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Abstract 
. This report looks at a new approach to motion planning 
known as Probabilistic Cell Decomposition (PCD). This 
approach combines ideas from Approximate Cell 
Decomposition (ACD) and Sampling-based motion 
planning to create a planner that can work in high-
dimensional static configuration space. This report first 
gives an overview of PCD and then describes the 
implementation of the planner along with implementation of 
Probabilistic Roadmap planner (PRM). In addition to that a 
basic comparison between the two has been done by 
running the planners on a set of problems. Finally, some of 
the implementation issues and possible ways of improving 
the planner are discussed. 

I. Introduction 
Over the years several approaches for solving motion 
planning problems under various conditions have been 
proposed. But in general all of these can be categorized 
into either a) Combinatorial approach or b) Sampling based 
approach [1]. One of the most applied approach in 
combinatorial motion planning had been cell 
decomposition based motion planning[2]. But its field of 
application was restricted by “the curse of dimensionality”. 
Due to the amount of computation required in cell 
decomposition based approaches, they are not feasible for 
planning in high dimensional space. In this arena, 
sampling-based motion planning approaches perform much 
better. Recently a new method that combines cell 
decomposition with sampling-based motion planning was 
proposed[3,4]. This is known as Probabilistic Cell 
Decomposition (PCD). The objective of this project is to 
study this new approach by implementing it and comparing 
it with other sampling-based motion planning approaches. 
The scope of the project is restricted to comparing PCD 
and Probabilistic Roadmaps (PRM) for simple 
environments. The report will mainly focus on introducing 
PCD, its implementation and its comparison with a 
standard implementation of probabilistic roadmap. More 
emphasis is given on the implementation issues that were 
faced. Also rather than restricting discussion only to 
comparison, some ideas for possible extensions are given 
along with their justification. 
 

The report is organized as follows – section II gives an 
overview of PCD as well as related methods. Section III 
elaborates on the implementation of PRM and PCD. In 
section IV experimental results are presented. Section V 
has discussion on the results, issues faced during 
implementation, possible shortcomings of PCD and some 
ideas for improvement. Finally, section VI concludes with 
possible directions for future work. 
 
In the rest of this report, Cfree and Cobs will denote free 
space and obstacle space respectively and κi will be used to 
represent the ith cell in approximate or probabilistic cell 
decomposition.   

II. Background 
In this section, overview of the related methods are given. 
The discussion will mainly be restricted to cell 
decomposition, sampling-based motion planning, and 
probabilistic roadmap.  

A. Cell Decomposition 
Cell decomposition is a combinatorial approach to motion 
planning. The objective of this approach is to divide the 
robot’s free space Cfree into non-overlapping regions 
which are known as cells. The adjacency relations between 
the cells are then constructed using a connectivity graph. 
Motion planning is then reduced to the problem of finding 
a sequence of cells (known as channel) that connects the 
cell containing the initial configuration to the cell 
containing the goal configuration. The final path is then 
extracted from this channel. 
 
There are basically two classes of cell decomposition 
methods. They are – a) Exact Cell Decomposition and b) 
Approximate Cell Decomposition. The main difference 
between the two is that, in exact cell decomposition the set 
of cells exactly covers Cfree whereas in approximate cell 
decomposition the cells just approximately cover Cfree. 
Besides this approximate cell decomposition uses simpler 
cells (rectangloids) and therefore decomposing the 
configuration space into cells and determining adjacency is 
easier than the exact method. However, there is a tradeoff. 
The exact cell decomposition can always find a path if it 



exists. But approximate cell decomposition is resolution 
complete.  
 
