
Comparative Study of Probabilistic Cell Decomposition
And

Probabilistic Roadmap

Fahim Mannan
School of Computer Science

McGill University

Abstract
. This report looks at a new approach to motion planning
known as Probabilistic Cell Decomposition (PCD). This
approach combines ideas from Approximate Cell
Decomposition (ACD) and Sampling-based motion
planning to create a planner that can work in high-
dimensional static configuration space. This report first
gives an overview of PCD and then describes the
implementation of the planner along with implementation of
Probabilistic Roadmap planner (PRM). In addition to that a
basic comparison between the two has been done by
running the planners on a set of problems. Finally, some of
the implementation issues and possible ways of improving
the planner are discussed.

I. Introduction
Over the years several approaches for solving motion
planning problems under various conditions have been
proposed. But in general all of these can be categorized
into either a) Combinatorial approach or b) Sampling based
approach [1]. One of the most applied approach in
combinatorial motion planning had been cell
decomposition based motion planning[2]. But its field of
application was restricted by “the curse of dimensionality”.
Due to the amount of computation required in cell
decomposition based approaches, they are not feasible for
planning in high dimensional space. In this arena,
sampling-based motion planning approaches perform much
better. Recently a new method that combines cell
decomposition with sampling-based motion planning was
proposed[3,4]. This is known as Probabilistic Cell
Decomposition (PCD). The objective of this project is to
study this new approach by implementing it and comparing
it with other sampling-based motion planning approaches.
The scope of the project is restricted to comparing PCD
and Probabilistic Roadmaps (PRM) for simple
environments. The report will mainly focus on introducing
PCD, its implementation and its comparison with a
standard implementation of probabilistic roadmap. More
emphasis is given on the implementation issues that were
faced. Also rather than restricting discussion only to
comparison, some ideas for possible extensions are given
along with their justification.

The report is organized as follows – section II gives an
overview of PCD as well as related methods. Section III
elaborates on the implementation of PRM and PCD. In
section IV experimental results are presented. Section V
has discussion on the results, issues faced during
implementation, possible shortcomings of PCD and some
ideas for improvement. Finally, section VI concludes with
possible directions for future work.

In the rest of this report, Cfree and Cobs will denote free
space and obstacle space respectively and κi will be used to
represent the ith cell in approximate or probabilistic cell
decomposition.

II. Background
In this section, overview of the related methods are given.
The discussion will mainly be restricted to cell
decomposition, sampling-based motion planning, and
probabilistic roadmap.

A. Cell Decomposition
Cell decomposition is a combinatorial approach to motion
planning. The objective of this approach is to divide the
robot’s free space Cfree into non-overlapping regions
which are known as cells. The adjacency relations between
the cells are then constructed using a connectivity graph.
Motion planning is then reduced to the problem of finding
a sequence of cells (known as channel) that connects the
cell containing the initial configuration to the cell
containing the goal configuration. The final path is then
extracted from this channel.

There are basically two classes of cell decomposition
methods. They are – a) Exact Cell Decomposition and b)
Approximate Cell Decomposition. The main difference
between the two is that, in exact cell decomposition the set
of cells exactly covers Cfree whereas in approximate cell
decomposition the cells just approximately cover Cfree.
Besides this approximate cell decomposition uses simpler
cells (rectangloids) and therefore decomposing the
configuration space into cells and determining adjacency is
easier than the exact method. However, there is a tradeoff.
The exact cell decomposition can always find a path if it

exists. But approximate cell decomposition is resolution
complete.

