator. Results of simulation presented in the paper reveal the nature of the variation
of actuator forces in the Stewart platform and justify the dynamic modelling for control. # 1998 Else-
vier Science Ltd. All rights reserved

1. INTRODUCTION

In contrast to the open-chain serial manipulators, the dynamic modelling of parallel manipula-
tors presents an inherent complexity due to their closed-loop structure and kinematic con-

straints. Nevertheless, the dynamic modelling is quite important for their control, particularly
because parallel manipulators are preferred in applications where precise positioning and good

dynamic performance under high load are the prime requirements. In recent years, there has
been a great amount of research on the kinematics of parallel manipulators, but works on the

dynamics of parallel manipulators are relatively few. The present work deals with the dynamic
formulation of the Stewart platform, which is the most celebrated parallel manipulator.

The Stewart platform is a six-degree-of-freedom mechanism with two bodies connected
together by six extensible legs. This manipulating structure is obtained from generalization of

the mechanism originally proposed by Stewart [1] as a ¯ight simulator. The general Stewart plat-
form has a base and a platform connected by six extensible legs{ with spherical joints at both

ends or spherical joint at one end and universal joint at the other. In the present work, the kin-
ematic structure with universal joints at the base and spherical joints at the platform has been

considered.

The static force analysis of the Stewart platform [2] is straightforward and it is easy to ®nd

the leg forces required to support a given force and moment acting on the platform. By slight
extension of this force transformation, Fichter [3] incorporated the gravity and dynamic forces

on the platform and formulated the inverse dynamics of Stewart platform with massless legs
and frictionless joints.

Do and Yang [4] solved the inverse dynamics of the Stewart platform by Newton±Euler

method assuming the joints as frictionless and legs as symmetrical and thin (i.e. the centre of
gravity of a leg lies on its axis and axial moment of inertia is negligible). They presented some

simulation results for tracking certain trajectories and found the required forces for various

manipulator parameters. In their work, the rotational equilibrium of the two parts of each leg is
considered together with variable moment of inertia, but in the algorithm for path tracking, the

moment of inertia of the leg has not been updated as a function of con®guration.
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{Each leg is a system of two bodies connected by a prismatic actuation giving the variable length.
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Geng et al. [5] developed the Lagrangian equations of motion for the Stewart platform with
the platform position and orientation variables as generalised coordinates. Liu et al. [6] devel-
oped a similar system of dynamic equations and derived the dynamic equations for control by
transforming the equations to joint space. Ji [7] considered the question of leg inertia and stu-
died its e�ect on the dynamics of the Stewart platform.

In the present work, the inverse dynamics of the Stewart platform has been formulated by
Newton±Euler approach and unwanted force components have been eliminated to arrive at a
system of six linear equations in six unknowns from which the required input forces at the legs
can be obtained directly. If the constraint forces are also required, as for the mechanical design,
they can be determined by a small amount of additional computation.

The mechanism modelled has a universal joint{ at the base end and a spherical joint at the
platform end of each leg (see Fig. 1). The disposition of base points and platform points, the
directions of the ®xed axes at the base and the mass distribution of the legs are completely arbi-
trary, and no assumption has been made concerning the kinematic and dynamic parameters of
the manipulator. The formulation incorporates all the dynamic (inertia, centripetal, coriolis),
gravity and external forces, and includes the viscous friction at the joints. It is assumed that the
links are rigid. Coulomb friction at the joints has been neglected. The inertia of the universal
joints, being negligible, has not been considered in the formulation.

Though the present formulation deals with universal joints at the base, it is applicable to the
similar mechanism with spherical joints at both ends as well. The only di�erence will be that the
axial rotation of the legs will be allowed in that case, and certain symmetry assumptions about
the dynamic parameters of the legs have to be made as there is no way to control the passive
freedom of the legs.

The next section described the kinematics and dynamics of the legs and identi®es the contri-
bution of each leg to the force system acting on the platform. Section 3 deals with the kin-
ematics and dynamics of the platform and solution of the required leg forces and the constraint
forces also (if necessary). Section 4 develops the framework used for implementing the algorithm
and Section 5 presents some results concerning the nature of leg forces required to track a few
planned trajectories. Finally, in the last section, the conclusions of the present work and the
further issues that it raises have been discussed.

