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Abstract

It is well known that if the linear time invariant system ẋ=Ax+Bu, y=Cx is passive the associated incremental system ˙̃x=Ax̃+Bũ, ỹ=Cx̃,
with ˜(·)= (·)− (·)�, u�, y� the constant input and output associated to an equilibrium state x�, is also passive. In this paper, we identify a class
of nonlinear passive systems of the form ẋ = f(x) + gu, y = h(x) whose incremental model is also passive. Using this result we then prove
that a large class of nonlinear RLC circuits with strictly convex electric and magnetic energy functions and passive resistors with monotonic
characteristic functions are globally stabilizable with linear PI control.
© 2007 Elsevier B.V. All rights reserved.
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1. Problem formulation

In many control applications one is interested in operating
the system around a non-zero equilibrium point. A standard
procedure to describe the dynamics in these cases is to gener-
ate a so-called incremental model with inputs and outputs the
deviations with respect to their value at the equilibrium. A nat-
ural question that arises is whether a property of the original
system is inherited by its incremental model. In this paper, we
explore this question regarding passivity. More specifically, we
provide a solution to the following problem.

Passivity of Incremental Systems: Given a nonlinear system
of the form:

ẋ = f(x) + gu,

y = h(x), (1)

� This work was partially supported by EPSRC United Kingdom under
grant number GR/S61256/01, CONACYT (México) and the European project
HYCON with reference code FP6-IST-511368.

∗ Corresponding author. Tel.: +33 1 69 85 17 60; fax: +33 1 69 85 17 65.
E-mail addresses: bayujw@ieee.org (B. Jayawardhana),

ortega@lss.supelec.fr (R. Ortega), garcia@lss.supelec.fr, eloisagc@ieee.org
(E. García-Canseco), castanos@lss.supelec.fr (F. Castaños).

0167-6911/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2007.03.011

where x, u, y are functions of t, x(t) ∈ Rn, u(t), y(t) ∈ Rm,
with m�n, the functions f, h are locally Lipschitz and the
matrix g ∈ Rn×m is constant and has full rank. Fix an equilib-
rium state x� ∈ Rn, that is,

x� ∈ E := {x̄ ∈ Rn|g⊥f(x̄) = 0}, (2)

where g⊥ ∈ R(n−m)×n is a full-rank left-annihilator of g, i.e.,
g⊥g = 0 and rank{g⊥} = n − m, and define the constant input
and output vectors associated to x� as

u� := (g�g)−1g�f(x�),

y� := h(x�). (3)

Define the incremental model

ẋ = f(x) + gu� + gũ,

ỹ = h(x) − h(x�), (4)

where ˜(·) = (·) − (·)� are the incremental variables.
Assume (1) defines a passive mapping u → y. Under which

conditions the mapping ũ → ỹ, defined by (4), is also passive?
The main contributions of this paper are, first, the establish-

ment of a condition on the vector field f(x) to ensure passivity
of the mapping ũ → ỹ. Second, we prove that a large class
of nonlinear RLC circuits—with strictly convex electric and
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magnetic energy functions and passive resistors with monotonic
characteristic functions—satisfy this condition, hence show-
ing that these circuits can be globally stabilized with linear PI
control.

2. Some comments and motivation

(1) The question posed above can be recast without invok-
ing incremental models, but using the more general concept
of dissipative systems [9], as follows. Assume (1) is dissipa-
tive with supply rate u�y, (this is, of course, equivalent to pas-
sivity of the mapping u → y). Under which conditions (1)
is also dissipative with respect to the incremental supply rate
ũ�ỹ? In view of the ubiquity of incremental models in applica-
tions we have opted for the formulation of the problem given
above.

(2) Invoking Kalman–Yakubovich–Popov’s Lemma [8] it is
easy to establish that all passive linear time invariant (LTI)
systems have passive incremental models. Indeed, if H(x) =
1
2 x�Px, with P ∈ Rn×n, P = P� > 0, is a storage function for
the original system, H(x̃) = 1

2 x̃�Px̃ is a storage function for
the incremental model as well.

