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Abstract— We study the problem of distributing a single
global task between a group of heterogeneous robots. We
view this problem as a fair division game. In this setting,
every robot defines a preference function over parts of the
task according to its sensing and motion capabilities. These
preferences are described by density functions over the task.
With such interpretation, we want to find an allocation of the
global task that maximizes the probability of task completion.
We first formulate the task distribution problem as a fair
subdivision problem and provide a centralized algorithm to
compute the allocations for each robot. We provide a complexity
analysis and computational results of the algorithm.

I. INTRODUCTION

We consider the problem of coordinating multiple het-
erogeneous robots to perform a single global task, where
a task is an activity to be carried out over an operating
region. Examples of such tasks include cleaning duties inside
a building (a coverage task), exploration and mapping of an
unknown environment and searching for a target inside a
bounded region and aerial surveillance. We consider the case
where progress on the subtasks can be carried out in parallel
and independently between the robots.

Coordination of robots through task allocation is mo-
tivated by parallelization of workload and robustness to
partial failures [1]. Task subdivision is also motivated by
the heterogeneity in robot teams [2], where the assignment
of subtasks is dependent on robot abilities. Some of the
existing strategies for task allocation consider the tasks as
single atomic units [3], [4], or as a hierarchy of such units [5].
These single atomic units are usually single points in space or
are predefined by a designer or central planner. In this work
we treat tasks as subsets of the global task. In this sense, if
the global task is a coverage task, subtasks are subregions
instead of single points.

Our work is related to environment partitioning and load
balancing through locational optimization [6], [7], [8], [9], in
particular to the equitable partitioning of environments [10],
[11]. A difference with those approaches is that, in our case,
the partition of an environment is based on multiple arbitrary
measures, different for each robot. This can arise naturally
when different types of robots are jointly performing a task
(e.g. planes and boats), or when vehicles have different
performance characteristics (e.g. worn vs fresh batteries or
tires). We are interested in introducing the heterogeneity
of the robot team to drive the task subdivision process.
Heterogeneity of the robot team arises from the dependence
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of the performance of sensing and locomotion on the char-
acteristics of the environment. We encode this dependence
with a scoring function for each robot. The goal is to find
subdivisions of the task that maximize the accumulated score
of all robots, while balancing the workload among them. The
accumulated scores represent the utility of assigning work to
each robot.

With this goal, the task subdivision problem can be
interpreted as one of fair division: we want to maximize
the utility of the task division, while allowing each robot
to contribute to the task as much as possible. Fair division
theory treats problems of dividing an object between n
interested players satisfying some optimality criterion [12],
[13]. The contribution of this work is the formulation of
a task distribution strategy for heterogeneous robots as a
problem of fair division. In the context of a coverage task,
we present a centralized algorithm that finds globally optimal
solutions. We show computational results of the impact on
the performance of our proposed algorithm while varying
parameters such as the number of robots, resolution (cell-
size) of the preference functions and similarity between
preferences.

II. BACKGROUND

Fair division is the problem of dividing an object among n
interested players, so that each believes it has received a fair
share. The players might have different opinions on the value
of different parts of the object; it is this disagreement what
makes the problem interesting and applicable to our task
subdivision problem. We define an allocation as optimal and
fair if every robot receives the same utility and this utility
is maximized. This agrees with the properties of solutions
to a max-min fair division game [12], [13]. Figure 1 depicts
an example fair division scenario of a coverage task with
heterogeneous robots. An underwater robot and a surface
vehicle are deployed in an unstructured environment. In a
search task in such a context, performance improvements are
obtained by assigning the best suited robot for each region
of the environment; e.g. the boat to regions where the sea
bottom is visible and the underwater robot to regions that
are deep enough to move freely. Each vehicle needs to be
allocated to a (possibly connected) region where it is best
suited to the task. An example optimal allocation is shown in
Figure 2(b) . We can state this problem formally as follows.
Let the set T represent the task to be divided. Let u =
{u1, u2, . . . , un} be a set of utility functions ui : T → R,
where T is a σ-algebra of T . Define a k-partition of T as a
set A = {A1, A2, . . . , Ak} of elements from T . Each ui is
countably additive, i.e. ui(Aa ∪ Ab) = ui(Aa) + ui(Ab)
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Fig. 1. Example fair division scenario between two robots: an underwater
robot (a) and a boat (b). The object to be distributed is a territory depicted
by the thick black boundary. For each robot, there is a function fi that
defines how well suited are the robots for performing a given task at any
point

