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ABSTRACT

We study the problem of distributing a single global task between a group of

heterogeneous robots. We view this problem as a fair division game. In this setting,

every robot defines a preference function over parts of the task according to its sens-

ing and motion capabilities. These preferences are described by density functions

over the task. We want to find an allocation of the global task that maximizes the

probability of task completion. We first formulate the task distribution problem as a

fair subdivision problem and provide a centralized algorithm to compute the alloca-

tions for each robot. We provide a complexity analysis and computational results of

the algorithm. We also provide a decentralized approach, based on the decentralized

computations of non-differentiable linear programs using the subgradient method

and discuss its convergence properties.
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ABRÉGÉ

Nous étudions le problème de distribution d’une simple tâche globale entre un

groupe de robots hétérogènes. Nous nous représentons ce problème comme un jeu

de division juste. Dans ce contexte, chaque robot définit une fonction de préférence

qui règne sur certaines parties de la tâche selon ses capacités de détection et de

mouvement. Ces préferences son décrites par des fonctions de densité qui gèrent la

tâche. Nous cherchons à trouver une allocation de la tâche globale qui maximise la

probabilité de complétion de la tâche. Premièrement, nous formulons le problème de

distribution de la tâche comme un problème de subdivision juste auquel on fournit un

algorithme centralisé qui calcule les allocations pour chaque robot. Nous fournissons

une analyse de complexité et les résultats numériques de l’algorithme. De plus,

nous fournissons une approche decentralisée basée sur la décentralisation des calculs

de programmes linéaires non-dérivables utilisant la méthode sous-différentielle et

discutons ses propriétés de convergence.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of this work . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multi Robot Task Allocation . . . . . . . . . . . . . . . . . . . . . 7
2.3 Multi Robot Coverage and Exploration . . . . . . . . . . . . . . . 14
2.4 Equitable division of territories . . . . . . . . . . . . . . . . . . . 17
2.5 Fair division theory . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Distributing work among heterogeneous robots . . . . . . . . . . . . . . . 28

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Fair Task Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Complexity analysis of algorithm 1 . . . . . . . . . . . . . . 42
3.3.2 Balancing energy costs . . . . . . . . . . . . . . . . . . . . 45

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



4 Decentralized task subdivision . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Decentralized algorithm . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Clustering similar robots . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



LIST OF FIGURES
Figure page

1–1 Scenario for task subdivision with multiple heterogeneous robots. . . . 3

2–1 Example of equitable division through ham sandwich cuts. . . . . . . 19

2–2 Example fair division scenario between two robots. . . . . . . . . . . . 22

2–3 Example of fair and optimal allocations for the scenario in Figure 2–2. 24

3–1 Robot speed profiles for a coverage task in a square region . . . . . . 38

3–2 Final allocation of regions Ai to each robot i ∈ R . . . . . . . . . . . 39

3–3 Final allocation of regions Ai to each robot i ∈ R for an example with
5 robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3–4 Logarithmic plot of error vs. number of iterations . . . . . . . . . . . 42

3–5 Example of introducing a distance term on the utility densities fi . . 43

3–6 Plot of the increase in runtime (in seconds) against the number of
robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3–7 Energy balanced allocations for the example in section 3.2, using area
(a) and distance (b) as the energy cost functions. . . . . . . . . . . 48

4–1 Speed profiles used for the example run of Algorithm 2. (a) shows a
3d view of the speed profiles. (b) show the same speed profiles in a
density plot; darker means faster. . . . . . . . . . . . . . . . . . . . 57

4–2 Allocations computed locally by each robot. The allocations shown
correspond to the ones at time 0 (a), and after 1765 time steps (b).
Robot 6 never exchanges information with other robots . . . . . . . 58

4–3 Paths traversed by the robots during the execution of Algorithm 2. . 59

4–4 Allocations obtained by executing Algorithm 1, which is centralized.. 59

viii



CHAPTER 1
Introduction

1.1 Introduction

This thesis considers the problem of coordinating multiple heterogeneous robots

to perform a single global task, by dividing and allocating the work among them. A

task in our context is an activity to be carried out over an operating region. Examples

of tasks include cleaning duties inside a building (a coverage task), exploration and

mapping of an unknown environment, searching for a target inside a bounded region

and aerial surveillance, among others. Although resulting subtasks might have some

dependencies between them, we consider the case where progress on the subtasks

can be carried out in parallel and independently between the robots.

Coordination of robots through task allocation is motivated by parallelization

of workload and robustness to partial failures [1], akin to task scheduling in multi-

processor systems. It has been shown that using multiple robots to perform a single

global task results in quantifiable performance gains [2, 3]. These performance gains

result from combining the results from single robots into a global result. Aside from

parallelization, task subdivision is also motivated by the potential for heterogene-

ity in the robot team [4], where the assignment of subtasks is dependent on robot

abilities.

Existing strategies for task allocation consider the quality of the output of the

task and an associated cost to perform the task for each robot [5]. In this sense, tasks
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are considered usually as single atomic unit [6], or as a hierarchy of such units [7, 8].

These single atomic units are usually single points in space or are predefined by a

designer or central planner. Although such representation of tasks is useful for the

analysis of the Multi Robot Task Allocation (MRTA) problem as a version of the

Optimal Assignment problem [9], it might not be easily applicable to tasks that are

non-atomic, such as the ones previously mentioned. In this case, subdivision of the

task is part of the allocation process.

For the types of tasks targeted by this work, common approaches based on geo-

metric methods, such as polygon area partitioning [10], Voronoi decompositions [11]

and approaches based on Ham sandwich cuts [12] and the subdivision is based on

characteristics external to the robots; i.e. their position, a distance function, a

probability distribution of interest. In this work we are interested in exploiting the

heterogeneity of the robot team to drive the task subdivision process.

Heterogeneity of the robot team arises from the workload capacities of each

robot and the dependence of the performance of sensing and locomotion on the

characteristics of the environment. For example, a legged robot might be slower than

a wheeled vehicle on smooth terrain, while on rugged terrain the legged robot has

better mobility. Similarly, a robot’s size, shape and safety constraints might influence

its ability to visit parts of the operating region. Figure 1–1 illustrates an example of

a scenario where heterogeneity of a robot team can be exploited. A group of robots

is assigned the task of gathering sensory information over a region with multiple

kinds of terrain (grass, paved roads) and obstacles (trees, curbs, people). Robots

define the regions they “prefer”to work on based on environmental characteristics,
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Figure 1–1: Scenario for task subdivision with multiple heterogeneous robots.
Robots define the regions they “prefer” based on environmental characteristics. In

a search task over this scenario, performance improvements are obtained by
assigning the best suited robot for each region. Image generated with the

Mammoth engine [13]

such as ruggedness of the terrain and clutter from obstacles. In a search task over

this scenario, performance improvements are obtained by assigning the best suited

robot for each region; e.g. a ground robot for regions that are covered by trees, an

aerial robot for regions that are open, a wheeled robot for regions that are paved,

etc. In a sense, this is a way of differentiating between spatially distributed roles for

a given task.

For each robot, we encode this dependence with a scoring function that reflects

the locations where a particular robot is able to perform some work on the task,
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reducing the amount of work left to do. We call the scoring function the robot’s

preference; e.g. a wheeled robot prefers smooth terrain. Again, the preference score

is based on practical measures of the robot abilities. Accumulating this preference

over the allocated subtasks determines a utility for each robot. Optimizing these

utilities can be interpreted as having robots that “want” to do as much work as

possible.

The previous problem can be interpreted as one of fair division: we want to

maximize the utility of the task division, while allowing each robot to contribute

to the task as much as possible. Fair division theory treats problems of dividing

an object between n interested players satisfying some optimality criterion [14, 15].

Applications of fair division theory include land division, multiprocessor schedul-

ing, partition of probability distribution functions and conflict resolution.A common

characteristic of fair division problems is that the object to be divided is measurable

and every player should receive at least 1/n of the object. Two major examples

of optimality criteria for fair division are maximizing the minimum utility among

the parties (max-min), and maximizing the sum of utilities (max-sum). Maximizing

the minimum utility introduces load balancing implicitly, since the solution of the

problem will tend to subdivide the task equitably, or at least proportionally [12, 11].

Maximizing the sum of utilities is a simpler problem since it can be solved by assign-

ing parts of the task greedily to the best suited robot. This might result in solutions

that assigns subtasks to a subset of robots, which might not be able to complete the

task because of physical or energy limitations. Some authors have proposed gener-

alizations of Voronoi diagrams to consider such constraints [16, 17]. In this work we
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deal with such cases by stating the fair division problem as a linear program and

include the corresponding energy balancing constraints.

Performing task subdivision between mobile robots requires the consideration

of communication constraints, leading to situations where the allocation process

can only be carried out with distributed information. A well studied approach for

distributing work in multi robot systems is that of locational optimization [11, 18,

19, 20, 21, 22]. In such approaches, each robot only needs information from a local

neighborhood of robots to obtain an optimal solution. Other approaches for task

subdivision have been studied in the multiprocessor scheduling literature [23], based

on graph clustering algorithms. For the MRTA problem, an approach based on graph

clustering has been proposed, although for atomic tasks [24]. To distribute the task

allocation process in our setting, we cluster similar robots together and perform the

task allocation recursively inside each cluster. The resulting solution might not be

equal to the one obtained by centralized division, but will be approximately the

same if the preference functions of robots in different clusters do not overlap. This

clustering is inspired by a result in fair division theory, which allows to find optimal

divisions by separating players into subgroups with conflicting preferences.