The following notations have been used in this paper.

t=translation vector (position of platform)
<=rotation matrix (orientation of platform)
tÇ=linear velocity of reference point of platform
o=angular velocity of platform
tÈ=linear acceleration of reference point of platform
a=angular acceleration of platform
M=mass of platform
R0=centre of gravity of platform (in platform frame)
Ip=moment of inertia of platform (in platform frame)

Fext=external force on the platform (in platform frame)
Mext=external moment on the platform (in platform frame)

bi=tth base point
ki=stationary axis of the universal joint at ith leg
pi=ith platform point (in platform frame)
qi=<pi
Ti=rotation matrix giving orientation of ith leg

(md)i, (mu)i=masses of lower and upper part of ith leg
(rd0)i, (ru0)i=CG of lower and upper part of ith leg (in local frames)
(Id0)i, (Iu0)i=moments of inertia of lower and upper part of ith leg (in local frame)

g=acceleration due to gravity
Cu, Cp, Cs=coe�cients of viscous friction in the universal, prismatic and spherical joints,

respectively
Fi=input force required at ith leg.

{It has two degrees-of-freedom of rotation about two perpendicular axes and is constrained against rotation about the
leg axis.
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Other symbols have been described at the place of ®rst occurrence. In general, boldface sym-
bols have been used for vectors and matrices. Leg numbers have been denoted by subscripts.

2. KINEMATICS AND DYNAMICS OF A LEG

This section describes the kinematics and dynamics of a single leg and expresses the contri-
bution of each leg to the force system acting on the platform in terms of one unknown by elimi-
nating the others. Throughout the section, all variables except the kinematic variables of the
platform, i.e. position, velocity and acceleration, pertain to an arbitrary leg. So, the leg index i
has been dropped from the equations for convenience and it is understood that the equations
are applicable to any leg in general.

2.1 Kinematics of a leg

One leg of the manipulator has been shown in Fig. 2 with the associated symbols. Apart from
the ®xed base frame and the mobile platform frame (shown as frame P), two other frames of
reference, namely frame D and frame U, have been shown which are attached to the lower and
upper parts of the legs.

The platform connection point p (as expressed in the platform frame) can be transformed to
base frame by the use of the platform translation t and rotation < relative to the base as

�p�Base � <p� t:

Then, the leg vector S (vector from the origin of the frame D to the origin of the frame U) can
be found from the di�erence of the position vectors of the platform point and the base point.
Thus, we obtain

S � <p� tÿ b

or

S � q� tÿ b �1�
which is the inverse kinematic equation for the Stewart platform.

The leg length and the unit vector along the leg are given by

L � kSk �2�
and

s � S=L: �3�

Fig. 1. The Stewart platform.
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The velocity of the platform-connection-point of the leg is the time derivative of the leg vector
and is given in terms of the platform velocities as

_S � ooo� q� _t: �4�
The sliding velocity between the two parts of the leg is given by the component of this velocity
along the leg.

_L � s � _S: �5�
The component of _S perpendicular to the leg is related to the angular velocity W of the leg as

W� S � _Sÿ _Ls:

Taking the cross product of the above equation with s and observing that no rotation is allowed
about the leg axis (i.e. s � W = 0), we obtain

W � s� _S=L: �6�
Again, the acceleration of the platform-connection-point is the time derivative of the velocity
and is expressed in terms of the linear and angular accelerations of the platform as

�S � aaa� q� ooo� �ooo� q� � �t: �7�
This acceleration can be expressed in terms of the sliding acceleration LÈ at the prismatic joint
and the angular acceleration A of the leg as

�S � �Ls�W� �W� S� � 2W� _Ls� A� S:

Simplifying and using s � W = 0, we obtain

�S � ��Lÿ LW �W�s� 2W� _Ls� A� S:

Now, taking the component along the leg by the dot product with s, the sliding acceleration
between the two parts of the leg is given by

�L � s � �S� LW �W: �8�
Similarly, taking the cross product of the same equation with s and using the fact that no axial
rotation of the leg is allowed (i.e. s � W = 0 and s � A= 0), we obtain the angular acceleration
of the leg as

Fig. 2. Details of one leg.
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A � �s� �Sÿ 2 _LW�=L: �9�
The above expressions determine the position, velocity and acceleration of the leg. Here, use has
been made of the fact that no axial rotation of the leg is allowed by the universal joint. In the
case of spherical joints at both the ends of the leg, this condition is not there, but the velocity
and acceleration components associated with axial rotation can be ignored as they are not con-
trollable.

2.2 Leg acceleration and inertia

A frame of reference (shown as frame D in Fig. 2) is attached to the lower part of the leg
with its origin at the base-point, x-axis along the leg, y-axis along the rotating axis (axis ®xed to
the leg) of the universal joint and z-axis perpendicular to the x and y axes according to the right
hand rule. Another frame of reference (frame U in Fig. 2) with the same orientation is attached
to the upper part of the leg with the origin at the platform-point. The kinematic and dynamic
parameters of the leg have to be transformed to a ®xed frame (not shown separately in the
®gure) of reference parallel to the base frame at the base-point.