for any pair of disjoint sets Aa, Ab ⊆ T . In our setting
we consider utilities that are non atomic; i.e. for every set
A ⊂ T there exists another set B ⊂ A for which ui(A) >
ui(B) > 0. Define the measure v with respect to which
each ui is absolutely continuous. From the Radon-Nikodym
theorem [14], there must exist a function fi for each ui such
that ui(A) =

∫
A
fidv, where v is a measure with respect to

which all ui are absolutely continuous. In a coverage task,
the area of the region is one such measure. The functions
fi represent a density distribution of the value for robot i
over the subsets of T . Thus, we can interpret each fi as the
preference of robot i. The simplest optimization criterion
is to maximize the sum of utilities; an optimal partition is
an n-partition of T such that

∑
ui(Ai) is maximized. For

instance, let f∗ = max fi, an upper envelope of all the
measures. Then every n-partition of T satisfies

n∑
i=1

ui(Ai) =

n∑
i=0

∫
Ai

fidv ≤
n∑
i=0

∫
Ai

f∗dv =

∫
T

f∗dv

(1)
Thus the partition that maximizes the sum of utilities is
obtained by assigning every subset of T to the player
that values it the most. This solution is optimal in that it
maximizes the global value, but it might assign all of T to
a single robot if ui(A) > uj(A) ∀i, j. To avoid this, we
can use an optimization criterion which finds partitions by
maximizing the minimum utility among players. This can be
stated as the following optimization problem.

max
A

umin

subject to umin ≤
∫
Ai

fidv ∀i

Ai ∩Aj = ∅ ∀i, j
n⋃
i=1

Ai = T

(2)

In the case every ui is non atomic, Dubins and Spanier [12]
proved that the space of allocations is compact and convex,
therefore optimal max-min partitions must exist. They also
proved that optimal partitions are equitable when all the
utilities are absolutely continuous with respect to each other;
i.e., if all the players assign a non zero value to every possible
subset of T , then the optimal partition will allocate every
player the same share (see Corollaries 1.1 and 1.2 in [12]).
Dall’Aglio [13] also showed that the space of allocations is
convex, observed the optimal allocations are Pareto optimal
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Fig. 2. Example of fair and optimal allocations for the scenario in Figure 1.
A fair allocation (a) guarantees at least half of the maximum utility, while
an optimal partition (b) might result in every player obtaining their first
choice

and showed that each element Ai of an optimal partition of
T corresponds to a dual optimal variable. Dall’Aglio and Di
Luca [15] provided an algorithm that solves the dual problem
by using the subgradient method [16] and exploiting the fact
that optimal allocations are equitable when the utilities are
mutually absolutely continuous. In the next section we will
provide a formulation of the task subdivision problem that
fits nicely with the fair subdivision background. The benefit
of using this approach is that we do not need to make any
assumptions about the shape of the object we are trying
to divide; i.e. T does not need to be simply connected or
polygonal.