1.2 Contributions of this work

The contribution of this work is the formulation of a task distribution strategy

for heterogeneous robots. We present a centralized algorithm that finds globally

optimal solutions and propose an extension to a distributed algorithm. What we

mean by globally optimal is a solution that, given some performance measures over

the allocation for each robot, allocates subtasks that maximize the performance
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measures on the task. Example performance measures are the speed of the robots

or the expected bits of new information gathered per unit time. Since the space of

allocation in our formulation is proven to be convex, we can find a global optimum for

a given set of constraints, if enough computation time is available. We also propose

how to use this strategy in a multi robot coverage task and show computational

results of the impact on the performance of our proposed algorithms when varying

parameters such as the number of robots, resolution (cell-size) of the preference

functions and similarity between preferences.

1.3 Thesis Outline

This work is organized as follows. In Chapter 2, we provide a description of

existing similar and previous work in Multi Robot Task Allocation, Multi Robot

Coverage, Territorial Division and Fair division Theory. In Chapter 3, we present

the formulation of the task subdivision problem as a linear program. We also de-

scribe how to find solutions to this optimization problem and how to extend it to a

distributed algorithm. In Chapter 4 we discuss how to apply the fair division theory

to a multi robot coverage setting and provide some simulation results. Finally, in

Chapter 5 we discuss the results obtained and suggest possible directions for future

work.
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CHAPTER 2
Background and Related Work

2.1 Introduction

The goal of this thesis is to provide a general method for task subdivision and

allocation between a group of heterogeneous robots. To do this, we have based our

approach on ideas from multiple fields, which are discussed in the following sections.

We start with the existing work in the Multi Robot Task Allocation (MRTA) liter-

ature in Section 2.2, since our problem can be viewed as an instance of the MRTA

problem. Next, in Section 2.3, we discuss the existing approaches for distributed cov-

erage and exploration, based on region partitioning via Voronoi Diagrams. Related

to such approaches, we give an overview of work on division of territories in Section

2.4. Finally, we provide a brief introduction to the fair division, or cake-cutting,

problem in Section 2.5.

2.2 Multi Robot Task Allocation

A group of robots is a distributed computing network with mobile processors,

dynamic communication links and tasks that require interaction with the physical

environment in which the robots operate. Therefore, techniques for distributing

workloads between multiple processor systems are related to the techniques necessary

to distribute tasks between robots. In fact, this is the view taken when studying the

MRTA problem as a version of the Optimal Assignment Problem.
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MRTA is the problem of assigning tasks to robots in a way that task comple-

tion is guaranteed and some global objective function is optimized. In the simplest

version of this problem, robots are capable of performing a single task at any given

time and tasks require only one robot for completion. Gerkey and Matarić [5] clas-

sify this scenario as ST-SR-IA (Single task robots-Single robot tasks-Instantaneous

assignment). More formally, given a set of m tasks T , a set of n robots R, and some

performance metric U : R× T → R+, we can define the following linear program,

max
αij

n∑
i=1

m∑
j=1

αijU(i, j) ∀i ∈ R, j ∈ T

subject to
n∑
i=1

αij = 1 ∀j ∈ T

m∑
j=1

αij = 1 ∀i ∈ R

(2.1)

The set of integers αij represent an allocation of task i to robot j. Since these

parameters are integer, then we are effectively giving a each robot a single task.

This kind of optimization problem has been widely studied in the past and can be

solved by using the Hungarian algorithm [9] by a centralized planner. Given that

communications with a centralized planner might not be possible in various multi

robot settings, a distributed approach becomes necessary.

Gerkey and Matarić [25] studied this problem and its dual form which has an

economic interpretation, inspiring market-based solutions. Zlot et al. [7] proposed

a market based algorithm that allows for distribution of hierarchical tasks. In both

works, the proposed algorithms are based on auctioning mechanisms and broadcast
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communications. At any given time, any robot might start an auction of a task

it cannot perform. Other robots make bids for the task, based on their local, and

private, utility functions. The auctioneer waits for some time to receive offers, after

which it assigns the tasks to the highest bidder. New tasks are either introduced by

the designer of the system or a centralized planner, generated by a robot from its

sensor information or as the result of decomposing a hierarchical task. The benefit

of such approaches is that the task subdivision process is robust to partial failures,

as long as a failing robot can start an auction with its currently assigned tasks.

Other approaches rely on behavioral architectures. The ALLIANCE architec-

ture , proposed by Parker [26], defines the behaviors and measures of impatience and

acquiescence for each robot. When a robot grows impatient enough, it will overtake

a task it perceives is not being accomplished. At the same time, a robot will increase

its willingness to give up a task if it perceives it is not progressing on its current

task. Both measures are based on the capabilities of the robot. In this architecture

tasks are iteratively assigned to the best fit robot that is available.

A similar but simpler approach is the Broadcast of Local Eligibility (BLE)

mechanism by Werger and Matarić[27], which is based on a distributed subsump-

tion architecture [28]. For any given task, a robot computes its own local utility

in performing a task. This local utility is broadcast to all the other robots within

communications range. When a robot receives a local utility estimate from another,

the robot compares it with its own estimate. If the robot finds its local utility is

higher than the ones received from other robot, it claims the task by inhibiting the

9



other robots from performing the task. Although simple to implement, these behav-

ior based mechanisms require almost continuous communication between the robots

and continuous evaluation of utilities to avoid conflicts in task allocation; conflict-

ing allocations will happen during periods without any communication. As listed

by Gerkey and Matarić [5], these approximation algorithms for assignment are (at

least) 2-competitive.

Another behavioral approach based on schema theory is the one proposed by

Tang and Parker [29]; the ASyMTRe architecture. This approach aims to let a

group of robots coalesce into teams with complementary abilities, such that they

can perform a task that single robots would not be able to. The connections be-

tween complementary abilities that solve a particular task are found by computing

a utility which is learned from experience. This utility is a weighted sum between

the probability of succeeding in a task and the cost of performing the given task.

Complementary abilities are classified into schemas; computational blocks with in-

puts and outputs that depend on its class. The authors use four classes of schemas:

perceptual, motor, environmental sensing and communication schemas. In our case,

we consider complementary abilities, but as a way of partitioning the task space into

independent subtasks.

Other approaches for task allocation, specifically for the ST-SR-IA class, treat

the task allocation problem as a linear optimization problem and propose solutions

that do not rely on auction mechanisms, but rather as decentralized computation of

partial optimization problems. Atay and Bayazit [6] formulated a combination of tar-

get coverage, area coverage, exploration and communication link maintenance tasks
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as a mixed-integer linear program. The solution of this optimization problem is the

set of positions where the robots should move in the next computation step. Every

robot solves a version of the optimization problem that only considers information

available within its local (1-hop) communication range. In their work, optimal solu-

tions are the positions to which each robot should move so that the area covered by

the sensor network, the number of pairs of robots that are able to communicate, the

number of targets that are covered by the sensor network, and the number of robots

in previously unexplored regions, are all maximized. After computing a locally opti-

mal solution, each robot broadcasts its intended new position (intentions), the new

positions for the other robots in its local solution (directives) and the assignment

of targets to robots. One issue with this approach is that the time is discretized in

a way that requires the robots to have synchronized clocks. If robots do not have

synchronized clocks then the convergence properties of the algorithm will change,

as certain robots will miss the window for exchanging information over time. The

robots use the broadcast information to update their local solution iteratively. The

iterative nature of this approach makes it very similar to the BLE mechanism and

ALLIANCE architecture. This approach is very useful for mobile sensor networks,

but might fail in cases when it is not possible to maintain 1-hop communication links;

e.g. in underwater applications.

Liu and Shell [8] developed an algorithm that trades off between a centralized

and a distributed approach. Their algorithm is based on the observation that the

utility matrix defined by the values uij = U(i, j) will be sparse in large and heteroge-

neous robot teams, if the utility of unlikely assignments is set to 0. The authors use
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a hypergraph to represent the OAP problem. A hypergraph, defined by H = (V , E),

consists of a set of vertices V and a set hyperedges E . Hyperedges can connect more

than two vertices in the graph. In their formulation, the vertices represent robots

and the hyperedges the relationship between tasks and robots that are able to ex-

ecute them. To distribute the computation of the OAP problem, the hypergraph

is clustered and assignment subproblems are solved within each cluster. Cluster-

ing is achieved by applying column and row permutation until an approximately

block diagonal matrix is obtained. The solution within a cluster can be fond either

by using existing methods or by performing clustering recursively. This approach

leads to a solution that approximates the centralized optimum, while distributing

the computational load. The recursive partitioning idea has also been exploited in

the multiprocessor scheduling literature and is similar to the clustering approach

used in this thesis.

Task subdivision without assuming atomic tasks has been studied by Rossi et

al. [30]. The authors proposed an approach for task subdivision by using pairwise

negotiations between robots, based on the theory of Rubinstein negotiations. A

general definition of a task is given as follows. A task T is an element of the set

T in which the conjunction ∪ and disjunction ∩ have been defined. Each task is

parametrizable by a vector of k parameters x ∈ Rk. The authors define a global

optimization target as a function of the parameters penalized by the overlap between

tasks. Each robot computes a local reward based on the global optimization target

and its perceived cost of performing the allocated subtask. To subdivide the work,

the robots broadcast the set of parameters of their preferred allocation; termed a
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proposal. A robot that receives a proposal can either accept it or make a counteroffer.