The transformation from the moving lower frame to the ®xed leg frame is just a rotation. The
x, y and z axes of the moving lower frame are

x-axis x̂ � s
y-axis ŷ � �k� s�=kk� sk
z-axis ẑ � x̂� ŷ

:

Hence the transformation matrix is

T � �x̂ ŷ ẑ�: �10�

The transformation from the moving upper frame to ®xed leg frame is the same rotation matrix
along with the translation equal to the leg vector.

If rd0 and ru0 denote the position vectors of the centres of gravity (Gl and Gu, respectively) of
the lower and the upper parts in their respective frames of reference, then they can be trans-
formed to the ®xed leg frame as

rd � Trd0 �11�

ru � T�v� ru0� �12�
where

v � �L 0 0�T:
The acceleration of the centres of gravity of the two parts are then

ad � A� rd �W� �W� rd� �13�

au � �Ls� A� ru �W� �W� ru� � 2 _LW� s: �14�
The moment of inertia Id of the lower part in the ®xed leg frame can be obtained from its
moment of inertia Id0 in its local frame by the rotation transformation

Id � TId0T
T: �15�

The transformation of the moment of inertia of the upper part involves a rotation as well as a
translation.

Iu � T�Iu0 �muL
2diag�0; 1; 1��TT �16�

where
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diag�0; 1; 1� �
0 0 0
0 1 0
0 0 1

24 35
because the theorem of parallel axes gives the transformation of moment of inertia by a displa-
cement of ``v'' as I0+m(vTvE3ÿvvT) and here

vTvE3 ÿ vvT � L2diag�0; 1; 1�
where E3 is the 3� 3 identity matrix.

2.3 Dynamic equations for a leg

The equations of motion for each leg will give 12 equations (three force equations and three
moment equations for each of the lower and upper parts of the leg) in the 13 unknowns (six
unknown forces and moments at the prismatic joint, three forces and one moment at the univer-
sal joint and three forces at the spherical joint) for each leg. As there is one unknown in excess
of the number of equations for each leg, all the unknowns can be expressed in terms of only
one unknown for each leg. A judicious ordering of the equations has been used here to facilitate
the elimination of the constraint forces from the equations so that the unknown force from the
leg to the platform required to derive the equations of motion for the platform can be expressed
in terms of only one unknown.

Considering the moments acting on the lower part of the leg in the ®xed leg frame, Euler's
equation gives

ÿmdrd � ad �mdrd � gÿ IdAÿW� IdW�Musÿ r� Fp ÿMp ÿ CuW � 0 �17�
where Mu is the magnitude of the constraint moment at the universal joint acting about the leg
axis, Fp is the vector force at the prismatic joint exerted by the lower part on the upper part act-
ing at a point r, Mp is the vector moment at the prismatic joint acting on the upper part and
the last term in the equation is the moment of viscous friction at the universal joint.

Similarly, Euler's equation for the upper part of the leg gives

ÿmuru � au �muru � gÿ IuAÿW� IuW� S� Fs � r� Fp �Mp ÿ f � 0 �18�
where

f � Cs�Wÿ ooo�
is the moment of viscous friction at the spherical joint and Fs is the constraint force at the
spherical joint acting on the leg.

Adding Equations (17) and (18), we obtain Euler's equation for the complete leg as

ÿmdrd � ad ÿmuru � au � �mdrd �muru� � gÿ �Id � Iu�A
ÿW� �Id � Iu�W�Mus� S� Fs ÿ CuWÿ f � 0 �19�

or,

Mus� S� Fs � C �20�
where

C � mdrd � ad �muru � au ÿ �mdrd �muru� � g� �Id � Iu�A�W� �Id � Iu�W� CuW� f:

The scalar unknown Mu can be eliminated from Equation (20) by taking cross products of both
sides with s as

s� �S� Fs� � s� C

or,

Fs � xs� C� s

L
� xs� K �21�

B. Dasgupta and T. S. Mruthyunjaya1140



where

x � s � Fs �22�

is the component of the force Fs at the spherical joint along the leg and

K � C� s

L

is a known vector.

Equation (21) expresses the force Fs in terms of a single unknown x for the leg and this force

is the contribution of the leg to the force system acting on the platform.