III. PARTITIONING AN ENVIRONMENT AMONG
HETEROGENEOUS ROBOTS

A. Problem statement

A task T ∈ T is assigned to a group of n robots R.
The space of tasks considered here is T = Rd, where d
is the number of dimensions of the configuration space of
the robots. Each robot defines a performance score for each
subset of T as the function fi : T → R. We consider
the task of collecting sensor information over a bounded
region. Every robot has both a coverage speed profile si(x),
which represents its dependence of speed on terrain, and
a sensor quality profile qi(si(x), x), which represents the
dependence of its sensor performance on location and speed.
The speed and quality scores for each location are dependent
on each other: if the speed increases then the sensor quality
will decrease, and to improve the quality of the collected
data, the robot must reduce its speed.The objective is to
maximize the speed of coverage by the group of robots and
the quality of collected data, while guaranteeing a maximum
amount of work done. Let si,max be the maximum speed
of coverage that guarantees a minimum quality qi,min =
qi(si,max(x), x). We assume that the time it will take a robot
to cover any point x ∈ T is,

dt(x) =
dT

si,max(x) + εs
where dT ∈ T is an infinitesimal task element and εs << 1
is a constant added to avoid division by zero. Given the
task of collecting sensor data over a region T ∈ Rd and
a group of n robots, each with its maximum speed profile
si,max(x), we want every part of T to be assigned to the
robots in order to minimize the combined time. Formally,
let A = {A1, . . . , An} be the allocations of T to each robot
1 ≤ i ≤ n. Thus we want to solve the following optimization
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Fig. 3. Robot speed profiles for a coverage task in a square region: (a) s1(x) = 2
1+e−40x1+20 m2/s, (b) s2(x) = 2 + 1

100
x2 m2/s and (c)

s3(x) =
2

1+e30x2−15 m2/s

problem,

min
A

n∑
i=1

∫
Ai

1

si,max(x) + εs
dT

subject to Ai ∩Aj = ∅ ∀i, j ∈ R
n⋃
i=1

Ai = T

(3)

We assume that the robots are holonomic and are able to
compute plans that avoid visiting locations more than once.
Therefore the time spent in covering one region is the sum
of the times spent at every point.

B. Proposed methodology

To find solutions to this problem, we require that for every
x ∈ T , at least one i exists such that si,max(x) > 0,
otherwise x should be removed from T . We define the
indicator function 1i

1i(x) =

{
1, if x ∈ Ai
0, otherwise

(4)

Letting fi(x) = − 1
si,max(x)

, the problem (Eq. 3) is equivalent
to

max
11,..,1n

n∑
i=1

∫
T

1i(x)fi(x)dT

subject to
n∑
i=1

1i(x) = 1 ∀x ∈ T

1i(x) ∈ {0, 1} ∀i ∈ R, x ∈ T

(5)

which is in the form of a max-sum fair division problem
[12], implying that the optimal solution is to assign every
point x ∈ T to the fastest robot.

In this case, the robot utilities correspond to the negative
of an estimate of the time to cover Ai. Since this allocation
may not be balanced, we also define the max-min problem
below (Eq. 6),

max
11,..,1n

umin

subject to umin ≤
∫
T

1i(x)fi(x)dT ∀i ∈ R
n∑
i=1

1i(x) = 1 ∀x ∈ T

1i(x) ∈ {0, 1} ∀i ∈ R, x ∈ T

(6)

where umin is the least accumulated score between the
robots. To find optimal solutions of the problems (Eq. 5)

and (Eq. 6), we solve the dual optimization problem which
is convex, has a finite number of optimization variables
and its solutions can be transformed easily into primal
solutions [13], [17]. We can show, by using Lagrangian
duality, that the dual of this problem is

min
λ

∫
T

max
i
{λifi(x)}dT

subject to
n∑
i=1

λi = 1 ∀i ∈ R, x ∈ T

λi ≥ 0 ∀i ∈ R

(7)

This dual problem is convex, so we can use an iterative
search algorithm to find the optimal values for λi. Let
g(λ) =

∫
T
max
i
{λifi(x)}dT , i.e. the objective function we

are trying to minimize. Let Dλ be its domain. The function
g is equivalent to the one in the minimization step of the
algorithm in Section 6 of [13]. Since the objective function
in (Eq. 7) is not differentiable we may use a subgradient
search method [16]. Such method consists of the following
update rule,