The initial proposals either assign the whole task to the proposing robot, or include

information from previous negotiations. To accept an offer, the reward obtained

should be greater than some precomputed target reward and the reward that might be

obtained by its own counteroffer. Each time a robot i receives a counteroffer it must

decrease the expected reward of its proposal by a discount factor δi ∈ (0, 1). Since

there might be multiple ways in which the proposal can be reduced by the desired

discount factor, the authors propose using an evolutionary strategy that searches over

feasible combinations of parameters and “learns” the other robots discount factors

and objective functions from their proposals. In the case of two robots it is shown,

from Rubinstein’s Bargaining theory, that the process must terminate after a finite

number of negotiation rounds, and the reward obtained by each side is determined

by the value of the discount factors. If subtasks can be measured as a fraction of the

global task, the allocation for the robot that starts the negotiation process is

A1 =
1− δ1

1− δ1 ∗ δ2

(2.2)

while the allocation for the counterpart is A2 = 1−A1. An extension to three or more

negotiating robots is presented in the form of round-robin, one-against-all pairwise

negotiations. The motivation for using pairwise negotiations is to let the robots

have private information. The only information exchanged between robots is their

proposals. While the authors demonstrate the versatility of their task definition two

main issues remain: how to pick appropriate discount factors and target rewards.

This issue is important because it determines the proportions of the work that each
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robot will receive. There is also the question of how this approach compares to

centralized allocation or to approaches where the robots share their private objective

functions. Although this approach also divides a global task in the process allocation,

the shape of allocations is dependent on how the task is parametrized, i.e. a polygonal

region is parametrized by its vertices, thus subtasks can only be polygonal regions

with the same number of parameters. In our work, shape properties of the allocations

are optional and introduced as constraints to the optimization problem.

2.3 Multi Robot Coverage and Exploration

There exists a body of work on approaches to decentralized multi robot control

using Voronoi subdivisions of space. The Voronoi diagrams usually define the alloca-

tion of work, sometimes implicitly. To drive the robots, centroidal Voronoi updates

are used to define provably convergent control rules. The common theme is the de-

ployment of a robot team for distributed sensing, minimizing interference. Cortés

et al. [31] proposed a distributed coverage approach for convex polygonal environ-

ments in which the robots follow a gradient descent law to avoid interference and

completely cover a polygon. The final arrangement of the robots is dependent on a

probability distribution function. Formally, consider n robots, a convex environment

Ω ⊂ RN with a distance function d : Rn × Rn → R+, a sensor degradation function

f : R+ → R+ and a desired coverage distribution function φ : Rn → R+. The task

is to find an allocation of disjoint subregions Ai for each robot i, whose union is Ω,

that maximizes

H(p,A) =
n∑
i=1

∫
Ai

f(d(pi, x))φ(x) dx (2.3)
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where p = (p1, ..., pn) are the robots locations and A = (A1, ..., An) are the allocated

partitions. Intuitively, the allocations that maximize the objective function are the

ones that position such that all the regions with high value of φ(x) are covered by

the closest robot with the best performing sensor. If the robots positions are fixed,

the optimal partition is the Voronoi diagram. A Voronoi diagram is defined as the

set of allocations A such that

Ai = {x ∈ Ω : d(x, pi) ≤ d(x, pj) ∀j 6= i} (2.4)

The authors demonstrated that to maximize the quantity in Eq. 2.3, the robots

only need to update their positions by following the gradient of H(p,A), which can

be accomplished by having the robots move in the direction of the centroids of their

corresponding partition. The centroid is defined as

ci =

∫
Ai
x dx∫

Ai
φ(x) dx

(2.5)

By letting each robot move in the direction of ci− pi, the arrangement of the robots

will converge to a centroidal Voronoi partition [32]. Lloyd’s gradient descent is a

simple algorithm to find centroidal Voronoi partitions. The algorithm consists of:

1. Computing the partitions A

2. Computing the centroids for each partition

3. Updating p with the positions of the centroids

4. Step 1).

The authors propose the use of a continuous time version of Lloyd’s gradient de-

scent rule as the control law for the robots. To compute its own partition Ai and
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centroid, a robot only needs information from its neighbors, allowing for distributed

computation.

Multiple extensions to this basic approach have been proposed. For example,

Schwager et al. proposed an approach that does not assume previous knowledge of

the coverage distribution function φ. Robots estimate the coverage distribution from

local sensing data [33], so that the robots learn which areas need more coverage as

they execute the coverage task.

Pimenta et al. [21] proposed an extension to non-convex environments by replac-

ing the distance d with a geodesic distance. Bhattacharya and Kumar [18] extended

the geodesic distance approach with a method for projecting the centroids of the

partitions to admissible locations. To quickly compute an approximate geodesic dis-

tance, the authors use Dijkstra’s search algorithm. They proposed the use of mapping

uncertainty in a occupancy grid as the coverage distribution function. By doing this,

the authors were able to drive the robots to explore an unknown environment. This

characteristic is similar to the approach by Schwager et al..

Breitenmoser et al. used a similar idea, although they do not compute the

geodesic distance explicitly. The authors combine gradient descent laws with obstacle

avoidance, by means of the TangentBug algorithm [34]. They modify the algorithm to

project the centroids of the partitions to admissible locations inside the environment.

The authors show that their approach finds local optima for 2.3 constrained to a non-

convex boundary.
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Although these approaches are related to work subdivision of a single global

task, the main difference is that we are interested in matching robot abilities to

subtasks, exploiting the heterogeneity between the robots to find allocations.

2.4 Equitable division of territories

Our work is also related to the region partitioning problem [12, 11]. In this

problem, an operating region is usually described by a polygon and the goal is to

subdivide it into non-overlapping regions. A single facility or vehicle is allocated one

such region, on which it provides some service. One of the goals of works on this

area is to balance the workload between partitions. Pavone et al. [11] developed a

polygon partitioning strategy based on a generalization of Voronoi diagram called

power diagrams. The problem they studied is to divide a territory between multiple

facilities, or vehicles, to satisfy a demand distribution. From a set of point p =

{p1, ..., pn} and a set of weights w = {w1, ..., wn}, a power diagram defines a set of

partitions A = {A1, ..., An} of a polytope Ω ⊂ RN such that

Ai = {x ∈ Ω : d(x, pi)− wi ≤ d(x, pj)− wj ∀j 6= i} (2.6)

The weights have the effect of translating the bisecting line of two neighboring

partitions along the line that connects the corresponding centroids. The authors

prove that, by fixing the locations of the centroids, the weights of the power diagram

can be varied to find a partition that is equitable on an arbitrary, but smooth,

measure. Formally, given a measure λ : RN × RN → R+ the goal is to find a set of

weights such that ∫
Ai

λ(x) dx =
M

n
(2.7)
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where M =
∫

Ω
λ(x) dx. Such partition is realizable by a power diagram and can be

found by performing gradient descent on the set of weights. The authors also provide

an extension to allow the centroids to move, resulting in partitions of uniform shape.

To account for some heterogeneity between the facilities/vehicles, the authors show

that their approach not only finds equitable partitions, but also partitions with some

proportional ratios. Our problem can be seen as a version of this one, in which

instead of having a single demand distribution to distribute, we have multiple such

distributions representing different types of demand and a single facility cannot cover

all such types.

Carlsson et al. [12] studied the same problem but with a different approach. The

idea in this case was to partition two measures over a region of R2 equitably; e.g.

finding partitions of a district with the same amount of people from two political

parties, finding partitions of land with equal area and equal populations, or finding

partitions of a city each with one postal office and the road length. This idea is based

on the ham-sandwich theorem which states that an equitable partition of N measures

over RN always exists. Their approach works by recursively applying ham-sandwich

cuts to partition the polygon. Figure 2–1 depicts a simple overview of the resulting

partition from their algorithm.

Carlsson [35] also studied the problem of dividing a territory among multiple

facilities as an infinite dimensional optimization problem. The author studied the

properties of solutions which balance the workload between partitions by minimiz-

ing the maximum load, minimizing the average load while adding an equal area

constraint, and a extension to the previous two solutions that guarantees simply
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(a) (b) (c)

Figure 2–1: Example of equitable division through ham sandwich cuts.
(2–1(a)) Region and points to be subdivided. (2–1(b)) First cut results in two

regions with equal area and a balanced number of points. (2–1(c)) Recursive cuts
in the subregions result in pieces of equal area, each containing a single point.

connected (star shaped) partitions. To find the optimal solutions to his linear pro-

gramming formulation, the author studied the properties of the dual problem and

found that the primal-dual gap is zero and that the dual solutions describe gener-

alizations of Voronoi diagrams. In the case of minimizing the maximum load, the

solution is described by a multiplicatively weighted Voronoi Diagram, called Apollo-

nius Diagrams. In the case of equal area partitions which balance the average load,

the solutions are described by additively weighted Voronoi Diagrams. The author

also proposes a method based on gradient descent for the case when the positions of

the facilities are variable and unknown.

Following one of the cases in [35], let us consider the problem of balancing a

uniform demand distribution over the unit square. Let Ω be the unit square and

A = {A1, . . . , An} the allocated partitions between n facilities. Given the positions

the facilities p = {p1, . . . , pn} with pi ∈ Ω,∀i, we can define the problem with the
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following linear program

min
11(.),..,1n(.)

t

subject to t ≥
∫

Ω

1i(x)‖x− pi‖dA ∀i
n∑
i=1

1i(x) = 1 ∀x ∈ Ω

1i(x) ∈ {0, 1} ∀i ∈ {1, . . . , n} , x ∈ Ω

(2.8)

where dA is the infinitesimal area element over Ω and 1i(x) is an indicator function

defined as,

1i(x) =


1, if x ∈ Ai

0, otherwise

(2.9)

By relaxing the integrality constraint on 1i(x), we obtain the following dual formu-

lation

max
λ1,...,λn,Λ(x)

∫
Ω

Λ(x)dA

subject to Λ(x) ≤ λi‖x− pi‖ ∀x ∈ Ω, i

n∑
i=1

λi(x) ≤ 1

λi ≥ 0 ∀i

(2.10)

The steps for finding the dual formulation will be described in Section 3.2. An optimal

solution for the dual problem in 2.10 will have λi > 0, ∀i and Λ(x) = λi‖x− pi‖ for

some i. This means Λ(x) is the lower envelope defined by the function Λmax(x) =

max
i
{λi‖x− pi‖} and the allocations will be

Ai = {x ∈ Ω : i = arg max
j

λj‖x− pj‖} (2.11)
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This can be rewritten as

Ai = {x ∈ Ω : λi‖x− pi‖ ≤ λj‖x− pj‖ ∀j 6= i} (2.12)

which is the definition of a multiplicatively weighted Voronoi diagram. Thus with

the dual optimization we are finding the optimal ratios of the allocations, defined

by the dual variables λi, and the function Λ(x) will define which points are to be

allocated to each partition. We will use a similar approach for solving our problem

of task allocation between heterogeneous robots.