Finally, we consider the upper part of the leg and Newton's equation gives

ÿmuau �mug� Fp � Fs ÿ Cp
_Ls � 0 �23�

in which the last term is the viscous resistance at the prismatic joint.

As we are interested in the axial component of Fp which is the actuating force, we can take

the component of the above equation in the direction of the leg by taking the dot product with

s obtaining

s � Fp � mus � �au ÿ g� � Cp
_Lÿ s � Fs:

Substituting from Equation (22) in the above, we obtain

F � Dÿ x �24�

where F is the actuator force and

D � mus � �au ÿ g� � Cp
_L:

Equation (24) gives the actuator force in terms of the unknown x for the leg. The unknown x

for the ith leg can be denoted by xi and the six unknowns for the six legs have to be solved

from the equations of motion for the platform, which are derived in the next section. So far as

the computation of the actuator forces are concerned, there is no necessity of considering

Newton's equations for the lower part of the leg because those equations will involve an equal

number of unknown constraint forces at the universal joints. However, for the determination of

the reaction at the universal joint, Newton's equation for the lower part of the leg can be writ-

ten as

ÿmdad �mdgÿ Fp � Fu � Cp
_Ls � 0

or,

Fu � md�ad ÿ g� � Fp ÿ Cp
_Ls �25�

where Fp can be solved from Equation (23) as

Fp � mu�au ÿ g� ÿ Fs � Cp
_Ls: �26�

Consequently,

Fu � mdad �muau ÿ �md �mu�gÿ Fs: �27�
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The constraint force Fc at the prismatic joint can be determined from

Fc � Fp ÿ sF : �28�
The magnitude Mu of the constraint moment at the universal joint can be obtained from
Equation (20) as

Mu � s � C: �29�

3. KINEMATICS AND DYNAMICS OF THE PLATFORM

In the preceding section, the reaction force (Fs)i at the ith spherical joint was expressed in
terms of the unknown xi. In this section, the equations of motion for the platform will be devel-
oped as six linear equations in those six unknowns pertaining to the six legs.

3.1 Acceleration and inertia of the platform

If R0 be the position vector of the centre of gravity of the platform (including the payload) in
the local frame of reference, the same vector expressed in the base frame will be

R � <R0: �30�
Therefore, the acceleration of the centre of gravity is

a � aaa� R� ooo� �ooo� R� � �t: �31�
The moment of inertia Ip of the platform (including the payload) can be transformed to the glo-
bal basis as

I � <Ip<T: �32�

3.2 Dynamic equations for the platform

It is assumed that external force system (if any) acting on the platform is available as a force
Fext and a moment Mext in the local frame of reference. These vectors can be transformed to the
global basis by the rotation transformation.

Hence, Newton's equation for the platform can be written as

ÿMa�Mg� <Fext ÿ
X6
i�1
�Fs�i � 0:

Substituting the expression for (Fs)i from Equation (21), we obtain

X6
i�1

xisi � <Fext �M�gÿ a� �
X6
i�1

Ki: �33�

Taking the moments about the platform reference point, Euler's equation for the platform gives

ÿMR� a�MR� gÿ Iaaaÿ ooo� Iooo�<Mext ÿ
X6
i�1
�qi � �Fs�i� �

X6
i�1

f i � 0:

Again, substituting from Equation (21) results in

X6
i�1
�xiqi � si� �MR� �gÿ a� ÿ Iaaaÿ ooo� Iooo�<Mext ÿ

X6
i�1
�qi � Ki ÿ f i�: �34�

Equations (33) and (34) give six equations in the six unknowns x1, x2, . . . , x6. Combining them,
the complete equation is
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s1 s2 s3 s4 s5 s6
q1 � s1 q2 � s2 q3 � s3 q4 � s4 q5 � s5 q6 � s6

� � x1
x2
x3
x4
x5
x6

26666664

37777775
� <Fext �M�gÿ a� ÿP6

i�1 Ki

MR� �gÿ a� ÿ Iaaaÿ ooo� Iooo� <Mext ÿ
P6

i�1�qi � Ki ÿ f i�

" #
�35�

or,

Hx � c �36�
where

H � s1 s2 s3 s4 s5 s6

q1 � s1 q2 � s2 q3 � s3 q4 � s4 q5 � s5 q6 � s6

� �
x � �x1 x2 x3 x4 x5 x6�T

c � <Fext �M�gÿ a� ÿP6
i�1 Ki

MR� �gÿ a� ÿ Iaaaÿ ooo� Iooo� <Mext ÿ
P6

i�1�qi � Ki ÿ f i�

" #
:

The linear system (36) can be solved for x, and the required input forces can be determined
from the vector (six dimensional) form of Equation (24) as

F � Dÿ x �37�

where F= [F1 F2 F3 F4 F5 F6]
T and D= [D1D2D3D4D5D6]

T.