λ(t+1) = λ(t) − αtγ(λ(t)) (8)

where t is the iteration index and αt is the step size. Let
λ(t) be an interior point of Dλ. The vector γ(λ(t)) is called
a subgradient of g around λ(t) if it satisfies

g(λ(t+1))− g(λ(t)) ≥ (λ(t+1) − λ(t))Tγ(λ(t)) (9)

for all λ ∈ Dλ; i.e., the subgradient defines a hyperplane
that supports the set of feasible solutions around the point
λ. By defining the max-sum indicator function 1

(t)
i,max as

1
(t)
i,max(x) =

{
1, if λ(t)i fi(x) ≥ λ(t)j sj(x) ∀j 6= i

0, otherwise

it can be easily shown that the vector

γ
(t)
i =

∫
T

1
(t)
i,max(x)fi(x) (10)

is a subgradient that satisfies (Eq. 9). To deal with the
constraint

∑n
i=1 λi = 1, the subgradient method must be

modified by including a normalizing constant ν,
n∑
i=1

λ
(t+1)
i =

n∑
i=1

(λ
(t)
i − αtγ

(t)
i + ν) = 1

from which it is easy to see that ν = −αt
∑n

i=1 γ
(t)
i

n . To keep



every λ
(t+1)
i strictly positive then the step length αt should

satisfy

αt < λ
(t)
i

/(
γ
(t)
i −

∑n
i=1 γ

(t)
i

n

)

for the cases when γ
(t)
i >

(∑n
i=1 γ

(t)
i

)
/n. This constraint

provides an upper limit for the step length at any time step.
This constraint is enforced in step 21 of the Algorithm 1
by multiplying the upper limit by a constant η < 1. The
choice of the step length αt for (Eq. 8) determines the rate
of convergence and the accuracy of the solution. In particular,
as shown in [16], if we want the method to converge to the
optimal solution then αt should follow a diminishing step
length rule. Such rule requires the step size to satisfy

αt =
α′t

‖γ(t)i ‖

α′t ≥ 0, lim
t→∞

α′t = 0,

∞∑
i=1

α′t =∞
(11)

Sequences of the form α′t = α′0/t
p, with 0 < p ≤ 1, satisfy

(Eq. 11). For our experiments we set p = 1. Subgradient
methods are usually used without any formal stopping crite-
ria since these are problem specific. Dall’Aglio and Di Luca
[15] provide two stopping criteria for the subgradient method
for fair division: until max

j∈R
uj(Aj)−min

j∈R
uj(Aj) < ε or by

checking the distance between geometric upper and lower
bounds on the optimal set. Both are based on the observation
that the optimal solutions for the fair division problem are
equitable when the utilities ui are normalized, mutually
absolutely continuous and linearly independent. The utilities
in our case are not normalized, so the stopping criterion is(

max
j∈R

uj −min
j∈R

uj

)/
max
j∈R

uj < ε

where uj =
∫
T
1ifi(x)dT .

Algorithm 1 describes the procedure to compute the opti-
mal time solution for the multi robot problem described in
Section III-A. This algorithm assumes that every robot has
enough energy to complete its part and ensures that the spa-
tial load is balanced between robots. Since the subgradient
is not necessarily a descent direction we must keep track of
the best solution found so far,

λ
(t+1)
best = argmin

l
g(l), l ∈ {λ(t)

best,λ
(t+1)} (12)

which is done in steps 18 to 20 of Algorithm 1.

IV. SIMULATION RESULTS

For the task of covering a square region of 100m× 100m
using three robots with speed profiles as depicted in Figure 3,
we show an example result of executing the algorithm in
Figure 4; with an integration cell size of 0.0625m, and an
error tolerance ε of 0.000001. For each robot i, −ui is the
expected time it would take to complete its assigned subtask.

This same algorithm is applicable for dividing non-convex
tasks: it will still find time-optimal solutions as long as the

Fig. 4. Final allocation of regions Ai to each robot i ∈ R. The allocated
areas are a1 = 2966.8m2, a2 = 4087.2m2 and a3 = 2946.0m2. The
utilities are u1 = −1487.2s, u2 = −1487.2s and u3 = −1487.2s.