2.5 Fair division theory

Fair division is the problem of dividing an object among n interested players,

such that each believes it has received a fair share. The players might have different

opinions on the value of different parts of the cake; it is this difference in perspective

that makes the problem interesting and applicable to our task subdivision problem.

A nice historical introduction to fair division theory, in the form of cake cutting prob-

lems, can be found in in the book by Robertson and Webb [36]. Figure 2–2 provides

an illustration of the problem for dividing a continuous object between 2 players:

a region is to be covered with sensors by an autonomous boat and an autonomous

underwater vehicle. Within this region, each robot assigns a score to places where it

would be better to deploy it, marked by the shading of the region. There are multi-

ple definitions of what fair means which result in somewhat different allocations. A

division is said to be proportional if it guarantees each player i an allocation of at

least a predefined ratio ri of the total object to be divided, usually 1
n
. A division is

strongly fair if the allocations are strictly greater than ri. A division is envy free if

21



(a) (b)

Figure 2–2: Example fair division scenario between two robots.
A six legged robot (2–2(a)) and a boat (2–2(b)). The object to be distributed is a
territory depicted by the thick black boundary. For each robot, there is a function
fi that defines how well suited are the robots for performing a given task at any

point, which can be viewed as the robot preference. This preference is denoted by
the shading of the region: darker regions are the places where the robot is better

suited to complete part of the task.

it guarantees that every robot prefers the part it was allocated to that of the other

robots; i.e. every robot gets its first choice in the allocation. A division is Pareto

optimal if the allocation of a single player cannot be increased without reducing the

allocation of another player. We are interested in a smaller set of allocations that

result from solving linear optimization formulations. The optimal allocations we are

looking for are proportional and Pareto optimal. Figure 2–3 illustrates the difference

between an optimal and a fair allocation. In the case of the fair allocation, each

robot is guaranteed at least a fraction of its maximum allocation; in this case, at

least 1/2. In the optimal allocation, every robot is guaranteed allocations which

can’t be improved locally and each robot will prefer its own allocation to that of any

other robot; i.e. the allocations we are interested in are also envy-free. Dubins and
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Spanier [14] studied two definitions of optimal partitions, which will be explained

here: the max-sum partition and the lex-min partition.

Let the set U represent the object to be divided. Let u = {u1, u2, . . . , un} be a

set of utility functions ui : U → R, where U is a set of subsets of U which includes U

and is closed under complement and countable union operations. Such a set is called

a σ-algebra of U . Define a k-partition of U as a set A = {A1, A2, . . . , Ak} of elements

from U . Each ui is countably additive, i.e. ui(Aa ∪ ab) = ui(Aa) + ui(Ab) for any pair

of disjoint sets Aa, Ab ⊆ U . In our analysis we will consider utilities such that for

every set A ⊂ U there exists another set B ⊂ A for which ui(A) > ui(B) > 0. Such

measures are called non-atomic. Define the measure v with respect to which each

ui is absolutely continuous. From the Radon-Nikodym theorem, there must exist a

function fi for each ui such that,

ui(A) =

∫
A

fi dv (2.13)

where v is a measure with respect to which all ui are absolutely continuous.

The functions fi represent a density distribution of the value for player i over

the subsets of U . Thus, we can interpret each fi as the preference of player i.

The simplest optimization criterion is to maximize the sum of utilities; an optimal

partition is an n-partition of U such that
∑
ui(Ai) is maximized. It can be shown that

the optimal partition is obtained by a greedy solution. For instance, let f ∗ = max fi,

an upper envelope of all the measures. Then every n-partition of U is such that

n∑
i=1

ui(Ai) =
n∑
i=0

∫
Ai

fidv ≤
n∑
i=0

∫
Ai

f ∗dv =

∫
U

f ∗dv (2.14)
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(a) (b)

Figure 2–3: Example of fair and optimal allocations for the scenario in Figure 2–2.
A fair allocation (a) guarantees at least half of the maximum utility, while an

optimal partition (b) results in every player obtaining their first choice

Thus the partition that maximizes the sum of utilities is obtained by assigning every

subset of U to the player that values it the most. This solution is optimal in that

it maximizes the global value, but we might be interested in partitions with other

properties. For example, this max-sum solution is Pareto optimal but it is not

guaranteed to be proportional or envy free; i.e. a robot that puts a very large value

on the full task will be allocated all of it. This leads to the second optimization

criterion, which finds partitions by the following scheme:

1. Set i = 1, U ′ = U , k = n

2. Find the set of k-partitions of U ′ that maximize the utility of the player that

obtains the minimum utility. Call this player pi and its allocation Ai.

3. Remove pi from the set of players, make U ′ = U ′ − Ai and k = k − 1.

4. If k = 0, we are done. Otherwise repeat from 2.

Such partitions are called lexicographic partitions. A lexicographic partition A∗ is

optimal if by ordering the utilities in ascending order, for any other partition A′
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there is a player pj for which uj(A
′
j) < uj(A

∗
j). In the case every ui is non-atomic,

Dubins and Spanier proved that an optimal lexicographic partition exists [14]. The

optimal partition is also equitable when all the utilities are absolutely continuous

with respect to each other. In other words, if all the players assign a non-zero value

to every possible subset of U , then the optimal partition will allocate every player the

same share. The existence of optimal and equitable partitions is proven by showing

that the space of n × k matrices Mij = ui(Aj) is convex. As a consequence of the

convexity of the space of partitions, proportionally fair partitions must exist (see

Corollaries 1.1 and 1.2 in [14]).

Without loss of generality, we will let ui(U) = 1. In general, if every player i is

entitled to an allocation of ri such that
∑n

i=0 ri = 1 and the measures ui are non-

atomic then there must exist partitions that guarantee each player an allocation of ri.

If at least two players have different preferences then every player will get at least ri.

Since the partitions are optimal, all of U for which fi > 0 will be allocated, leading to

Pareto optimal allocations. This also applies to the maximum sum allocations. This

means that the search space can be reduced to that of Pareto optimal allocations.

Dall’Aglio [15] showed that the space of allocations is indeed convex by using

a geometric argument, resulting in a constructive method for finding optimal lex-

icographic partitions, searching over Pareto optimal allocations. In this method,

allocations are parametrized by a set on indicator functions 1i defined as in (2.9).

Thus, the expression in (2.13) can be rewritten as

ui(Ai) =

∫
U

1i(x)fi(x)v(dx), ∀x ∈ U (2.15)
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Again, we require that all the functions are absolutely continuous with respect to a

common measure v. The author provided a method for finding optimal solutions in

the dual space and proved that the allocation corresponding to the dual optimum .

A summary of the method for a given set of utilities ui and a set U is as follows.

1. Make U1 = U , J1 = 1, . . . , n and t = 1

2. Find the simplex vectorλt ∈ ∆d that minimizes gt(λ) =
∫
Ut

max
i∈Jt
{λi,tfi(x)}v(dx)

3. If λi,t > 0 for all i, go to step 6.

4. Make t = t+1, Jt = {i ∈ Jt−1 : λi,t = 0} and Ut = Ut−1−{x ∈ U : λi, tfix > 0}

5. Repeat from 2.

6. Compute the allocations 1i as {x ∈ Ut : arg max
i∈Jt

{λi,tfi(x)} ∧ λi,t > 0}

The previous method consists of finding subsets Jt of players with conflicting prefer-

ences and finding the optimal allocation within each subset. The optimal allocations

are the ones that minimize the expression in step 2, as shown in [15], and result

in an equitable allocation inside each Jt. Dall’Aglio and Di Luca [37] provided an

algorithm that computes the optimal allocation defined by gt(λ) by using the sub-

gradient method [38] and exploiting the fact that optimal allocations are equitable

when the utilities are mutually absolutely continuous.

With the tools of fair subdivision it is not to difficult to define the task sub-

division and allocation problem as a centralized linear program [15], similar to the

approaches cited in Section 2.4. In the next chapter we will provide a formulation of

the task subdivision problem that fits nicely with the fair subdivision background.

The benefit of using this approach is that we do not need to make any assumptions
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about the shape of the object we are trying to divide; i.e. U does not need to be

simply connected or polygonal.
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CHAPTER 3
Distributing work among heterogeneous robots

3.1 Problem statement

A task T ∈ T is assigned to a group of n robots R. The space of tasks T

considered here consists of subsets of the d-dimensional vector space Rd. Each robot

is associated with a performance score for each subset of T as the function fi : 2T →

R, where 2T denotes the power set of T . The goal of our problem is to use the

performance functions to encode the heterogeneity of the robots capabilities, and

use them to find subdivisions of work which allocate parts of the task to the robots

that are best suited for them.