3.3 Solution for the constraint forces

For the purpose of control of the manipulator, the determination of the actuation forces in
the legs is su�cient, as given by Equation (37). However, for the mechanical design, the con-
straint forces are also important. After x is known, the equations for the legs are decoupled and
the forces in di�erent legs can be determined separately. Equations (21), (26), (28), (27), (29)
and (17) for each leg can be used to determine the joint reactions in the respective leg.

4. IMPLEMENTATION OF THE FORMULATION

The algorithm for the inverse dynamics of the Stewart platform described in the foregoing
has been implemented in a program written in MATLAB. The equations are used in terms of
vectors and matrices as they appear in the above sections and, as such, no e�ort has been made
to minimize the computation.

The program has been developed to plan straight-line paths and compute the actuator forces
to track them. It determines and plots the time histories of the six leg forces required to track
the planned trajectories. The salient features of the implementation are discussed below.

4.1 Representation of orientation

The orientation of the platform with respect to the base has been represented by Roll±Pitch±
Yaw angles as

< � RPY�yz; yy; yx� � Rot�Z; yz�Rot�Y; yy�Rot�X; yx�: �38�
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4.2 Singularity and condition number

The computation of the actuator forces involves the solution of Equation (36) which is a sys-
tem of six linear equations in six unknowns. If the coe�cient matrix H turns out to be singular,
the system may not have a solution. Physically, in such a situation, the manipulator is in a
singular con®guration gaining one or more degrees of freedom and no system of leg forces will
be able to support the platform against the force system at the platform. Even when the matrix
H is not exactly singular, but ill-conditioned (near a singularity), large leg forces may be needed
to support the platform.

The proximity of a matrix to singularity is measured by the condition number of the matrix.
The de®nition of the condition number used in the present work is the ratio of the greatest to
least singular values of the matrix, where the singular values of a matrix H are the diagonal
terms of the diagonal matrix S in the singular value decomposition (see page 203 of [8])

H � USVT

where both U and V are orthogonal for a square matrix H. Further, the singular values are the
square-roots of the eigenvalues of HHT.

The condition number of the matrix H is 1, when it is singular. In the best possible con®gur-
ation, where the transformation is isotropic, the condition number is unity (all the singular
values are equal).

As the matrix H has three dimensionless rows and the other three with linear dimensions, the
condition number su�ers from a theoretical disadvantage of being a ratio of two quantities of
di�erent dimensions. As such, in general, it is not possible to derive a condition number which
is a true representative of the behaviour of the transformation associated with the matrix.
However, in practical circumstances, it is possible to compare quantities of di�erent dimensions
through consideration of commonly encountered orders of magnitudes for the quantities. In the
present case, the matrix H transforms six forces to three forces and three moments. The orders
of magnitudes of the forces and the moments which are comparable depend on the kinematic
parameters of the manipulator, essentially those parameters which enter the three last rows of
H. Therefore, in the present situation, the condition number does give a reliable qualitative
measure of the conditioning of the transformation.

4.3 Trajectory

For the implementation of the algorithm, straight line paths have been planned in Cartesian
space. The orientation also has been planned by linear interpolation of the Roll±Pitch±Yaw
angles. As functions of time, each coordinate (tx, ty, tz, yx, yy and yz) is linear with parabolic
blends at the beginning and the end, i.e. they change in three steps with constant acceleration,
constant velocity and constant deceleration.

Initial and ®nal con®gurations are taken in the form of [t0, yy0] and [t1, yy1]. The total time
interval tf and the magnitudes of maximum linear and angular velocities V and O are taken as
inputs. The time interval tt for constant acceleration and deceleration in t is determined from

tt � tf ÿ kt1 ÿ t0k
V

�39�

and the value of the constant acceleration is

at � V

tt

t1 ÿ t0
kt1 ÿ t0k : �40�

For orientation, similar expressions for the time interval ty for constant angular acceleration
and deceleration, and the value of the constant angular acceleration ay are obtained. With these
parameters, the trajectory planned for each of the six coordinates has a typical shape as shown
in Fig. 3.