Algorithm 1: Min-max time task subdivision
Inputs: A set T ∈ Rd which represents the task to be completed;

Speed profiles si,max for each robot i ∈ R;
A sequence of αt that satisfies (Eq. 11);
An error tolerance ε > 0 and a maximum number of

iterations tmax .
Output: A function Kmax : T → R that encodes the allocation

A = {A1, . . . , An}
which satisfies⋃n

i=1Ai = T,
Ai ∩Aj = ∅ ∀i 6= j,

and minimizes the maximum time spent by any robot;
1: λ = (λ1, . . . , λn), γ = (γ1, . . . , γn)
2: λi ← 1/n ∀i ∈ R
3: t← 1, εt ←∞
4: fi(x) = − 1

si,max (x)
∀x ∈ T, i ∈ R

5: while t ≤ tmax ∧ εt ≤ ε do
6: for each x ∈ T do
7: Kmax (x)← arg max

i
λifi(x)

8: for each i ∈ R do

9: 1i(x)←

{
1, if Kmax (x) = i

0, otherwise
10: gt ←

∑n
i=1

∫
T
1i(x)λifidT

11: if gt ≤ gbest then
12: gbest ← gt
13: Kbest ← Kmax

14: for each i ∈ R do
15: γi ←

∫
T
1i(x)fidT

16: γ̄ ← (
∑n

i=1 γi)/n
17: γ̄ = (γ̄, . . . , γ̄)1×n

18: α← αt

19: for each i ∈ {x ∈ R : γ
(t)
i > γ̄} do

20: if α > λ
(t)
i /(γ

(t)
i − γ̄) then

21: α← ηλ
(t)
i /(γ

(t)
i − γ̄)

22: λ← λ− α (γ − γ̄)
23: t← t+ 1, εt ← (max

j∈R
uj −min

j∈R
uj)/max

j∈R
uj

24: return Kbest

densities fi are absolutely continuous with respect to each
other. Nevertheless, additional considerations are necessary
for the allocations, such as connectedness and reachability.
It must be noted that this algorithm may not converge if
ui(A) = uj(A) for some i, j ∈ R and a set A of measure
greater than 0. In this case, the algorithm will oscillate
between assigning A to i and j. Figure 6 shows how the
error decreases non monotonically, with the oscillations at
the end demonstrating the aforementioned effect.
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Fig. 5. Example of introducing a distance term on the utility densities fi (a) Allocation with no distance term (b) Allocation with distance term weighted
by κ = 5e− 6. The dots denote the positions of the robots.

Fig. 6. Logarithmic plot of error vs. number of iterations

One way of dealing with possible conflicts is to assign
every x ∈ A uniformly at random to any robot i with fi(x) =
max
j
fi(x). If the task is defined in a metric space, then other

properties of the allocations Ai can be used to resolve the
conflicts such as connectedness and minimizing distances.
In our example, the robot position can be represented in the
task space. Thus, there exists a distance function between
the robot position pi ∈ Rd and every point x ∈ T . So for
any conflicting set A we could replace every fi with a

f
′

i (x) = fi(x)− κdi(pi, x)
where κ determines the influence of the distance factor on
the solution. In such cases, the problem is that of finding
generalized Voronoi tessellations of A. Figure 5 shows the
case for three robots with speed profiles defined as

s1(x) = 2
/(

1 + e−40x1+20
)

m2/s

s2(x) = 1 m2/s

s3(x) = 1 m2/s

with κ = 0 and κ = 5e − 6. In the first case the final
utilities are u1 = −1662.7, u2 = −3337.5 and u3 = 0;
the algorithm fails to split the task between the robots 2
and 3. By introducing the distance term the final utilities are
u1 = −1667.1, u2 = −1667.2 andu3 = −1667.1, balancing
the load between the three robots.