(3) Passivity of incremental models has been explored in [4]
for the case when (1) is a port controlled Hamiltonian system
[8]. Actually, the storage function constructed here is the one
used in [4]—but expressed in the original coordinates of the
system, see Remark 1.

(4) Motivations to establish passivity of incremental models
are manifold. It has been used in [3] for tracking and disturbance
rejection—via internal model principles—in passive systems.
Another immediate application concerns energy-balancing sta-
bilization. As defined in [7], see also [6], a system is energy-
balancing stabilizable if there exists a static state-feedback that
assigns to the closed-loop system a storage function equal to
the difference between the (open-loop) systems stored energy
and the energy supplied by the controller, i.e.,

∫
u�(s)y(s) ds.

As indicated in [7], energy-balancing stabilization is stymied
by the presence of pervasive dissipation. The latter is defined
as dissipation that makes the supplied power evaluated at the
equilibrium non-zero, that is (u�)�y� �= 0. It is clear that this
obstacle is conspicuous by its absence in systems with passive
incremental models. Results stemming from this observation
will be reported elsewhere.

(5) We have adopted in the paper the standard convention
of defining passive systems in terms of the existence of a non-
negative storage function.1 As will become clear below, all
our derivations remain valid if we relax the non-negativity as-
sumption. These, obviously larger, class of systems are referred
in [6] as energy-balancing and in [10,2] as cyclopassive—a
name that is motivated by the fact that cyclopassive systems
cannot create energy over closed paths in the state space, in
contrast with passive system that cannot create energy for all
trajectories.

1 Actually, as one can always add a constant to the storage function, the
question is whether it is bounded from below or not.

3. Passivity of the incremental system

Proposition 1. Assume:

(A.1) System (1) defines a passive mapping u → y with a
convex twice continuously differentiable storage function
H : Rn → R+.

(A.2) The condition

[f(x) − f(x�)]�[∇H(x) − ∇H(x�)]�0 (5)

is satisfied.2

Then, the mapping ũ → ỹ, defined by (4) is also passive with
non-negative storage function H0 : Rn → R+,

H0(x) = H(x) − x�∇H(x�) − [H(x�) − (x�)�∇H(x�)]. (6)

Proof. We will verify that (A.1) and (A.2) ensure that (4)
satisfies the necessary and sufficient conditions for passivity
of Hill–Moylan’s nonlinear version of Kalman–Yakubovich–
Popov’s Lemma [2] with the storage function H0(x). Namely,
the condition of stability (with Lyapunov function H0(x)) of x�:

[f(x) + gu�]�∇H0(x)�0, (7)

and the coupling condition between input and the (new) output
mappings, that is,

h(x) − h(x�) = g�∇H0(x). (8)

From (6) we have that

∇H0(x) = ∇H(x) − ∇H(x�). (9)

Now, because of our assumption of constant g, f(x�) + gu� =
0 for all equilibrium points. Replacing the latter in (5) and
using (9) clearly yields (7). The second condition, (8), follows
immediately from (9) and the fact that passivity of (1) implies

h(x) = g�∇H(x).

It only remains to prove that H0(x) is non-negative, which
will be done showing that x� is a minimum point of H0(x).
Using convexity of H(x) yields

∇2H0(x) = ∇2H(x)�0,

which shows convexity of H0(x). From (9) we also obtain
∇H0(x�) = 0. Hence, x� is a minimum point of H0(x). This
completes the proof. �

Remark 1. The storage function H0(x) can be directly derived
from [4]—where the case of port Hamiltonian systems is con-
sidered and the analysis is carried out in co-energy coordinates
(∇H(x) in our notation). Indeed, integrating Eq. (10) from
that paper and expressing the function in the original (energy)
coordinates, denoted x here and called z in [4], yields (6).

2 All vectors defined in the paper are column vectors, even the gradient
of a scalar function that we denote with the operator ∇ := �/�x. We also
define ∇2 = �2/�x2.
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Remark 2. In the LTI case with quadratic storage function,
Eq. (5) reduces to the stability condition x̃�PAx̃�0, while the
new storage function is given by H0(x̃)= 1

2 x̃�Px̃. This appealing
downward compatibility makes our result a natural extension, to
the nonlinear case, of the well-known property of LTI systems.