As a motivating example, consider the task of collecting sensor information over

some region, represented by T ⊆ Rd where d is the number of dimensions of the

configuration space of the robots. Every robot has both a coverage speed profile

si(x), which represents its dependence of speed on terrain, and a sensor quality

profile qi(si(x), x), which represents the dependence of its sensor performance on

location and speed. The speed and quality scores for each location are dependent

on each other: if the speed increases then the sensor quality will decrease. Likewise,

to increase the quality of the collected data at any one location, the robot must

reduce its speed. The robots also have an energy cost dependent on speed and

time ci(si(x), t). Not every robot has the same profiles and cost due to differences

from design, wear from usage or partial failures. The objective is to maximize both

28



the speed of coverage by the group of robots and the quality of collected data,

while guaranteeing a maximum amount of work done. This means that the ideal

distribution of work should avoid interferences/repeated work while assigning the

best suited robot to each subregion. Note however that we ignore the case where

repeated work might improve quality.

An intuitive approach to do this is to set the speed of coverage to the maximum

that guarantees a minimum quality qi,min(x) = qi(si,max(x), x) and use si,max(x) as

the quantity to optimize. Robots need power to perform the task thus our method

should balance between performing sub optimally and spending energy travelling to

remote locations. We also want every robot to do as much work as it can to balance

the energy consumption costs. As a first approach, we will consider the problem

without direct inclusion of the energy constraints. In Section 3.3.2 we introduce

such constraints which do not change too much the method for searching for optimal

solutions.

Given the task of collecting sensor data over a region T ∈ Rd and a group of

n robots, each with its maximum speed profile si,max(x), we want every part of T

to be assigned to the robots in order to minimize the combined time. Formally, let

A = {A1, . . . , An} be the allocations of T to each robot 1 ≤ i ≤ n. We assume that

the time it will take a robot to cover any point x ∈ T is,

dt(x) =
dT

si,max(x) + εs
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where dT ∈ T is an infinitesimal task element and εs << 1 is a constant added to

avoid division by zero. Thus we want to solve the following optimization problem,

min
A

n∑
i=1

∫
Ai

1

si,max(x) + εs
dT

subject to Ai ∩ Aj = ∅ ∀i, j ∈ R
n⋃
i=1

Ai = T

(3.1)

In this formulation we make the simplifying assumption that the robots are holonomic

and are able to compute plans that avoid visiting locations more than once. Therefore

the time spent in covering one region is the sum of the times spent at every point

in the region. To be able to find solutions to this problem, we require that for every

x ∈ T , at least one i exists such that si,max(x) > 0, otherwise x should be removed

from T . Letting fi(x) = − 1
si,max(x)

, this problem is equivalent to

max
A

n∑
i=1

∫
Ai

fi(x)dT

subject to Ai ∩ Aj = ∅ ∀i, j ∈ R
n⋃
i=1

Ai = T

(3.2)

which is in the form of the max-sum fair division problem of section 2.5. This means

that the optimal solution is to assign every point x ∈ T to the fastest robot. In this

case, the robot utilities are defined as ui(Ai) = −
∑n

i=1

∫
Ai

1
si,max(x)+εs

dT .

A problem with such allocation is that it might end up assigning all of T to a

single robot i if it is faster than any other robot; i.e., si,max(x) > sj,max(x),∀j 6=

i, x ∈ T . To avoid this we can consider energy constraints directly: define the energy
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capacity of each robot as Ei and let C(Ai) be the energy cost for each robot, then

add a constraint C(Ai) ≤ Ei,∀i ∈ R to the Problem 3.2. Another approach would

be to “wrap” the utilities ui with a concave function, e.g. with a log function, which

would have a load balancing effect since the increase in utility would be smaller as

the size of the allocation grows. Another simpler approach is to consider the energy

constraints indirectly and try to balance the allocations by considering the following

max-min optimization problem

max
A

umin

subject to umin ≤
∫
Ai

fi(x)dT ∀i ∈ R

Ai ∩ Aj = ∅ ∀i, j ∈ R
n⋃
i=1

Ai = T

(3.3)

where umin is the smallest accumulated score between the robots. The Problem 3.3

is equivalent to the first iteration of finding a lexicographic optimal partition, as

explained in Section 2.5. Since our problem is of the form of a fair division problem,

the space of allocations is convex and optimal solutions exist. In this formulation

we want every robot to do as much work as possible while maximizing the average

speed of the slowest robot. With this approach the goal is to be efficient, by assigning

regions to the best suited robots, but also fair, by balancing the loads between the

robots. These issues will be explored in more depth in the next section.
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3.2 Fair Task Subdivision

In this section we present the design of Algorithm 1 (p. 38), which performs

task allocation based on the theory of fair division. The problems 3.2 and 3.3 are

in the form of fair division problems, thus we know from the work of Dubins and

Spanier [14] that an optimal solution must exist. To find optimal solutions we solve

the dual optimization problem which is convex, has a finite number of optimization

variables and its solutions can be transformed easily into primal solutions, similar to

the approaches of Dall’Aglio [15] and Carlsson [35]. To do this, we make use of the

indicator function 1i as described in 2.9. Again, each 1i : T → [0, 1] is a function

that indicates if an element x ∈ T belongs to the set Ai. Rewriting Problem 3.3 we

get,

max
11,..,1n

umin

subject to umin ≤
∫
T

1i(x)fi(x)dT ∀i ∈ R
n∑
i=1

1i(x) = 1 ∀x ∈ T

1i(x) ∈ {0, 1} ∀i ∈ R, x ∈ T

(3.4)

By relaxing the integrality constraint on 1i, i.e. replacing it with 1i(x) ≥ 0,∀x ∈

T , we can obtain the dual formulation in 3.6. Define the non-negative dual variables

λ = {λ1, . . . , λn} for each of the constraints of the first group and the function Λ(x)

for the constraint over the indicator functions 1i. Then modify our optimization

problem by introducing the Lagrangian penalization for every constraint,
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min
λ,Λ

max
11,..,1n

umin −
n∑
i=1

λi

(
umin −

∫
T

1i(x)fi(x)dT

)
−
∫
T

Λ(x)

(
n∑
i=1

1i(x)− 1

)
dT

=

min
λ,Λ

max
11,..,1n

umin

(
1−

n∑
i=1

λi

)
+

n∑
i=1

∫
T

(λifi(x)− Λ(x))1i(x)dT +

∫
T

Λ(x)dT

(3.5)

By rearranging terms we obtain the second expression in 3.5. We can obtain the

dual formulation 3.6, by noticing that (fi(x)−Λ(x)) ≤ 0 for the maximization to be

feasible.

min
λ,Λ

∫
T

Λ(x)dT

subject to Λ(x) ≥ λifi(x) ∀i ∈ R, x ∈ T
n∑
i=1

λi = 1 ∀i ∈ R, x ∈ T

λi ≥ 0 ∀i ∈ R

(3.6)

From the first constraint and the objective function it is easy to note that the optimal

Λ(x) = Λ∗(x) should attain the equality Λ∗(x) = λ∗i fi(x) for some i. If any λi = 0

then Λ(x) ≥ 0,∀x ∈ T and the objective function would be minimized with Λ∗(x) =

0,∀x ∈ T , therefore every λi should be strictly positive. By complementary slackness

[35], the optimal primal solution is such that u∗min =
∫
T
1i(x)fi(x)dT,∀i ∈ R; i.e.

every robot should get the same utility, taking the same time to complete their share
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of the task. The previous problem can be rewritten as

min
λ

∫
T

max
i
{λifi(x)}dT

subject to
n∑
i=1

λi = 1 ∀i ∈ R, x ∈ T

λi ≥ 0 ∀i ∈ R

(3.7)

This dual problem is convex, so we can use an iterative search algorithm to find the

optimal values for λi. Let g(λ) =
∫
T

max
i
{λifi(x)}dT , i.e. the objective function we

are trying to minimize. Let Dλ be its domain. The function g is equivalent to the

one in the minimization step of the algorithm in Section 6 of [15]. Since the objective

function in 3.7 is not differentiable we may use a subgradient search method. Such

a method consists of the following update rule,

λ(t+1) = λ(t) − αtγ(λ(t)) (3.8)

where t is the iteration index and αt is the step size. Let λ(t) be an interior point of

Dλ. The vector γ(λ(t)) is called a subgradient of g around λ(t) that satisfies

g(λ(t+1))− g(λ(t)) ≥ (λ(t+1) − λ(t))Tγ(λ(t)), ∀λ ∈ Dλ (3.9)

i.e., the subgradient defines a hyperplane that supports the set of feasible solutions

around the point λ. To find an expression for a subgradient of g, we define an

indicator 1
(t)
i,max as

1
(t)
i,max(x) =


1, if λ

(t)
i fi(x) ≥ λ

(t)
j fj(x) ∀j 6= i

0, otherwise
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and rewrite 3.9 as

g(λ(t+1))− g(λ(t)) =

∫
T

max
i
{λ(t+1)

i fi(x)} −
∫
T

max
i
{λ(t)

i fi(x)}

=
n∑
i=1

∫
T

1
(t+1)
i,max(x)λ

(t+1)
i fi(x)−

n∑
i=1

∫
T

1
(t)
i,max(x)λ

(t)
i fi(x)

≥
n∑
i=1

λ
(t+1)
i

∫
T

1
(t)
i,max(x)fi(x)−

n∑
i=1

λ
(t)
i

∫
T

1
(t)
i,max(x)fi(x)

where we have used the facts that g is convex and 1
(t+1)
i,max maximizes the value of the

integrand of g for a given point λ. Therefore, we can set the subgradient to be the

vector with components defined as

γ
(t)
i =

∫
T

1
(t)
i,max(x)fi(x)dT (3.10)

which is verified to be a subgradient of g since 3.9 holds. To deal with the constraint∑n
i=1 λi = 1, the subgradient method must be modified by including a normalizing

constant ν,
n∑
i=1

λ
(t+1)
i =

n∑
i=1

(λ
(t)
i − αtγ

(t)
i + ν) = 1

from which it is easy to see that ν = −αt
∑n

i=1 γ
(t)
i

n
. Thus the subgradient update rule

for the constrained problem is

λ
(t+1)
i = λ

(t)
i − αt

(
γ

(t)
i −

∑n
i=1 γ

(t)
i

n

)
(3.11)