Probabilistic cell decomposition method is mostly related 
to approximate cell decomposition approach. Therefore, a 
more thorough overview is going to be provided in the 
following. In approximate cell decomposition a cell is 
categorized as – a) Empty – if and only if its interior does 
not intersect the C-obstacle region, b) Full – if and only if 
the cell is entirely contained in C-obstacle region and c) 
Mixed – when none of the above conditions are satisfied. 
The connectivity graph in approximate cell decomposition 
contains nodes that represent the mixed and free cells and 
edge between two nodes specify adjacency between cells. 
After the cells have been classified the objective is to find 
a sequence of cells - either mixed or free – from the cell 
containing initial configuration to the cell containing goal 
configuration. If all the cells in a channel are free cells then 
it is an E-Channel otherwise it is called an M-channel. Path 
planning in this setting is usually done in a hierarchical 
way. A simple approach is described below – 
1. Compute a rectangloid decomposition 
2. Search the connectivity graph to find a sequence of cells 
connecting initial cell to the goal cell. If an E-channel was 
found then return success. 
3. Otherwise for every mixed cell in an M-channel, 
compute a rectangloid decomposition and go to step 2. 
 
One major problem with this approach is that it requires 
building the configuration space which is computationally 
expensive. Also one common approach used for 
decomposing a cell is 2m-tree decomposition, in which a 
cell is divided up into 2m subcells. As a result, the number 
of cells grows very rapidly. Therefore this approach is only 
applicable for low dimensional (≤4 ) motion planning 
problems. 

B. Sampling-based Motion Planning and PRM 
Combinatorial motion planning approaches try to build an 
exact representation of the configuration space. Sampling-
based motion planning avoids that by generating samples 
and using collision detector to determine whether a sample 
is in Cfree or Cobs. Since sampling-based motion planners 
do not have to build the complete configuration space they 
are the method of choice for high dimensional motion 
planning problems. In sampling-based motion planning the 
general approach is to generate samples and check whether 
the samples are in Cfree using a collision detector. The 
samples that are in Cobs are discarded. Finally, the planner 
tries to build a graph using the configurations that are in 
free space. Solution to the motion planning problem is then 
the path from the initial configuration to the goal 
configuration in this graph. Sampling-based motion 
planning approaches mainly have two categories – a) 
Single query and b) Multiple-query.  
 
Probabilistic Roadmap is a multi-query path planner where 
a roadmap is first built by sampling the configuration space 

in the learning phase and then in the query stage the 
planner finds a path from the initial configuration to the 
goal configuration. There are several variations of PRM. 
Some focus on achieving speed by delaying collision 
checking (eg. Lazy-PRM [5]) while some other focuses on 
finding path through narrow passages (eg. Obstacle-based 
PRM [6]). But the basic idea of sampling, collision 
checking and building a roadmap is the same. 
 
There are also other variations of sampling-based motion 
planners. For instance expansive space planners like 
Rapidly Exploring Random Trees [7]. They are basically 
used mostly for kinodynamic motion planning. But in this 
report, the concentration will be mainly on PRM type 
planners. 

C. Probabilistic Cell Decomposition (PCD) 
A novel approach of combining sampling-based motion 
planning and cell decomposition method was proposed by 
Frank Lingelbach [3,4]. This is known as Probabilistic Cell 
Decomposition. Like cell decomposition its objective is to 
decompose the configuration space into cells. However 
unlike cell decomposition (and more like sampling-based 
motion planning approaches) it tries to do so without 
building the configuration space explicitly. This allows it 
to be applicable for high-dimensional motion planning 
algorithms.  
 
The cells in PCD are axis-aligned rectangloids similar to 
approximate cell decomposition method. Unlike 
approximate cell decomposition where a cell is classified 
as – Full, Empty, or Mixed – in PCD a cell is classified as 
– 1) Possibly Occupied 0)( >⊂ obsi CP κ  , 2) Possibly 
Free 0)( >⊂ freei CP κ  or 3) Known to be Mixed 

obsifreei CC ⊄∧⊄ κκ . This is because PCD does not 
have complete representation of the C-space to classify a 
cell with complete certainty. As the algorithm progresses 
these labels are modified and mixed cells are split to form 
possibly occupied or free cells. The connectivity graph G, 
keeps the possibly free cells as its node. There is an edge 
between two nodes if the corresponding free cells are 
adjacent. The basic PCD algorithm [3,4] is as follows – 