Remark 3. If (1) is a port controlled Hamiltonian system we
have

f(x) = [J(x) − R(x)]∇H(x),

where J(x)=−J�(x) is the interconnection matrix and R(x)=
R�(x)�0 captures the dissipation effects. Condition (5) will
be then satisfied if J and R are constant matrices. This corre-
sponds to constant interconnections and linear damping—the
former is often the case in physical systems, for instance for
nonlinear mechanical systems or nonlinear LC circuits. In the
next section, we will prove that the incremental model of pas-
sive RLC circuits is passive also in the case when the resistors
are nonlinear, but with monotonic characteristic function.

Remark 4. For port-controlled Hamiltonian systems with
constant interconnection and damping matrices the storage
function for the incremental model given in (6) results from a
direct application of the interconnection and damping assign-
ment controller design methodology [7]. Indeed, in its simpler
formulation, the objective of this controller is to shape the
storage function of the system assigning to the closed-loop the
dynamics ẋ= (J −R)∇Hd(x)+gv, where Hd(x) is the desired
storage function and v is a free external signal. Fixing v= ũ we
see that the objective will be achieved with Hd(x)=H0(x); and
by definition of the equilibrium set (2), the matching equation

−gu� = (J − R)∇H(x�),

always has a solution.

Remark 5. For the purposes of stability analysis of passive
systems it is often of interest to investigate whether the storage
function has an unique minimum at x� and whether the func-
tion is proper.3 (As shown in the proof of Proposition 1, H0(x)

has indeed a minimum at x�, but this may not be unique nor
isolated.) The following proposition, whose proof is given in
Appendix A, shows that having a strictly convex H(x) is suf-
ficient to ensure that H0(x) has a unique minimum at x� and,
furthermore, that it is proper.

Proposition 2. Assume the storage function H(x) is strictly
convex. Then, for every x� ∈ Rn, the new storage function
H0(x) defined in (6) has a unique global minimum at x� and
is proper.

4. PI stabilization of nonlinear RLC circuits

In this section, we prove that a large class of nonlinear
RLC circuits—with strictly convex electric and magnetic

3 By properness of the function H0(x) we mean that for any constant
c > 0 the set {x ∈ Rn|H0(x)�c} is compact.

energy functions and passive resistors with monotonic char-
acteristic functions—satisfy the condition of Proposition 1,
hence showing that these circuits can be globally stabilized
with linear PI control.

We consider RLC circuits consisting of interconnections of
(possibly nonlinear) lumped dynamic (nL inductors, nC capac-
itors) and static (nR resistors, nvS voltage sources and niS cur-
rent sources) elements. Capacitors and inductors are defined by
the physical laws and constitutive relations [1]:

iC = q̇C, vC = ∇HC(qC), (10)

vL = �̇L, iL = ∇HL(�L), (11)

respectively, where iC(t), vC(t), qC(t) ∈ RnC are the capaci-
tors currents, voltages and charges, and iL(t), vL(t), �L(t) ∈
RnL are the inductors current, voltage and flux-linkages, HL :
RnL → R is the magnetic energy stored in the inductors and
HC : RnC → R is the electric energy stored in the capacitors.
We also define the total energy as

H(�L, qC) := HL(�L) + HC(qC).

For the sake of simplicity and to avoid cluttering (even more)
the notation we will consider that all current (resp. voltage)
controlled resistors are in series with inductors (resp. in parallel
with capacitors). In this way, we can write vRLi

= v̂RLi
(iLi

),
i = 1, . . . , nL, for the current controlled resistors and iRCi

=
îRCi

(vCi
), i = 1, . . . , nC for the voltage controlled resistors,

where v̂RLi
, îRCi

: R → R are their characteristic curves. See
Fig. 1.