The trajectory planning scheme described above has been selected just for simplicity. In fact,
any scheme for planning the trajectory in the Cartesian space can be used with equal ease with
the present dynamic formulation. If the trajectory is planned in joint space, the forward kin-

B. Dasgupta and T. S. Mruthyunjaya1144



ematics for position, velocity and acceleration has to be solved at each time-step. This basically
involves the solution of a non-linear system of six equations represented by Equation (2){ for
position and two linear systems represented by Equations (5) and (8) for velocity and accelera-
tion, respectively. This makes the joint±space trajectory planning computationally more expens-
ive and hence, less attractive, which is a common feature of parallel manipulators.

4.4 Static and dynamic forces in legs

If the dynamic and gravity e�ects of the legs and the viscous friction at the joints are neg-
lected, we obtain C= 0 in Equation (20), hence K= 0 in Equation (21). Also, D = 0 in
Equation (37) and fi=0.

Consequently, F0=ÿ x0 and Hx0=c0, where

c0 � <Fext �M�gÿ a�
MR� �gÿ a� ÿ Iaaaÿ ooo� Iooo� <Mext

� �
:

Hence, the leg forces F0 due to constraints only are given by

HF0 � ÿc0 �41�
and the di�erence

Fd � Fÿ F0 �42�
stands for the part of the actuator forces accounting for the leg inertia and the joint friction.

The actuator forces F in the legs, the constraint forces F0 obtained from static force trans-
formation (which incorporates the inertia of the platform, but does not include leg inertia) and
the di�erence Fd are plotted on the same scale along the trajectory as functions of time to justify
the complete dynamic formulation and to visualise the di�erence made by considering the sim-
plistic assumption of massless legs and frictionless joints. An additional set of plots shows the
fraction of the dynamic forces Fd to the total forces F. This fraction, namely Fd/F, for the var-
ious legs will be referred to hereafter as ``fraction of dynamic forces'' or simply ``dynamic frac-
tion''. The condition number of the manipulator also has been plotted along the trajectory to
examine the nature of the forces with reference to the geometric con®guration of the manipula-
tor.

4.5 Computational complexity

In order to assess the suitability of the formulation for real-time control, a measure of the
computational load is useful. To get this information, the MATLAB function ``¯ops'' has been
used at a few signi®cant locations in the program and the numbers of ¯oating point operations
required at various segments of the program have been obtained. For each time-step, the num-
bers of ¯oating point operations in di�erent parts of the algorithm as obtained from the
MATLAB function ``¯ops'' are as follows.

Fig. 3. Typical trajectory for each coordinate.

{Six equations are obtained from six legs.
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Computation for each leg (Section 2): 694 ¯oating point operations.
Computation involving platform only: 273 ¯oating point operations.
Final system of equations: 452 ¯oating point operations.
Thus, the total number of ¯oating point operations is 4889. At this point, it is interesting to

compare this computational load with the corresponding data for the Newton±Euler formu-
lation for a 6-dof serial manipulator.

Fu et al. [9] give the numbers of multiplications and additions for the Newton±Euler approach
for the inverse dynamics of a n-dof serial manipulator as 132n and 111nÿ 4, respectively (see
page 132 of [9]), a total of 1454 ¯oating point operations for a 6-dof serial manipulator. Thus,
the computational load for the present formulation for the Stewart platform is only 3.36 times
that of a 6-dof serial manipulator. This economy of computation for such a complicated manip-
ulating structure like the Stewart platform seems to be quite remarkable.

Moreover, it is to be noted that the formulation possesses an inherent parallelism. The com-
putations for each leg (694 ¯ops) and those involving platform only (273 ¯ops) are completely
decoupled and there is no data dependency among these seven (six for legs and one for plat-
form) branches of computations. So, if implemented in a parallel-processing environment, the
algorithm will have little parallelising overhead and the computational time needed is expected
to be of the same order as that of the Newton±Euler formulation for a serial manipulator.

For the above estimate, calculations needed for the actuating forces only have been con-
sidered. Apart from that, in order to compare with the corresponding data available in literature
regarding computational requirement for the serial manipulators, the calculations required for
the viscous friction terms have not been counted.

5. RESULTS AND DISCUSSION

The program described above has been used with a Stewart platform manipulator, the
description of which is given in the Appendix. The test manipulator has its kinematic and
dynamic parameters quite arbitrary in the sense that no symmetry assumption has been made in
the selection of the connection-points in the base and in the platform. Again, the parts of the
leg have been taken with asymmetric distribution of inertia. The relative values of the par-
ameters have been kept realistic and identical dynamic parameters have been taken for all legs,
i.e. the lower parts of all the six legs are identical and the upper parts of the six legs are identi-
cal, though this is not mandatory for the algorithm. No limitation has been imposed on the leg
lengths for the implementation of the program and it is assumed that the leg lengths assumed
by the legs during the tracking of the test trajectories are within limits and the whole trajectory
falls within the workspace of the manipulator. In the case of an actual manipulator, there will
be well-de®ned limits on these lengths, which have to be satis®ed at the task development and
path planning stage. The external force Fext and moment Mext have been taken as zero for all
the tasks studied below. However, the program incorporates external forces and moments also
and, if the force feedback data are available, they are automatically handled by the program.
The results of the computation with a few straight-line paths are described below.