To keep every λ
(t+1)
i strictly positive then the step length αt should satisfy

αt <
λ

(t)
i(

γ
(t)
i −

∑n
i=1 γ

(t)
i

n

)
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for the cases when γ
(t)
i >

(∑n
i=1 γ

(t)
i

)
/n. This constraint provides an upper limit

for the step length at any time step, which is enforced in step 21 of the Algorithm 1

by multiplying the upper limit by a constant η < 1 . The choice of the step length

αt in 3.11 determines the rate of convergence and the accuracy of the solution. In

particular, as shown in [38], if we want the method to converge to the optimal solution

then αt should follow a diminishing step length rule. Such rule requires the step size

to satisfy

αt =
α′t

‖γ(t)
i ‖

α′t ≥ 0, lim
t→∞

α′t = 0,
∞∑
i=1

α′t =∞
(3.12)

Examples of sequences that satisfy 3.12 are of the form α′t = α′0/t
p, where 0 <

p ≤ 1. Such sequences are called as p-series, which are known to be divergent;

i.e. limk→∞
∑k

i=1 α
′
t → ∞. The choice of p for these sequence will determine the

speed of convergence and the error at convergence. For our experiments we set

p = 1. Subgradient methods are usually used without any formal stopping criteria

since these are problem specific. Dall’Aglio and Di Luca [37] provide two stopping

criteria for the subgradient method for fair division: until max
j∈R

uj(Aj)−min
j∈R

uj(Aj) <

ε or by checking the distance between geometric upper and lower bounds on the

optimal set. Both are based on the observation that the optimal solutions for the

fair division problem are equitable when the utilities ui are normalized, mutually

absolutely continuous and linearly independent. The utilities are mutually absolutely

continuous if for every subset A ⊆ T , there exists at least one robot for which the

utility ui(A) is positive. The utility functions in our case are not normalized, so the
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stopping criterion is
max
j∈R

uj −min
j∈R

uj

max
j∈R

uj
< ε

where uj =
∫
T
1ifi(x)dT .

Algorithm 1 describes the procedure to compute the time optimal solution for

the multi robot problem described in Section 3.1. This algorithm assumes that

every robot has enough energy complete its part and ensures that the spatial load is

balanced between robots. Since the subgradient is not necessarily a descent direction

we must keep track of the best solution found so far,

λ
(t+1)
best = arg min

l
g(l), l ∈ {λ(t)

best,λ
(t+1)} (3.13)

which is done in steps 18 to 20 of Algorithm 1.

3.3 Experimental Results

An example of the execution of this algorithm is shown in Figure 3–2, for the

task of covering a square region of 100m×100m using three robots with speed profiles

defined as

s1(x) =
2

1 + e−40x1+20
m2/s

s2(x) = 2 +
1

100
x m2/s

s3(x) =
2

1 + e30x2−15
m2/s

an integration cell size of 0.0625m, and a error tolerance ε of 0.000001. The final

allocated areas are a1 = 2966.8m2, a2 = 4087.2m2 and a3 = 2946.0m2. The final

utilities are u1 = −1487.2s, u2 = −1487.2s and u3 = −1487.2s. For each robot i, −ui

is the expected time it would take it to complete its assigned region. This allocation
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Figure 3–1: Robot speed profiles for a coverage task in a square region

is optimal since all robots receive the same utility, the fastest robot is assigned more

work, and swapping elements between the allocations would decrease the utilities of

the robots.

Figure 3–3 shows a result of the allocation algorithm with 5 robots and a region

defined by a non-convex polygon. As mentioned before, the algorithm will still find

time-optimal solutions as long as the densities fi are absolutely continuous with
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Figure 3–2: Final allocation of regions Ai to each robot i ∈ R

respect to each other. In a non-convex environment additional considerations on the

allocations should be taken, such as connectedness and reachability.

It must be noted that this algorithm may not converge if ui(A) = uj(A) for

some i, j ∈ R and a set A of measure greater than 0. In this case, the algorithm will

oscillate between assigning A to i and j. Figure 3–4 shows how the error decreases

non-monotonically, with the oscillations at the end demonstrating the aforementioned

effect. One way of dealing with this is to assign every x ∈ A uniformly at random

to any robot i with fi(x) = max
j
fi(x). If the task is defined in a metric space,

then other properties of the allocations Ai can be used to resolve the conflicts such

as connectedness and minimizing distances. In our coverage example, the robot

position is an element of the same space as the task, therefore there exists a distance
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Algorithm 1: Min-max time task subdivision

Inputs: A set T ∈ Rd which represents the task to be completed;
Speed profiles si,max for each robot i ∈ R;

A sequence of αt that satisfies (3.12);
An error tolerance ε > 0 and a maximum number of iterations tmax .

Output: A function Kmax : T → R that encodes the allocation A = {A1, . . . , An}
which satisfies⋃n

i=1Ai = T,
Ai ∩ Aj = ∅ ∀i 6= j,

and minimizes the maximum time spent by any robot;
1: λ = (λ1, . . . , λn), γ = (γ1, . . . , γn)
2: λi ← 1/n ∀i ∈ R
3: t← 1, εt ←∞
4: fi(x) = − 1

si,max (x)
∀x ∈ T, i ∈ R

5: while t ≤ tmax ∧ εt ≤ ε do
6: for each x ∈ T do
7: Kmax (x)← arg max

i
λifi(x)

8: for each i ∈ R do

9: 1i(x)←

{
1, if Kmax (x) = i

0, otherwise

10: gt ←
∑n

i=1

∫
T
1i(x)λifidT

11: if gt ≤ gbest then
12: gbest ← gt
13: Kbest ← Kmax

14: for each i ∈ R do
15: γi ←

∫
T
1i(x)fidT

16: γ̄ ← (
∑n

i=1 γi)/n
17: γ̄ = (γ̄, . . . , γ̄)1×n
18: α← αt
19: for each i ∈ {x ∈ R : γ

(t)
i > γ̄} do

20: if α > λ
(t)
i /(γ

(t)
i − γ̄) then

21: α← ηλ
(t)
i /(γ

(t)
i − γ̄)

22: λ← λ− α (γ − γ̄)
23: t← t+ 1, εt ← (max

j∈R
uj −min

j∈R
uj)/max

j∈R
uj

24: return Kbest
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Figure 3–3: Final allocation of regions Ai to each robot i ∈ R for an example with
5 robots.

function between the robot position pi ∈ Rd and every point x ∈ T . Thus, for any

conflicting set A we could replace every fi with a

f
′

i (x) = fi(x)− κdi(pi, x)

where κ determines the influence of the distance factor on the solution. In such

cases, the problem becomes a generalized version of finding a Voronoi tessellation of

A. Figure 3–5 shows the case for three robots with speed profiles defined as

s1(x) =
2

1 + e−40x1+20
m2/s

s2(x) = 1 m2/s

s3(x) = 1 m2/s
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Figure 3–4: Logarithmic plot of error vs. number of iterations

The speed profiles were chosen to demonstrate the conflict that arises for having two

robots with the same utility density functions. We compare the allocations made

with the modified utility densities f ′i , with κ = 0 and κ = 5e − 6. In the first case

the final utilities are u1 = −1662.7, u2 = −3337.5 and u3 = 0; the algorithm fails

to split the task between the robots 2 and 3. By introducing the distance term the

final utilities are u1 = −1667.1, u2 = −1667.2 andu3 = −1667.1, balancing the load

between the three robots.

3.3.1 Complexity analysis of algorithm 1

Both the time complexity and accuracy of Algorithm 1 depend on how T is

discretized and the desired accuracy of the solution, ε. Let |T | be the number of
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Figure 3–5: Example of introducing a distance term on the utility densities fi
(a) Allocation with no distance term (b) Allocation with distance term weighted by

κ = 5e− 6. The dots denote the positions of the robots.

elements into which T is discretized. Each iteration of the subgradient update exe-

cutes n(|T | + 1) + Oint(n + 1) operations, where Oint is the number of operation in

the numerical integration method used. For example, if integration is done by using

a midpoint or trapezoidal rule over the discretization of T , then Oint = |T | and the

run time of each iteration is O(n|T |+ n+ |T |).