The dynamics of the circuit can be written as a slight
extension—to the case of nonlinear resistors—of the port-
controlled Hamiltonian model of LC circuits described in [5]4

[
�̇L
q̇C

]
= J∇H(�L, qC) −

[
v̂RL(∇HL(�L))

îRC(∇HC(qC))

]
+ gu, (12)

where

J =
[

0 −�
�� 0

]
, g =

[−BvS 0
0 BiS

]
, u =

[
vvS

iiS

]
.

vvS(t) ∈ RnvS are the voltage sources (in series with inductors),
iiS(t) ∈ RniS the current sources (in parallel with capacitors),
BvS ∈ RnL×nvS , BiS ∈ RnC×niS are input (full rank) matrices
with nvS �nL, niS �nC and � ∈ RnL×nC , is a constant matrix
determined by the circuit topology.

The port variables are completed defining the currents and
voltages associated to the sources, which are given by

y = g�∇H(�L, qC) =
[−B�

vS
∇HL(�L)

B�
iS

∇HC(qC)

]
. (13)

4 Notice that if the resistors are linear, Eq. (12) takes the more familiar
form ẋ = (J − R)∇H(x) + gu [8]. The circuit can also be written in the
previous form, but with R(x), for nonlinear resistors whose characteristic
functions are continuously differentiable and map zero into zero. We thank
the anonymous reviewer for this pertinent observation.
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Fig. 1. Current controlled resistors in series with inductors and voltage
controlled resistors in parallel with capacitors

Proposition 3. Consider the dynamics of the nonlinear RLC
circuit (12), (13). Let (��

L, q�
C) be an equilibrium point with the

corresponding constant input u� and output y�. Assume

(B.1) Inductors and capacitors are passive and their en-
ergy functions are twice continuously differentiable and
strictly convex.

(B.2) The resistors are passive and their characteristic func-
tions are monotone non-decreasing.
Then, the circuit in closed-loop with the PI controller

�̇ = −ỹ,

u = KI� − KPỹ, (14)

where KI =K�
I > 0, KP =K�

P > 0, ensures all state tra-
jectories (�L(t), qC(t), �(t)) are bounded and

lim
t→∞ ‖ỹ(t)‖ = 0.

If, in addition, the closed-loop system (12)–(14) satisfies
the detectability assumption

(B.3)

ỹ(t) ≡ 0 ⇒ lim
t→∞

∥∥∥∥∥
[

�̃L(t)

q̃C(t)

�̃(t)

]∥∥∥∥∥ = 0,

where �� = K−1
I u�.

Then,

lim
t→∞

∥∥∥∥∥
[

�̃L(t)

q̃C(t)

�̃(t)

]∥∥∥∥∥ = 0.

Proof. First, invoking Proposition 1, we will prove that the
incremental model of the circuit defines a passive system ũ →
ỹ with a proper positive definite storage function. Since the
PI is a passive system, the proof will be then completed with
standard passivity-based control arguments.

It is well known, that RLC circuits with passive elements
are passive [1] with storage function their total energy. Indeed,

computing

Ḣ (�L, qC) = −i�L v̂RL(iL) − v�
C îRC(vC) + y�u�y�u,

where we have used (10), (11) and (13) to get the identity
and passivity of the resistors of Assumption (B.2) to obtain the
inequality.5 Non-negativity of H(�L, qC) follows from passiv-
ity of inductors and capacitors of Assumption (B.1).

To prove passivity of the incremental model of (12), (13)
we need to verify condition (5) which after some calculations
becomes[−v̂RL(∇HL(�L))+v̂RL(∇HL(��

L))

−îRC(∇HC(qC))+îRC(∇HC(q�
C))

]� [∇HL(�L)−∇HL(��
L)

∇HC(qC)−∇HL(q�
C)

]
= −(v̂RL(iL) − v̂RL(i�L))�(iL − i�L)

− (îRC(vC) − îRC(v�
C))�(vC − v�

C)�0,

where we have used Eqs. (10) and (11) for the first identity and
the monotonic resistors characteristic condition of Assumption
(B.2) for the inequality.

The storage function for the incremental model is computed
from (6) as

H0(�L, qC) = H(�L, qC) − ��
L ∇HL(��

L) − q�
C ∇HC(q�

C)

− [H(��
L, q�

C) − (��
L)�∇HL(��

L)

− (q�
C)�∇HC(q�

C)], (15)

which, under Assumption (B.1) and according to Proposition 2,
is strictly convex, has a unique global minimum at the origin
and is proper.