5.1 Normal well-conditioned paths

Path I. The parameters of the path are as follows. Here, and in subsequent examples, SI units
(m, kg, s, rad) have been used for all quantities.

t0 � �0:1 0:0 0:4�t; y0 � �0:0 0:0 ÿ 0:2�T

t1 � �0:3 0:0 0:6�T; y1 � �0:0 0:0 0:2�T
tf � 6; V � 0:08; O � 0:08; dt � 0:1:

The plots of actuator forces required in the six legs to track this trajectory are shown in Fig. 4.
The total forces F, the forces F0 (obtained by taking massless legs and frictionless joints) and
the di�erence Fd are shown by di�erent line-styles and are indicated by letters `` T'', `` S'' and
``D'', respectively. It is seen that the leg forces are moderate (of the same order as the weight of
the platform and payload, which has been taken as 40 kg) and vary smoothly along the trajec-
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tory. This is a consequence of the manipulator being quite well-conditioned (far from singular-

ity) for this trajectory, as is evident from the plot of the condition number of the matrix H

along the trajectory (see Fig. 5).

The plots of dynamic fractions of forces, as shown in Fig. 6, show that the leg inertia contri-

buting around 20% of the force demand at the actuators is quite common and the maximum

may even go up to 40%. (The sudden jump sign in the dynamic fractions in legs 5 and 6 is not

much signi®cant, because near that instant the total force for that leg crosses zero.) This infor-

mation clearly identi®es the necessity to consider the leg inertia in the dynamic formulation of

the Stewart platform. In this example, each leg is of mass 4 kg. Hence, with a platform (and

payload) mass of 40 kg, the platform to leg mass ratio is 10. With this realistic mass ratio{, the
leg inertia is found to be signi®cant. The contribution of the leg inertia is much more pro-

nounced when the platform and payload mass is less. If the platform mass is taken to be of the

same order as the mass of a leg, this dynamic fraction is often found to be above 60% (those

plots are not presented due to lack of space).

Path II. The second trajectory discussed essentially follows the same path as the ®rst, but with

a higher speed (10 times). So, among the trajectory parameters, t0, y0, t1 and y1 remain the same

while the other parameters have values as follows.

tf � 0:6; V � 0:8; O � 0:8; dt � 0:01:

The plots shown in Figs 7 and 8 indicate that this di�erence in speed results in signi®cant rise in

the bounds of the leg forces and the dynamic fractions and their distribution is also altered sig-

ni®cantly. The steep change in the leg forces at a few instants is basically the result of similar

steep changes in the leg accelerations at those instants. This shows that at such high speeds, the

Fig. 4. Path IÐleg forces.

{It is to be remembered that the use of parallel manipulator is mostly in situations where high load capacity is import-
ant.
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Fig. 5. Path IÐcondition number.

Fig. 6. Path IÐfraction of dynamic forces.
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Fig. 7. Path IIÐleg forces.

Fig. 8. Path IIÐfraction of dynamic forces.
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dynamic e�ects of the whole manipulator have an important bearing on the required actuator
forces.

5.2 Singular and ill-conditioned paths

It is expected that trajectories which pass through singularities may demand in®nite magni-
tude of forces at the actuators and hence may not be practicable. Following is the study of such
a path.
Path III. The parameters of the path under discussion are as follows:

t0 � �0:4 1:4 1:2�T; y0 � �0:1 0:2 0:0�T

t1 � �0:8 1:8 1:8�T; y1 � �0:3 0:4 0:0�T
tf � 6; V � 0:2; O � 0:08; dt � 0:1:

The plots of leg forces for this path (Fig. 9) show a clear singularity where suddenly the force
requirements at the actuators are very high (of the order of 105 N). This singularity can be pre-
dicted from the plot of condition number (Fig. 10), in which precisely at that location of the tra-
jectory the condition number is seen to have a sharp rise. Obviously, such high magnitudes of
forces cannot be supplied by the actuators. Consequently, the legs fail to support the platform
and it tends to wander under even a small external load or due to the gravity or inertia of the
platform.