while ( !success ) 

   if ( path ← findCellPath(G) ) 

   if( checkPath(path)) 

    success ← true 

   else 

    splitMixedCells 

  else 

   q ← randomState(pOccCells) 

   if ( !collision(q)) 

    splitMixedCells 



In every iteration of the algorithm, the graph G is searched 
for a path using ‘findCellPath’. The function performs A* 
search for finding a sequence of cells connecting the initial 
cell to the goal cell. If such a sequence is found then those 
cells are checked for collision free path using ‘checkPath’. 
The ‘checkPath’ function implements local path planning 
which basically finds a path between adjacent cells. This 
path is a straight line connecting the center of the shared 
area which is an (n-1)dimensional hyperplane. Therefore if 
κi-1, κi and κi+1 are adjacent then the path connecting κi-1 
and κi+1 through κi would be a straight line connecting the 
center of the shared area between κi-1, κi to the center of the 
shared area between κi, κi+1. This straight line path has to 
be in Cfree. This path is also checked for collision either 
using an incremental approach or binary collision 
checking. If some colliding configuration is found during 
this step then it is known that the cell in which it was found 
is a mixed cell. Therefore the cell is split up into possibly 
free and possibly occupied cells. If a path was not found by 
‘findCellPath’ then the possibly occupied cells are sampled 
and if any one of them has a free configuration in it, the 
cell is split into possibly free and possibly occupied cells as 
before. Several strategies can be taken in this step to 
determine the possibly occupied cell to sample. One 
sample can be generated for all the possibly occupied cells, 
a number of samples can be distributed over the 
accumulated volume of the possibly occupied cells, or 
even sample a subset of the cells that are more important. 
 
Due to the shape of the cells (axis-aligned rectangloid) 
splitting and adjacency checking is relatively easy in n-
dimensional space. A cell is split by taking the nearest 
existing sample and cut orthogonally in the middle in the 
dimension of the largest distance. This ensures enough 
separation between the configuration in the cell and its 
boundary. If a cell contains m+1 samples  where m 
samples are similar and the other is different then for an n-
dimensional problem the number of children would be at 
most min(2m, n) + 1. This number is significantly less than 
the 2m-tree decomposition approach. 

III. Implementation 
 
For this project, both the Probabilistic Cell Decomposition 
and Probabilistic Roadmap planners were implemented. A 
framework was created for implementing planning 
algorithms and testing them in different environments with 
different queries. The implementation was done in C++. 
Samples were generated using random number generators 
that are available in the Boost library. Collision detection 
was done using the Proximity Query Package (PQP). The 
details of the framework are given in Appendix A. In this 
section, the algorithmic details of both Probabilistic Cell 
Decomposition and Probabilistic Roadmap are presented. 
 
The most basic PRM was implemented. In each iteration it 
generates a number of samples and checks whether each of 

these samples are in free space using the aforementioned 
collision detector. Only the samples that are in Cfree are 
kept and the rest are discarded. After that K-nearest 
neighbor algorithm is used for finding the nearest nodes of 
each vertex. For each pair of such nodes a binary path 
checker is used to see if the straight line path connecting 
the nodes is in Cfree. The binary path collision checker uses 
an approach similar to binary search to find whether any 
configuration on the path is in Cobs. If the path is collision 
free then an edge between the nodes is added to the graph. 
Finally, a graph search is done to see if there is a path 
between the initial configuration and the goal 
configuration. If the graph search does not return any path 
then the planner does the same thing in next iteration and 
this continues until it has tried for a certain number of 
times. 
 
The PCD algorithm was implemented following the 
description in section II. First there is only one cell 
containing the initial and goal configuration. A simple 
straight line path is constructed between these two 
configurations and the path is checked using the binary 
path checker that was mentioned previously. If the path 
checker finds a colliding configuration then that 
configuration is returned to the main PCD algorithm which 
then uses that to split up the initial possibly free cell. When 
there are more than one cells then the A* search algorithm 
is used to find the shortest path between the initial cell and 
the goal cell. The implementation uses Dijkstra’s algorithm 
for this purpose. The heuristic cost is simply the sum of 
current cost (i.e. cost to reach the cell) and the cost-to-go 
approximated using the Euclidean distance. 
 