A. Complexity analysis of Algorithm 1

The time complexity and accuracy of Algorithm 1 depend
on discretization of T and the desired accuracy of the
solution, ε. Let |T | be the number of elements into which
T is discretized. Each iteration of the subgradient update
takes n(|T | + 1) + Oint(n + 1) operations, where Oint

is the number of operation in the numerical integration
method used. For example, if integration is done by using
a midpoint or trapezoidal rule over the discretization of
T , then Oint = |T | and the run time of each iteration is
O(n|T |+ n+ |T |). To obtain an estimate of the number of
iterations until convergence we use the same analysis as in
[16]. The error of the subgradient search is bounded by [16]

g(λbest)− g(λ∗) ≤

(
K2

2 +K2
1

t∑
i=1

α2
i

)/
2

t∑
i=1

αi (13)

where λ∗ is a global optimum. The constants K1 and K2

are defined as follows. First, we note that g(λ) is Lipschitz
continuous since we assume every fi is absolutely contin-
uous. Therefore, the magnitude of the subgradient vector is
bounded by some constant K1 ≥ ‖γ‖. This bound is attained
when , i.e. when ui = u∗ ∀i. Thus, ‖γ‖ ≤ K1 =

√
n u∗2.

The distance between the starting point λi = 1/n, ∀i ∈ R
and the optimal point λ∗ is also bounded by a constant K2.
Since Dλ is the n-simplex, K2 is the distance between the
center of the n-simplex and one of its corners. Therefore,

‖λ(1) − λ∗‖2 ≤ K2
2 =

(
1− 1

n

)2

+

n∑
i=1

(
1

n

)2

= 1− 1

n

The right hand side of this inequality is minimized when

αi =
K2

K1

√
t

∀i

providing a bound on the error. Replacing this value in
(Eq. 13) and setting g(λbest)− g(λ∗) = ε yields

ε ≤
K2

2 +K2
1 t
(

K2

K1

√
t

)2
2t K2

K1

√
t

=
K1K2√

t

which means that the algorithm must be run for at least(
K1K2

ε

)2

≈ n
(
u∗

ε

)2

steps to guarantee the desired accuracy. Combining this
number with the run time of each iteration, we have that
the complexity of the algorithm is O(n

(
u∗

ε

)2
(n(|T |+1)+

Oint(n + 1)). For the case when the trapezoidal rule is
used, the complexity is O((u∗n)

2 |T |/ε). Figure 7 shows the
increase in running time with increasing number of robots.
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Fig. 7. Plot of the increase in runtime (in seconds) against the number of robots. The data points correspond to the average of 20 runs of the algorithm
with 2, 3, 5, 8, 13, 21, 33, 54, 89, 144 and 233 robots, with ε = 0.01 and ε = 0.001. The dots are the mean running time in seconds, the bars show the
minimum and maximum runtime for each value of n

V. CONCLUSIONS AND FUTURE WORK

In this work we presented an approach for subdividing
and allocating a single global task between multiple het-
erogeneous robots. We have determined the computational
complexity of the approach and illustrated its effectiveness.
This approach deals with the heterogeneity of the robot
team by letting the robots define a preference function over
the task space. In the specific case of terrain coverage, we
have illustrated how our approach can be used to find a
suitable time-optimal task allocation that corresponds, as
well, to a spatial decomposition. This same approach should
be easily generalizable to Rn, as long as integrals are
computed efficiently; e.g. with a Monte Carlo algorithm.
Such subdivision optimizes the time spent by any robot on its
own allocation. These time estimates are useful for selecting
meeting times and locations in a multi robot rendezvous
problem [18]. Although the algorithm proposed in this work
is able to find partitions of arbitrary speed profiles efficiently,
there is no guarantee that the partition is the best one for
real robots with non-holonomic constraints. In such cases,
the assumption of additive utility function will not hold; i.e.
depending on the motion model of the robots, some shapes
of allocations will be preferred. We are currently working on
a decentralized version of the algorithm that allows robots
to compute their allocation without knowledge of the other
robots, with updates to the allocations once new information
becomes available.
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