To complete the proof of the proposition we note that the
incremental model of the closed-loop system takes the form

ż = F(z), ỹ = G(z),

where z = col(�L, qC, �̃) and F(z), G(z) are locally Lipschitz
continuous. We, thus, consider the (positive definite and proper)
Lyapunov function candidate

Hcl(z) = H0(�L, qC) + 1
2 �̃�KI�̃.

Computing the derivative and using (14) we get

Ḣcl(z)� ỹ�ũ − ��KIỹ = −ỹ�KPỹ�0. (16)

It follows from (16) that the state z(t) is bounded and ỹ(t) is
square integrable. From continuity of F(z), this also implies
that ż(t) is bounded, hence z(t) is uniformly continuous. From
continuity of G(z) we also have that ỹ(t) is uniformly contin-
uous, and we conclude limt→∞‖ỹ(t)‖ = 0.

Convergence of the incremental state to zero follows using
LaSalle’s invariance principle and invoking Assumption (B.3)
(see, for example, [2]). �

Remark 6. In view of the passivity property of the incremental
model of the RLC circuit stabilization can be achieved with any
strictly passive controller. For instance, a simple proportional

5 We recall that a resistor is passive if and only if its characteristic
function lives in the first-third quadrant [1].
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control ũ=−KPỹ—this, however, would require the knowledge
of u�, which is tantamount to knowing the equilibrium point of
the system. As seen from (14), this prior knowledge is obviated
if we add an integral action, yielding a more robust control law.

5. Conclusions and future research

We have considered general affine passive systems with con-
stant input matrix. We identified a condition on the vector
field f(x), namely (5), that ensures passivity of the incremental
model. Then, we showed that a large class of nonlinear passive
RLC circuits—with strictly convex electric and magnetic en-
ergy functions and monotonic resistor characteristics—satisfy
this condition. Hence, these circuits can be globally stabilized
with linear PI control.

Current research is under way along two directions. First,
to employ these results for energy-balancing stabilization of
physical systems. Second, to derive conditions for passivity of
more general error models, for instance, those that appear when
tracking feasible trajectories.
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Appendix A. Proof of Proposition 2

It can be checked directly that the function H0(x) is strictly
convex, has a unique global minimum at x�, H0(x�) = 0 and
H0(x) > 0 for all x ∈ Rn\{x�}. It remains to prove that the
function H0(x) is proper.

Denote by B̄(�, x�) := {x ∈ Rn|‖x − x�‖��} the closed ball
with radius � and x� as its center. Let C := {x ∈ Rn|‖x −
x�‖ = 1} denote the sphere with radius 1 and x� as its center.
Let � = minx∈CH0(x) > 0.

H0(x) is proper if the inverse image of every compact set is
also compact, that is, if

{x ∈ Rn|H0(x)�k�} ⊂ B̄(k, x�) ∀k�1.

The latter is equivalent to

Rn\B̄(k, x�) ⊂ {x ∈ Rn|H0(x) > k�} ∀k�1. (A.1)

To prove Eq. (A.1) take any a ∈ Rn\B̄(k, x�) and let b be
the vector found at the intersection of B̄(k, x�) and the convex
combination of x� and a

b = �a + (1 − �)x�, � = k

‖a − x�‖ < 1, (A.2)

that is

b = x� + k

‖a − x�‖ (a − x�).

By the strict convexity of H0(x) and (A.2) we know that

H0(b) < �H0(a) + (1 − �)H0(x�) = �H0(a). (A.3)

Now let c be the vector found at the intersection of C and the
convex combination of x� and b

c = �b + (1 − �)x�, � = 1

k
�1,

that is

c = x� + 1

k
(b − x�).

From c ∈ C and again, from the strict convexity of H0(x) we
have that

��H0(c)�
1

k
H0(b) +

(
1 − 1

k

)
H0(x�) = 1

k
H0(b). (A.4)

From Eqs. (A.3), (A.4) and noting that � < 1 we have that6

�k�H0(b) < H0(a).

The latter inequality is valid for any k�1 and for all a ∈
Rn\B̄(k, x�), which is just an equivalent way to state (A.1).
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