 If the A* algorithm fails to find a path then the algorithm 
needs to sample the possibly occupied cells. For faster 
performance the implementation keeps track of the current 
possibly occupied cells in a list which is updated whenever 
a cell’s label changes to or from possibly occupied. The 
implementation traverses this list of possibly occupied 
cells and generates one sample in each of these cells. One 
point to be noted here is that if the cell is too small i.e. all 
the dimensions have almost collapsed to a point, then no 
sample is generated in that cell. Finally, for all these cell 
and sample pair the implementation checks whether any of 
the samples are in free space. If there is such a case then 
the corresponding cell is split up into possibly occupied 
and possibly free cells. Otherwise the generated samples 
are added to the cell. Mixed cells are not explicitly 
represented in the implementation. Whenever a cell is 
known to be mixed it is splitted up into possibly free and 
occupied cells.  
 
A cell is splitted up by first finding the nearest neighbor of 
the configuration that is used to split the cell. Then the 
maximum dimension is determined. The corresponding 
maximum vertex of the current cell is then set to half way 
between the two configurations along that dimension. A 
new cell is also created with the corresponding dimension 



of the minimum vertex set appropriately. Finally, all the 
configurations that were in the previous cell are checked to 
see whether they are in the new cell and updates are made 
accordingly. This process stops when the colliding 
configuration/free configuration is isolated in a cell. 
During the above process the cells status is also updated 
(ie. possibly free and possibly occupied). 
 
The adjacency relation between cells is also updated during 
the cell splitting process. An adjacency list data structure is 
maintained. Whenever a new cell is created its adjacent 
cells are determined and the adjacency list is updated. Two 
cells are adjacent if and only if exactly one of their 
dimensions is equal and they have a common shared area. 
Shared area is determined by checking whether the region 
formed by the minimum and the maximum vertices on the 
(n-1)D hyperplane of both cells overlap. 

IV. Experimental Results 
 
Experiments were carried out for three environments with 
2DoF and 3DoF robots. The setups are shown in figure 1. 
The environment in 1(c) has a narrow passage in it. None 
of the planners were able to solve the motion planning for 
this case. 
 

 

Some sample solutions that were found by both planners 
are illustrated in the following figures. Figures 2(a)-(d) are 
for the first environment with a 2DoF robot. Both planners 
were able to solve this problem fairly easily. On an average 
20 nodes were generated by the PRM planner and 13 cells 
were generated by PCD. 

Figures 2 (e) and (f) show plans for the same environment 
but with 3DoF robot. The average number of nodes and 
cells that were generated were almost the same. The final 
plan tended to be much shorter because of allowing 
rotation. 
 
The final two solutions shown in Figures 2(g) and (h) are 
for the simple maze shown in 1(b). The planners took more 
time in this case on average. PCD sometimes performed 
cell division very efficiently and came up with very good 
solutions. 
 

 

Figure 1:Workspace with  (a) pathway  in the middle 
(b)pathway  on one end, and  (c) narrow passage 

(a) 

Figure 2: (a) and (b) PRM planner for 2DoF robot (c) and (d) 
PCD planner for 2DoF robot (e) PRM for 3DoF robot  (f) 
PCD for 3DoF robot (g) PRM for 3DoF robot in a simple 
maze (h) PCD for 3DoF robot in a simple maze 

(b) 

(a) 

(c) 

(b) 

(c) 

(d) 

(e) (f) 

(g) (h) 



