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DISCRIMINATIVE FILTERS MODEL

Contributions We propose:
1. A discriminative model for depth from defocus that encapsu-

lates a large set of existing models.

2. An optimization objective for the proposed model that accepts
solutions to existing models and more.

Summary Depth from defocus can be considered as applying a
set of depth discriminative filters (bottom-left) to a set of defo-
cused image patches (top). These filters can either be analytically
derived, or estimated from calibrated PSFs, or learned from defo-
cused images. The filters can be represented using a set of matrices
W = {W1, . . . ,Wd, . . . ,WN} of size RM×K2L, where M is the num-
ber of filters of size K ×K for L patches with depth d ∈ [1, N ].
Depth from defocus solves the problem:

argmin
d
‖Wdx‖ (1)

The estimated depth is d∗, if for any other depth d, ‖Wd∗x‖ < ‖Wdx‖.
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Figure 1: Depth estimation using blur discriminative filters. The
filter bank with the lowest energy indicates the depth of the
observed patches.

REPRESENTATION OF DIFFERENT MODELS

Relative Blur xB = hR ∗ xS +N (0, σ2
N ).

argmin
d

∥∥∥∥[ I, −HR(d)
] [ xB

xS

]∥∥∥∥2 . (2)

Blur Equalization (BET) x1 ∗ h2 = x2 ∗ h1 +N (0, σ2
N ).

argmin
d

∥∥∥∥[ H2(d) −H1(d)
] [ x1

x2

]∥∥∥∥2 . (3)

Deconvolution argminx0,d ‖hd ∗ x0 − x‖
2 + λ‖C ∗ x0‖2.

argmin
d
‖(I −HdH

+
d )x‖2. (4)

Subspace Projection

Null space : argmin
d
‖UT

N (d)x‖2. (5)

Rank space : argmin
d
−‖UT

R (d)x‖2. (6)

EVALUATION

Average Cost Comparison Each column is an average of a few
thousand image patches. Blue indicates 0 and bright yellow 1. Our
method forces the minimum to be on the diagonal.

Ground Truth

5 10 15 20 25 30 35 40 45 50

E
s
ti
m

a
te

d
 L

a
b
e
l

5

10

15

20

25

30

35

40

45

50

Ground Truth

5 10 15 20 25 30 35 40 45 50

E
s
ti
m

a
te

d
 L

a
b
e
l

5

10

15

20

25

30

35

40

45

50

Null Space Our Method

Figure 2: Results for a pair of defocused images with Gaussian PSFs.
The scene depth range is 52.9 cm to 86.9 cm. The camera focal length
is 25 mm and aperture f/8.3. The largest blur radius is ≈ 2.3 pixels.
In this experiment, the blur scale is divided into 51 discrete values.

Mean and Variance Comparison
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Variable Focus with f/22 and focus 0.7 m and 1.22 m

OPTIMAL FILTERS

Let xt be the t-th training image patch and yt be the associated
depth, then the filter set W = {W1, . . . ,Wd, . . . ,WN} is found by
solving

argmin
W

ρ(W ) (7)

subject to ‖Wyt
xt‖ < ‖Wjx

t‖ ∀t, j j 6= yt

Here ρ(W ) is a regularization function on the filters which in our
case is the squared Frobenius norm. The unconstrained form is,

argmin
W

λ1 ρ(W )+

λ2
N

∑
t,j

ρl(yt, j)max(0, ‖Wytx
t‖ − ‖Wjx

t‖+m). (8)

In our experiments, margin m = 1, and ρl(yt, j) = (a|yt − j|)k, with
k ∈ [0, 2] and a ∈ (0, 1].