Other cases studied, but not reported here, indicate that even for a trajectory which does not
actually encounter a singularity, but is near to one, the near-singular or ill-conditioned beha-
viour being detected by the high condition number (say, of the order of 102 or 103), the force
requirements at the actuators are quite high (say, of the order of 104 N or more). In such cases
also, the actuators may fail to sustain the load at the end-e�ector (platform) and the manipula-
tor may lose rigidity to some extent.

Fig. 9. Path IIIÐleg forces.
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6. CONCLUSIONS

The inverse dynamics problem of the Stewart platform manipulator has been formulated by the

Newton±Euler approach and an algorithm has been developed to compute the actuator forces in

the legs to track given trajectories. All the unknowns pertaining to one leg have been expressed in

terms of one unknown by eliminating others. Finally, these six unknowns for the six legs have been

solved from the dynamic equations of the platform and the actuator forces are computed. The

joint reactions also can be calculated with a small amount of additional computation.

This formulation for the inverse dynamics of the Stewart platform incorporates all the dynamic

e�ects and is computationally e�cient. A comparison with the corresponding data for serial

manipulators shows that the number of ¯oating point operations for the algorithm presented here

is just about 3.36 times that of a 6-dof serial manipulator. Moreover, the inherent parallelism of

the manipulator itself and that of the formulation can be utilized in a parallel computing environ-

ment to make the computational time even less than that for a 6-dof serial manipulator.

The algorithm has been implemented in a MATLAB program and a few trajectories have

been studied for a test manipulator. The results show that the consideration of the leg inertia is

quite important for the dynamics of the Stewart platform manipulator, because it has been gen-

erally found to contribute 20±50% of the forces demanded at the actuators. This fraction of

force is found to increase when the speed is high and the payload is less.

The simulation results further show that there is a direct relation between the required actua-

tor forces and the condition number of the manipulator. For a given Stewart platform manipu-

lator, higher the condition number, higher are the actuator forces. Hence, the importance of a

path-planning scheme minimizing the condition number along the whole path is quite apparent.

The present work focuses the attention on the need for such an optimal path-planning scheme.

The scope for future work includes the development of closed form dynamic equations of the

Stewart platform based on this formulation which will be useful for the purpose of simulation

and the design of control systems.

Fig. 10. Path IIIÐcondition number.
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APPENDIX

Description Of The Test Manipulator

The Stewart platform used as the test manipulator for the simulation studies in Section 5 has the following kinematic
and dynamic parameters (all in SI units).

Base points:

�b1 b2 b3 b4 b5 b6� �
0:6 0:1 ÿ0:3 ÿ0:3 0:20 0:5
0:2 0:5 0:3 ÿ0:4 ÿ0:30 ÿ0:2
0:0 0:1 0:1 0:0 ÿ0:05 0:0

24 35:
Unit vectors along ®xed axes of universal joints:

�k1 k2 k3 k4 k5 k6� �
ÿ0:8141 0:2308 0:9535 1:0000 0:7071 ÿ0:9535
0:2714 0:9231 0:2860 0:0000 0:7071 0:2860
0:0000 0:3077 0:0953 0:0000 0:0000 ÿ0:0953

24 35:
Platform points (in platform frame):

�p1 p2 p3 p4 p5 p6� �
0:3 0:3 0:0 ÿ0:2 ÿ0:15 0:15
0:0 0:2 0:3 0:1 ÿ0:20 ÿ0:15
0:1 0:0 0:0 ÿ0:1 ÿ0:05 ÿ0:05

24 35:
Mass of lower and upper part of each leg:

md � 3:0 and mu � 1:0:

Centres of gravity of lower and upper parts of each leg (in local frames):

rd0 � �0:4 0:14 ÿ 0:18�T and ru0 � �ÿ0:6 ÿ 0:08 0:08�T:
Moments of inertia of lower and upper parts of each leg (in local frames):

Id0 �
0:010 0:005 0:007
0:005 0:002 0:003
0:007 0:003 0:001

24 35 and Id0 �
0:005 0:002 0:002
0:002 0:002 0:001
0:002 0:001 0:003

24 35:
Platform mass (including payload):

M � 40:0:

Centre of gravity of the platform and payload (in platform frame):

R0 � �0:04 0:03 ÿ 0:06�T:
Moment of inertia of platform and payload (in platform frame):

Ip �
0:050 0:003 0:004
0:003 0:040 0:003
0:004 0:003 0:100

24 35:
Coe�cients of viscous friction:

Cu � 0:0001

Cp � 0:001

Cs � 0:0002:
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