V. Discussion 
From the previous section it can be seen that both planners 
worked well for the first two environments and allowed 
degree-of-freedom. However, for the narrow passage 
problem both failed. This is not completely unexpected 
since none of the planners aim to solve narrow passage 
problems. From implementation point of view PRM was 
easier to implement. The most problematic part with PCD 
was cell splitting. The difficulty mainly arises when the 
samples are on the boundary. This may occur even when 
checking whether a path is free. Because the center of the 
shared (n-1)D hyperplane may intersect with Cobs. In [3,4], 
the author mentions that the samples that do not lie on the 
boundary are stored. This implies that if a sample is found 
on the boundary then it is discarded and in case if it is in 
collision state and on the boundary of a possibly free cell 
then that possibly free cell is not splitted. But in this case 
the algorithm would fail because only splitting the cell 
would allow it to find a new path. An example of this is 
shown in Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In the current implementation, configurations on the 
boundaries were considered for splitting the cell. Also it is 
not clearly specified whether samples will be generated for 
any possibly occupied cells. Because if a cell becomes too 
small, then generating samples and splitting that cell is not 
very useful. In the current implementation samples are 
generated only when the size of a cell is above a certain 
threshold value. 
 
In the following some possible ideas for improvement are 
discussed. As was mentioned before the path checking step 
simply checks whether a path connecting the center of the 
shared region between adjacent cells is free. There is no 
explicitly consideration of the case when the center of the 
shared area might be in colliding state. One approach that 
can be taken here is to search for a state on the shared 
boundary that is in Cfree and consider that for the straight 
line path. Also the path within a cell might not be a simple 
straight line path. And considering a straight line path 
might increase the number of cells. For the case shown in 
Figure 5, possibly a better approach would be to take a 
strategy similar to Lazy-PRM [5] where a node 

enhancement step is performed by generating samples 
around the collision point to find a collision free path. 
 

 

VI. Conclusion and Future Work 
This report describes the implementation of a novel motion 
planning approach known as Probabilistic Cell 
Decomposition and compares it with basic Probabilistic 
Roadmap planner. The approach is interesting because it 
fuses classical cell decomposition with more recent 
sampling-based approach. During the implementation of 
PCD a number of implementation specific issues came up. 
These issues and some scenarios where PCD might benefit 
by using a different approach were also discussed. For 
simple problems the performance of PCD and PRM were 
almost similar. However in some cases PCD seemed to 
perform better in terms of finding optimal solution to a 
problem. 
 
Current work does not do any comprehensive comparison 
of the two planners or comparison of PCD with other 
planners. Future work will focus on improving the current 
implementation of the planners and using more complex 
benchmarks for evaluation. It would also be interesting to 
see how the performance of PCD is affected by 
incorporating the ideas for improvement. 
 

Appendix A. Motion Planning Framework 
In this appendix, a brief overview of the framework that 
was implemented for evaluating motion planning 
algorithms is given. It is a minimal framework that allows 
implementing probabilistic planners like PRM and PCD. 
The framework allows loading environment files, models 
and motion planning queries.  The basic architecture of the 
framework is shown below in UML. 
 
The Environment class manages all the models in an 
environment including the robot. It also interacts directly  

End point 
collision 

Figure 4.  Center of shared region in Cobs 

Figure 5.  Case for which local path planner needs 
to be improved 



 
 

 
with PQP to determine obstacle collision. The planner also 
uses it to access information like degree-of-freedom and 
testing samples.  
 
To use the framework for implementing a new planner, 
users first need to inherit their planner from the planner 
class. The planner class will also give access to the Graph 
library. If a specialized graph data structure is required (eg. 
CellGraph), then the Graph class can be extended for that 
purpose. 
 
For sampling, the current planners use the random number 
generators provided by the Boost library. For this 
particular project uniform sampling was done using the 
Mersenne Twister implementation provided by the Boost 
library. 
 
In addition to these, the planner also provides support for 
visualizing and tracing plans generated by a planner. 
Future work on the planner will mainly be on integrating 
CGAL for using dD Spatial Searching and other 
computational geometric algorithms for motion planning. 
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 Figure A.1: UML Diagram of Motion Planning 

Framework 