Probabilistic cell decomposition method is mostly related
to approximate cell decomposition approach. Therefore, a
more thorough overview is going to be provided in the
following. In approximate cell decomposition a cell is
categorized as – a) Empty – if and only if its interior does
not intersect the C-obstacle region, b) Full – if and only if
the cell is entirely contained in C-obstacle region and c)
Mixed – when none of the above conditions are satisfied.
The connectivity graph in approximate cell decomposition
contains nodes that represent the mixed and free cells and
edge between two nodes specify adjacency between cells.
After the cells have been classified the objective is to find
a sequence of cells - either mixed or free – from the cell
containing initial configuration to the cell containing goal
configuration. If all the cells in a channel are free cells then
it is an E-Channel otherwise it is called an M-channel. Path
planning in this setting is usually done in a hierarchical
way. A simple approach is described below –
1. Compute a rectangloid decomposition
2. Search the connectivity graph to find a sequence of cells
connecting initial cell to the goal cell. If an E-channel was
found then return success.
3. Otherwise for every mixed cell in an M-channel,
compute a rectangloid decomposition and go to step 2.

One major problem with this approach is that it requires
building the configuration space which is computationally
expensive. Also one common approach used for
decomposing a cell is 2m-tree decomposition, in which a
cell is divided up into 2m subcells. As a result, the number
of cells grows very rapidly. Therefore this approach is only
applicable for low dimensional (≤4) motion planning
problems.

B. Sampling-based Motion Planning and PRM
Combinatorial motion planning approaches try to build an
exact representation of the configuration space. Sampling-
based motion planning avoids that by generating samples
and using collision detector to determine whether a sample
is in Cfree or Cobs. Since sampling-based motion planners
do not have to build the complete configuration space they
are the method of choice for high dimensional motion
planning problems. In sampling-based motion planning the
general approach is to generate samples and check whether
the samples are in Cfree using a collision detector. The
samples that are in Cobs are discarded. Finally, the planner
tries to build a graph using the configurations that are in
free space. Solution to the motion planning problem is then
the path from the initial configuration to the goal
configuration in this graph. Sampling-based motion
planning approaches mainly have two categories – a)
Single query and b) Multiple-query.

Probabilistic Roadmap is a multi-query path planner where
a roadmap is first built by sampling the configuration space

in the learning phase and then in the query stage the
planner finds a path from the initial configuration to the
goal configuration. There are several variations of PRM.
Some focus on achieving speed by delaying collision
checking (eg. Lazy-PRM [5]) while some other focuses on
finding path through narrow passages (eg. Obstacle-based
PRM [6]). But the basic idea of sampling, collision
checking and building a roadmap is the same.

There are also other variations of sampling-based motion
planners. For instance expansive space planners like
Rapidly Exploring Random Trees [7]. They are basically
used mostly for kinodynamic motion planning. But in this
report, the concentration will be mainly on PRM type
planners.

C. Probabilistic Cell Decomposition (PCD)
A novel approach of combining sampling-based motion
planning and cell decomposition method was proposed by
Frank Lingelbach [3,4]. This is known as Probabilistic Cell
Decomposition. Like cell decomposition its objective is to
decompose the configuration space into cells. However
unlike cell decomposition (and more like sampling-based
motion planning approaches) it tries to do so without
building the configuration space explicitly. This allows it
to be applicable for high-dimensional motion planning
algorithms.

The cells in PCD are axis-aligned rectangloids similar to
approximate cell decomposition method. Unlike
approximate cell decomposition where a cell is classified
as – Full, Empty, or Mixed – in PCD a cell is classified as
– 1) Possibly Occupied 0)(>⊂ obsi CP κ , 2) Possibly
Free 0)(>⊂ freei CP κ or 3) Known to be Mixed

obsifreei CC ⊄∧⊄ κκ . This is because PCD does not
have complete representation of the C-space to classify a
cell with complete certainty. As the algorithm progresses
these labels are modified and mixed cells are split to form
possibly occupied or free cells. The connectivity graph G,
keeps the possibly free cells as its node. There is an edge
between two nodes if the corresponding free cells are
adjacent. The basic PCD algorithm [3,4] is as follows –

while (!success)

 if (path ← findCellPath(G))

 if(checkPath(path))

 success ← true

 else

 splitMixedCells

 else

 q ← randomState(pOccCells)

 if (!collision(q))