To obtain an estimate of the number of iterations until convergence we use the

same analysis as in [38]. We need to determine distance the point λ(t) has to traverse

from the initial point to the optimal solution. Let λ∗ be the optimal point. First,

we note that g(λ) is Lipschitz continuous since we assume every fi is absolutely

continuous. Therefore, the subgradient γ is bounded by some constant K1 such

that ‖γ‖ ≤ K1. This bound is attained when at the optimal point, i.e. when

ui = u∗ ∀i. Thus, ‖γ‖ ≤ K1 =
√
n u∗2. The distance between the starting point

λi = 1/n, ∀i ∈ R and the optimal point λ∗ is also bounded by a constant K2. Since

43



Dλ is the n-simplex, K2 is the distance between the center of the n-simplex and one

of its corners. Therefore,

‖λ(1) − λ∗‖2 ≤ K2
2 =

(
1− 1

n

)2

+
n∑
i=1

(
1

n

)2

= 1− 1

n

These two bounds K1 and K2 will allow us to estimate the number of steps needed

to converge up to an accuracy of ε. At the time step t + 1 we have the following

recursive definition,

‖λ(t+1) − λ∗‖2 =‖λ(t) − αtγ(t) − λ∗‖2

=‖(λ(t) − λ∗)− αtγ(i)‖2

=‖λ(t) − λ∗‖2 − 2αtγ
(t)T (λ(t) − λ∗) + α2

t‖γ(i)‖2

≤‖λ(t) − λ∗‖2 − 2αt(g(λ(t))− g(λ∗)) + α2
t‖γ(t)‖2

≤‖λ(1) − λ∗‖2 − 2
t∑
i=1

αi(g(λ(i))− g(λ∗)) +
t∑
i=1

α2
i ‖γ(i)‖2

where we have used the inequality 3.9 and replaced ‖λ(t) − λ∗‖2 recursively. Using

our definition of K2 and the fact that ‖λ(t) − λ∗‖2 ≥ 0, we get the inequality,

2
t∑
i=1

αi(g(λ(i))− g(λ∗)) ≤ K2
2 +

t∑
i=1

α2
i ‖γ(i)‖2

Since g(λbest)−g(λ∗) ≤ g(λ(i))−g(λ∗) ∀i and ‖γ(i)‖ ≤ K1 ∀i the previous inequality

can be rewritten as

g(λbest)− g(λ∗) ≤ K2
2 +K2

1

∑t
i=1 α

2
i

2
∑t

i=1 αi
(3.14)
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The right hand side of this inequality is minimized when

αi =
K2

K1

√
t

∀i

providing a bound on the error. Replacing this value in 3.14 and setting g(λbest) −

g(λ∗) = ε yields

ε ≤
K2

2 +K2
1 t
(

K2

K1

√
t

)2

2t K2

K1

√
t

=
K1K2√

t

which means that the algorithm must be run for at least(
K1K2

ε

)2

≈ n

(
u∗

ε

)2

steps to achieve the desired accuracy. Combining this number with the run time of

each iteration, we have that the complexity of the algorithm is O(n
(
u∗

ε

)2
(n(|T | +

1) + Oint(n + 1)). For the case when the trapezoidal rule is used, the complexity

is O((u∗n)2 |T |/ε). Figure 3–6 shows the increase in running time with increasing

number of robots.

3.3.2 Balancing energy costs

As mentioned before, another way to ensure load balancing is to take the max-

sum problem and introduce energy cost constraints. Let Ci(A) denote the cost for

robot i to perform the subtask A ∈ T . We assume that each Ci(A) > 0, ∀A ⊆ T

is a countably additive measure over the subsets of T . Let ci(x) be the density of

Ci over T . Let Ei < Ci(T ) be the energy capacity of robot i. Given the energy
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(a) (b)

Figure 3–6: Plot of the increase in runtime (in seconds) against the number of robots.
The data points correspond to the average of 20 runs of the algorithm with 2, 3, 5,

8, 13, 21, 33, 54, 89, 144, 180 and 233 robots, with ε = 0.01 and ε = 0.001. The
dots are the mean running time in seconds, the bars show the minimum and

maximum runtime for each value of n

constraint, we want to solve the following optimization problem,

max
A

n∑
i=1

∫
Ai

fidT

subject to Ai ∩ Aj = ∅ ∀i ∈ R, j ∈ R
n⋃
i=1

Ai = T∫
Ai

ci(x)dT ≤ Ei

(3.15)

If the robots do not have enough energy to complete the whole task then the problem

becomes unfeasible. We will first assume that the combined energy capacities of the

robots are enough to complete the task. By using the indicator function 1i, this can
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be rewritten as

max
11,...,1n

n∑
i=1

∫
T

1i(x)fi(x)dT

subject to

∫
T

1i(x)ci(x)dT ≤ Ei ∀i ∈ R
n∑
i=1

1i(x) = 1 ∀x ∈ T

1i(x) ∈ {0, 1} ∀i ∈ R, x ∈ T

(3.16)

By a similar procedure as in equation 3.5, we can formulate the dual of 3.15 as

min
λ1,...,λn,Λ

n∑
i=1

λiEi +

∫
T

Λ(x)dT

subject to Λ(x) ≥ fi(x)− λici(x) ∀i ∈ R, x ∈ T

(3.17)

The function Λ(x) depends on the λ variables and the optimal solution Λ∗ should

satisfy Λ∗(x) = fi(x)− λ∗i ci(x). Consequently, we can rewrite the dual problem as

min
λ1,...,λn

n∑
i=1

λiEi +

∫
T

max
i
{fi(x)− λici(x)} dT (3.18)

By following the same procedure of the previous sections, it is simple to show that a

subgradient for this algorithm is given by

γ
(t)
i = Ei −

∫
T

1
(t)
i,max(x)ci(x)dT (3.19)

where 1i,max is given by

1
(t)
i,max(x) =


1, if fi(x)− λ(t)

i ci(x) ≥ fj(x)− λ(t)
j cj(x) ∀j 6= i

0, otherwise
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Figure 3–7: Energy balanced allocations for the example in section 3.2, using area
(a) and distance (b) as the energy cost functions.

The first term in Eq. 3.19 is the energy capacity, the second term is the cost associated

to the current allocation for robot i. Intuitively, the λi variables represent how

much importance will be given to the cost functions in order to satisfy the energy

constraints. Starting with λi = 0 for all i, the initial allocation will be the max-sum

allocation; i.e. with nothing allocated, no robot violates its energy constraint, thus

the objective function has the energy terms equal to 0. If any robot i violates the

energy constraint then γi < 0, thereby increasing its corresponding λi on the next

time step. On the other hand, if robot i does not violate the energy constraint,

meaning it still has some energy to spend, then γi > 0, reducing the value of its cost

term λici(x) on the next time step. This has the effect of changing the sizes of the

allocations of the robots to minimize the difference
∣∣∣Ei − ∫T 1(t)

i,max(x)ci(x)dT
∣∣∣.
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Figure 3–7 shows two examples of energy balanced allocations for the example

setting of section 3.2. In one of the examples the cost functions are ci(x) = 1 for all x;

i.e. the cost is the allocated area. In the other example the cost is the distance from

the point x to the location of the robot. The algorithm for computing the energy

balanced partitions is the same as Algorithm 1, except for the computation of γi and

1
(t)
i,max(x), and the stopping criterion. In this version of the task subdivision problem,

the optimal solutions are refinements of the max-sum solution in which there is a

restriction on how much work we can allocate to each robot. Depending on the

energy capacities and costs, not every robot will be allocated a subtask. Subtasks

are greedily allocated to the fastest robots, and the load is subsequently reduced

for robots that violate their energy capacity constraint. Therefore the subgradient

search algorithm should stop when γi = 0 for the robots with Ai 6= ∅; i.e. the robots

that have been allocated a subtask.

3.4 Summary

In this chapter we’ve formulated the task subdivision problem for continuous

tasks as a fair division problem. We provided an algorithm for task subdivision with

implicit load balancing and showed some convergence properties, inherited from the

subgradient method used for performing the subdivision. We also showed how to

include energy balancing constraints explicitly and still use the same algorithm to

find the corresponding task subdivision. In both cases, the subdivision is performed

by a centralized algorithm, for which every robot should communicate its density

function fi and possibly its energy cost and capacities, ci and Ei. In the next section

we provide a first approach for a decentralized algorithm for task subdivision.
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CHAPTER 4
Decentralized task subdivision

When performing tasks with multiple robots, sometimes it is desirable to decen-

tralize the computation of the task subdivision. We will concentrate on the max-min

problem of the previous section. One approach is that of distributing the computa-

tion of the subgradient algorithm by letting each robot receive incremental updates

on the components of the subgradient vector from other robots [39]. If updates to

the subgradient components are received uniformly at random, each γi will on av-

erage be updated the same number of times, and the local solutions will converge

to the centralized optimal solution. Unfortunately, in our setting it is not possible

to guarantee that updates on subgradient components will occur uniformly at ran-

dom, unless every robot can communicate constantly with the other robots. To deal

with this, our first approach is to let the robots move randomly inside their allocated

partitions and let them refine their local partitioning with updates from other robots.

4.1 Decentralized algorithm

We define a degree of heterogeneity between two robots, measured by the sum

of squares difference of their utility density functions fi, fj, as

SSDij =

∫
T

(fi(x)− fj(x))2 dx (4.1)

This number gives an idea of how similar two robots are. Every robot has a commu-

nications range ri. Our design decision is that initially every robot has knowledge
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only of its own density fi and assumes every other to be uniform over T . The value

of these assumed uniform densities should be the same for all robots j 6= i and

equal to some small number. This should make robot i allocate most of T to itself,

from its local information. Each robot will compute its own subgradient vector with

its local information and broadcast its utility density fi when requested by other

robots in range.,The robot i will also request the corresponding fj’s of the other

robots in range and update its estimated λi, which in turn updates its local allo-

cation Ai = {Ai1, . . . , Ain}. Algorithm 2 describes this procedure for every robot.

The idea is to drive each robot to its current locally assigned subtask Aii. If two

robots i, j have a small value for SSDi,j, then their allocations Aii and Ajj will be

similar, eventually driving themselves within communications range. Otherwise the

distance SSDi,j will be large and both robots will have non-conflicting allocations.

This ignores the fact that offsets between the robots timings results in the possibil-

ity of repeated work, by having one robot follow another, but never getting within

communications range. To avoid this, for the following sections, every robot will

drive itself towards k locations randomly picked within their allocations Ai. Other

approaches such as letting robot i follow the centroid of Ai or performing systematic

coverage over the connected pieces of Ai could be considered, but the random tour

over k locations provides a baseline of performance for our algorithm that is general

enough. To see this, assume there are n locations to visit in a grid over a conflicting

allocation between robot i and j. Assume it takes a single time step to transition

between neighboring locations. Then the time it will take the robots to meet each

other is the time for two random walks to reach the same state. Assume that the
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Algorithm 2: Decentralized task subdivision (executed by every robot i)

Inputs: A local utility density function fi;
The number of robots n;
A sequence of αt that satisfies (3.12);
An error tolerance ε > 0 and a maximum number of iterations tmax .

