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Relative Blur zp = hg *x x5 + N(0,0%).
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Contributions We propose:

1. A discriminative model for depth from defocus that encapsu-
lates a large set of existing models.

2. An optimization objective for the proposed model that accepts

solutions to existing models and more. Blur Equalization (BET) z; * ho = x5 x hy + N (O, 012\,).
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Depth from defocus solves the problem: Subspace Projection
. Figure 1: Depth estimation using blur discriminative filters. The | - )
ArE [Waz| (D) filter bank with the lowest energy indicates the depth of the Null space : ALE [Un(d)z]]". (5)
observed patches. .
The estimated depth is d*, if for any other depth d, |Wg-x|| < ||[Waz||. P Rank space : argmin —||Up (d)z||*. (6)

OPTIMAL FILTERS EVALUATION

Let z* be the t'ﬂ} training image patch and y; be th? associated | | Average Cost Comparison Each column is an average of a few Mean and Variance Comparison
depth, then the filter set W = {Wi,..., Wq,...,Wn} is found by | | thousand image patches. Blue indicates 0 and bright yellow 1. Our

solving method forces the minimum to be on the diagonal. -
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Here p(W) is a regularization function on the filters which in our g g oz — 1l S (200 L
case is the squared Frobenius norm. The unconstrained form is, e o meimesedspn
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N 2P (¢, ) max(0, [Wy,2'|| — [Wjz'[| +m).  (8) Figure 2: Results for a pair of defocused images with Gaussian PSFs.
L The scene depth range is 52.9 cm to 86.9 cm. The camera focal length
is 25 mm and aperture f/8.3. The largest blur radius is ~ 2.3 pixels.

In this experiment, the blur scale is divided into 51 discrete values.
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In our experiments, margin m = 1, and p;(y:, j) = (aly: — j|)*, with
k €0,2] and a € (0, 1].
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Variable Focus with f/22 and focus 0.7 m and 1.22 m