 splitMixedCells

In every iteration of the algorithm, the graph G is searched
for a path using ‘findCellPath’. The function performs A*
search for finding a sequence of cells connecting the initial
cell to the goal cell. If such a sequence is found then those
cells are checked for collision free path using ‘checkPath’.
The ‘checkPath’ function implements local path planning
which basically finds a path between adjacent cells. This
path is a straight line connecting the center of the shared
area which is an (n-1)dimensional hyperplane. Therefore if
κi-1, κi and κi+1 are adjacent then the path connecting κi-1
and κi+1 through κi would be a straight line connecting the
center of the shared area between κi-1, κi to the center of the
shared area between κi, κi+1. This straight line path has to
be in Cfree. This path is also checked for collision either
using an incremental approach or binary collision
checking. If some colliding configuration is found during
this step then it is known that the cell in which it was found
is a mixed cell. Therefore the cell is split up into possibly
free and possibly occupied cells. If a path was not found by
‘findCellPath’ then the possibly occupied cells are sampled
and if any one of them has a free configuration in it, the
cell is split into possibly free and possibly occupied cells as
before. Several strategies can be taken in this step to
determine the possibly occupied cell to sample. One
sample can be generated for all the possibly occupied cells,
a number of samples can be distributed over the
accumulated volume of the possibly occupied cells, or
even sample a subset of the cells that are more important.

Due to the shape of the cells (axis-aligned rectangloid)
splitting and adjacency checking is relatively easy in n-
dimensional space. A cell is split by taking the nearest
existing sample and cut orthogonally in the middle in the
dimension of the largest distance. This ensures enough
separation between the configuration in the cell and its
boundary. If a cell contains m+1 samples where m
samples are similar and the other is different then for an n-
dimensional problem the number of children would be at
most min(2m, n) + 1. This number is significantly less than
the 2m-tree decomposition approach.

III. Implementation

For this project, both the Probabilistic Cell Decomposition
and Probabilistic Roadmap planners were implemented. A
framework was created for implementing planning
algorithms and testing them in different environments with
different queries. The implementation was done in C++.
Samples were generated using random number generators
that are available in the Boost library. Collision detection
was done using the Proximity Query Package (PQP). The
details of the framework are given in Appendix A. In this
section, the algorithmic details of both Probabilistic Cell
Decomposition and Probabilistic Roadmap are presented.

The most basic PRM was implemented. In each iteration it
generates a number of samples and checks whether each of

these samples are in free space using the aforementioned
collision detector. Only the samples that are in Cfree are
kept and the rest are discarded. After that K-nearest
neighbor algorithm is used for finding the nearest nodes of
each vertex. For each pair of such nodes a binary path
checker is used to see if the straight line path connecting
the nodes is in Cfree. The binary path collision checker uses
an approach similar to binary search to find whether any
configuration on the path is in Cobs. If the path is collision
free then an edge between the nodes is added to the graph.
Finally, a graph search is done to see if there is a path
between the initial configuration and the goal
configuration. If the graph search does not return any path
then the planner does the same thing in next iteration and
this continues until it has tried for a certain number of
times.

The PCD algorithm was implemented following the
description in section II. First there is only one cell
containing the initial and goal configuration. A simple
straight line path is constructed between these two
configurations and the path is checked using the binary
path checker that was mentioned previously. If the path
checker finds a colliding configuration then that
configuration is returned to the main PCD algorithm which
then uses that to split up the initial possibly free cell. When
there are more than one cells then the A* search algorithm
is used to find the shortest path between the initial cell and
the goal cell. The implementation uses Dijkstra’s algorithm
for this purpose. The heuristic cost is simply the sum of
current cost (i.e. cost to reach the cell) and the cost-to-go
approximated using the Euclidean distance.