Output: A function Ki,max : T → R that encodes the allocation

Ai = {Ai1, . . . , Ain}
which satisfies⋃n

i=1Ai = T,
Ai ∩ Aj = ∅ ∀i 6= j,

and minimizes the maximum time spent by any robot;
1: Set every local fj for j 6= i to some initial estimate (i.e.fj(x) = constant)
2: λi ← 1/n ∀i ∈ R
3: Compute an initial subgradient vector γ from prior information
4: Initialize the set of encountered robot Ki as {i}
5: while true do
6: Move to a previously unvisited location inside Ai
7: if robot is within communications range of then
8: Request and update fj
9: Ki ← Ki ∪ j
10: Compute the local Kmax , 1i(x) with the information from the set of

encountered robots Ki

11: Update γ
12: Listen for other robots in range
13: Broadcast fi if requested
14: return Kbest
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grid is a rectangular region that covers the union of the conflicting allocations for

robots i and j. By a result of Aldous [40] the meeting time of two such random walks

is half the cover time of a single random walk. And as shown by Aldous [41] and

Zuckerman [42], this cover time is Ωn log2 n. Therefore the two robots will meet in

a finite number of time steps, depending on the size of the conflicting region.

Every robot i ∈ R initially assumes it is the best suited robot for all parts of

the task T . At any time, when no new information is available, a robot might have

assigned to itself a non-conflicting part of the task, which means that its SSDi,j is

large for any j ∈ R, or assign itself a part of the task in which it will encounter other

robots with similar preferences. In the latter case, new information will be available

to refine task distribution.

We assume that the robots are completely heterogeneous, i.e., there are no two

robots with equal densities fi = fj. At the beginning, every robot will assign the

whole task T to itself. The choice of the number of locations k to visit, determines

the chances that any two robots will meet. This part is similar to the rendezvous

problem [2, 43, 44]; except the robots are not actively trying to meet each other.

Instead, robot i constructs the set of k locations by picking them uniformly at random

from the partition Ai. If robot i fails to meet any other robot, it tries again. Since

at this time every robot assigns to itself the whole task T , the probability that any

robot i meets another robot j at the first trial is some positive number that depends

on the minimum communication radius among robots r. This probability is non-zero

as long as r is not much smaller than the size of T . If any two robots i and j come

within communications range and exchange their utility density functions, then their
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local partitioning will be the same and both robots will move away from each other,

as their allocated subtasks will be disjoint– from solving the max-min problem with

the locally available information.

In general each robot time a pair of robots i and j exchange information, their

allocated subtasks will be disjoint, And the task will be split in half between the

pair. As information from new robots is acquired, each robot will repartition the

task among its local group of m robots. If a robot ends without meeting all n robots,

it will end up covering some partition for which it is the best suited robot.

An example of a run of Algorithm 2 for 6 robots over a square region is shown in

Figures 4–2. The speed profiles used for this example are shown in Figure 4–1. Even

though none of the robots has complete information to compute globally optimal

partitions, e.g. robot 6, their locally assigned partitions approximate the ones of

the centralized solution. The paths traversed by the robots, figure 4–3, illustrate

how each robot ends covering a region that roughly corresponds to the allocation

computed with the centralized algorithm, shown in Figure 4–4.

A remaining issue to study is the effect of varying the radius r on the running

time until finding a partition, and the number of trials until obtaining information

form a new robot. We hypothesize that increasing the radius will bring the number

of iterations closer to that of the centralized approach. It must be noted that the

centralized algorithm, in general, requires less computation and finds partitions with

smaller values for the objective function g. To see this it is enough to consider that

each robot is running the centralized algorithm with local information, and updates

to the local information come after a possibly long wait time. Nevertheless, the
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motivation for a decentralized algorithm is the added robustness to partial failures

and the fact that robots do work while searching for partitions.

4.2 Clustering similar robots

Another approach is to let the robots form coalitions to perform task subdivision.

To do this, we first cluster the robots into k groups. This clustering is based on

the SSDi,j similarities and corresponds to finding k consecutive minimum cuts of

the graph G(V,E) , where the vertices are the robots i ∈ R and the edges have

cost SSDi,j. The k clusters are found by finding the minimum cut of the biggest

connected component of G; i.e. first split G into{G1, G2}1, then split the biggest

between the two connected components to obtain {G1, G2, G3}2, and so on. Once

the k clusters have been found, the robots utility densities are combined as

Fk(x) =

nk∑
i=0

n

nk
1max(x)fi(x), ∀x ∈ T

This is done to ensure that a group of nk robots receives a part of the task that is

proportional to nk. This is similar to the weighting strategy used in the analysis of

cooperative fair division games [37]. After the clustering is done, the machine that

performed the clustering proceeds to perform task subdivision among the k clusters.

Once this is done, each task subdivision is either done by recursive clustering or by

the decentralized approach of the previous section.

This algorithm will no longer produce an optimal partition, but rather it will

approximate one as long as the edges that were cut had values close to 0. Otherwise

a robot that could belong to multiple clusters will only be allocated a fraction of the

optimal partition.

55



4.3 Summary

In this chapter we presented ideas for decentralized and partially centralized

approaches for task subdivision with a group of n robots performing a coverage task.

We discussed the reasons why such algorithm might work and the algorithms through

simulation. As mentioned before, the centralized algorithm might provide the best

results; but this is under the assumption of full communication between the robots

and a central “master” processor. The decentralized algorithm does not make that

assumption, since every robot computes a local task subdivision, which is refined as

the robots obtain new information.

Although we only mentioned the case of obtaining new information about other

robots, the decentralized algorithm should also work in cases where the robots have

no previous knowledge of their utility density fi. Updating the function fi only

changes the search direction, with an impact on the convergence time, as the alloca-

tions computed with previous information are a valid starting point. To avoid falling

in a local minima, the robots reset the step size of their sub gradient search to a

bigger value.

We also presented an approach for task subdivision through recursive clustering.

This approach allows us to off load the computation from single robots to intermedi-

ate, possibly more powerful processors. The price to pay for the recursive clustering is

not only computation time but also the possibility of having a robot whose max-min

allocation within the cluster might only a fraction of the optimal allocation.
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(a)

(b)

Figure 4–1: Speed profiles used for the example run of Algorithm 2. (a) shows a 3d
view of the speed profiles. (b) show the same speed profiles in a density plot; darker
means faster.
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(a)

(b)

Figure 4–2: Allocations computed locally by each robot. The allocations shown
correspond to the ones at time 0 (a), and after 1765 time steps (b). Robot 6 never
exchanges information with other robots
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Figure 4–3: Paths traversed by the robots during the execution of Algorithm 2.

Figure 4–4: Allocations obtained by executing Algorithm 1, which is centralized..
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CHAPTER 5
CONCLUSION

In this work we presented an approach for subdividing and allocating a single

global task between multiple heterogeneous robots. We have determined the compu-

tational complexity of the approach and illustrated its effectiveness. This approach

deals with the heterogeneity of the robot team by letting the robots define a prefer-

ence function over the task space. In the specific case of terrain coverage, we have

illustrated how our approach can be used to find a suitable time-optimal task allo-

cation that corresponds, as well, to a spatial decomposition. We suspect this same

approach should be easily generalizable to Rn, as long as integrals are computed

efficiently, e.g., with a Monte Carlo algorithm. Such subdivision optimizes the time

spent by any robot on its own allocation. These time estimates are useful for selecting

meeting times and locations in a multi robot rendezvous problem [43]. Although the

algorithm proposed in this work is able to find partitions of arbitrary speed profiles

efficiently, there is no guarantee that the partition is the best one for real robots with

non-holonomic constraints. In such cases, the assumption of additive utility function

will not hold; i.e., depending on the motion model of the robots, some shapes of

allocations will be preferred.

The algorithms presented in this work need to be tested with real robots to

provide more insights on better strategies for task subdivision and for validating if

the fair division approach is good enough. These experiments should give us an idea
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of how to better relate robot capabilities and motion constraints to the preference

scoring functions.

Finally, the algorithm needs to be tested on a probabilistic setting in which

the robots have no previous information on how their capabilities relate to task

performance. In this case, the robots will need to measure their performance from

their environment and from proprioception; measurements that will be noisy.

5.1 Future Work

There are multiple avenues of our interest for future work. One is the per-

formance guarantees in the case of incomplete information. This problem arises in

multi-robot systems as no communication channel is completely reliable. Thus it is

of our interest to see what are the effects of incomplete, out of date and possibly

wrong information on the convergence time for the allocations.

We are also interested in the time varying version of our problem. Certain events

might produce changes in the environment or robot abilities, rendering previous

allocations invalid. A similar situation occurs when the robots have no previous

information: as robots explore the task space, new information brings the need for

reallocation of the subtasks.

Another avenue for research is to introduce transitive communication. In our

work we only considered 1-hop communication which might make robots converge

to regions in which they are locally the best suited robot, with respect to neighbor-

ing robots; this allocation may be far from optimal since the robot does not have

information from regions far from its current allocation.
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A particular topic of interest is that of combining task allocation and ren-

dezvous [43]. After a first allocation, we studied the problem of distributed and

iterated task subdivision by letting the robots move randomly inside their allocated

region. This was done to guarantee that the robots would meet in finite time. So

the question is if we can do better by having the robots move systematically within

their allocated regions and use a smarter strategy to find each other to exchange

information.
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