 If the A* algorithm fails to find a path then the algorithm
needs to sample the possibly occupied cells. For faster
performance the implementation keeps track of the current
possibly occupied cells in a list which is updated whenever
a cell’s label changes to or from possibly occupied. The
implementation traverses this list of possibly occupied
cells and generates one sample in each of these cells. One
point to be noted here is that if the cell is too small i.e. all
the dimensions have almost collapsed to a point, then no
sample is generated in that cell. Finally, for all these cell
and sample pair the implementation checks whether any of
the samples are in free space. If there is such a case then
the corresponding cell is split up into possibly occupied
and possibly free cells. Otherwise the generated samples
are added to the cell. Mixed cells are not explicitly
represented in the implementation. Whenever a cell is
known to be mixed it is splitted up into possibly free and
occupied cells.

A cell is splitted up by first finding the nearest neighbor of
the configuration that is used to split the cell. Then the
maximum dimension is determined. The corresponding
maximum vertex of the current cell is then set to half way
between the two configurations along that dimension. A
new cell is also created with the corresponding dimension

of the minimum vertex set appropriately. Finally, all the
configurations that were in the previous cell are checked to
see whether they are in the new cell and updates are made
accordingly. This process stops when the colliding
configuration/free configuration is isolated in a cell.
During the above process the cells status is also updated
(ie. possibly free and possibly occupied).

The adjacency relation between cells is also updated during
the cell splitting process. An adjacency list data structure is
maintained. Whenever a new cell is created its adjacent
cells are determined and the adjacency list is updated. Two
cells are adjacent if and only if exactly one of their
dimensions is equal and they have a common shared area.
Shared area is determined by checking whether the region
formed by the minimum and the maximum vertices on the
(n-1)D hyperplane of both cells overlap.

IV. Experimental Results

Experiments were carried out for three environments with
2DoF and 3DoF robots. The setups are shown in figure 1.
The environment in 1(c) has a narrow passage in it. None
of the planners were able to solve the motion planning for
this case.

Some sample solutions that were found by both planners
are illustrated in the following figures. Figures 2(a)-(d) are
for the first environment with a 2DoF robot. Both planners
were able to solve this problem fairly easily. On an average
20 nodes were generated by the PRM planner and 13 cells
were generated by PCD.

Figures 2 (e) and (f) show plans for the same environment
but with 3DoF robot. The average number of nodes and
cells that were generated were almost the same. The final
plan tended to be much shorter because of allowing
rotation.

The final two solutions shown in Figures 2(g) and (h) are
for the simple maze shown in 1(b). The planners took more
time in this case on average. PCD sometimes performed
cell division very efficiently and came up with very good
solutions.

Figure 1:Workspace with (a) pathway in the middle
(b)pathway on one end, and (c) narrow passage

(a)

Figure 2: (a) and (b) PRM planner for 2DoF robot (c) and (d)
PCD planner for 2DoF robot (e) PRM for 3DoF robot (f)
PCD for 3DoF robot (g) PRM for 3DoF robot in a simple
maze (h) PCD for 3DoF robot in a simple maze

(b)

(a)

(c)

(b)

(c)

(d)

(e) (f)

(g) (h)

V. Discussion
From the previous section it can be seen that both planners
worked well for the first two environments and allowed
degree-of-freedom. However, for the narrow passage
problem both failed. This is not completely unexpected
since none of the planners aim to solve narrow passage
problems. From implementation point of view PRM was
easier to implement. The most problematic part with PCD
was cell splitting. The difficulty mainly arises when the
samples are on the boundary. This may occur even when
checking whether a path is free. Because the center of the
shared (n-1)D hyperplane may intersect with Cobs. In [3,4],
the author mentions that the samples that do not lie on the
boundary are stored. This implies that if a sample is found
on the boundary then it is discarded and in case if it is in
collision state and on the boundary of a possibly free cell
then that possibly free cell is not splitted. But in this case
the algorithm would fail because only splitting the cell
would allow it to find a new path. An example of this is
shown in Figure 4.

In the current implementation, configurations on the
boundaries were considered for splitting the cell. Also it is
not clearly specified whether samples will be generated for
any possibly occupied cells. Because if a cell becomes too
small, then generating samples and splitting that cell is not
very useful. In the current implementation samples are
generated only when the size of a cell is above a certain
threshold value.

In the following some possible ideas for improvement are
discussed. As was mentioned before the path checking step
simply checks whether a path connecting the center of the
shared region between adjacent cells is free. There is no
explicitly consideration of the case when the center of the
shared area might be in colliding state. One approach that
can be taken here is to search for a state on the shared
boundary that is in Cfree and consider that for the straight
line path. Also the path within a cell might not be a simple
straight line path. And considering a straight line path
might increase the number of cells. For the case shown in
Figure 5, possibly a better approach would be to take a
strategy similar to Lazy-PRM [5] where a node

enhancement step is performed by generating samples
around the collision point to find a collision free path.

VI. Conclusion and Future Work
This report describes the implementation of a novel motion
planning approach known as Probabilistic Cell
Decomposition and compares it with basic Probabilistic
Roadmap planner. The approach is interesting because it
fuses classical cell decomposition with more recent
sampling-based approach. During the implementation of
PCD a number of implementation specific issues came up.
These issues and some scenarios where PCD might benefit
by using a different approach were also discussed. For
simple problems the performance of PCD and PRM were
almost similar. However in some cases PCD seemed to
perform better in terms of finding optimal solution to a
problem.

Current work does not do any comprehensive comparison
of the two planners or comparison of PCD with other
planners. Future work will focus on improving the current
implementation of the planners and using more complex
benchmarks for evaluation. It would also be interesting to
see how the performance of PCD is affected by
incorporating the ideas for improvement.

Appendix A. Motion Planning Framework
In this appendix, a brief overview of the framework that
was implemented for evaluating motion planning
algorithms is given. It is a minimal framework that allows
implementing probabilistic planners like PRM and PCD.
The framework allows loading environment files, models
and motion planning queries. The basic architecture of the
framework is shown below in UML.

The Environment class manages all the models in an
environment including the robot. It also interacts directly

End point
collision

Figure 4. Center of shared region in Cobs

Figure 5. Case for which local path planner needs
to be improved

with PQP to determine obstacle collision. The planner also
uses it to access information like degree-of-freedom and
testing samples.

To use the framework for implementing a new planner,
users first need to inherit their planner from the planner
class. The planner class will also give access to the Graph
library. If a specialized graph data structure is required (eg.
CellGraph), then the Graph class can be extended for that
purpose.

For sampling, the current planners use the random number
generators provided by the Boost library. For this
particular project uniform sampling was done using the
Mersenne Twister implementation provided by the Boost
library.

In addition to these, the planner also provides support for
visualizing and tracing plans generated by a planner.
Future work on the planner will mainly be on integrating
CGAL for using dD Spatial Searching and other
computational geometric algorithms for motion planning.

References
[1] S. M. Lavalle, Planning Algorithms. Cambridge
University Press. 2006.
[2] J.-C. Latombe, Robot Motion Planning. Kluwer
Academic Publishers, 1991.
[3] F. Lingelbach, “Path Planning using Probabilistic Cell
Decomposition,” Licentiate Thesis, Royal Institute of
Technology (KTH), February 2005.
[4] F. Lingelbach, “Path Planning using Probabilistic Cell
Decomposition,”, In Proceedings of International
Conference on Robotics and Automation, 2004.
[5] R.Bohlin and L. Kavraki, “Path planning using lazy
PRM,” In Proceedings of International Conference on
Robotics and Automation, 2000.
[6] N. Amato, O. Bayazit, L.Dale, C.Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” In
Proc. International Workshop on Algorithmic Foundations
of Robotics (WAFR), 1998.

[7] S. M. Lavalle, “Rapidly-exploring random trees: A new
tool for path planning,” Computer Science Dept., Iowa
State University, Tech. Rep. 98-11, 1998.

 Figure A.1: UML Diagram of Motion Planning

Framework

