
  

 

Abstract— We propose a method for handling persistent 

visual occlusions that disrupt visual tracking for eye-in-hand 

systems. Our approach allows a robot to “look behind” an 

occluder and re-acquire its target. To allow efficient planning, 

we avoid exhaustive mapping of the 3D occluder into 

configuration space, and instead use informed samples to strike 

a balance between target search and information gain. A 

particle filter continuously estimates the target location when it 

is not visible. Meanwhile, we build a simple but effective map of 

the occluder’s extents to compute potential occlusion-clearing 

motions using very few calls to efficient approximations of 

inverse kinematics. Our mixed-initiative cost function balances 

the goal of directly locating the target with the goal of gaining 

information through mapping the occluder. Monte-Carlo 

optimization with efficient data-driven proposals allows us to 

approximate one-step solutions efficiently. 

Experimental evaluation performed on a realistic simulator 

shows that our method can quickly obtain clear views of the 

target, even when occlusions are persistent and significant 

camera motion is required. 

I. INTRODUCTION 

obots equipped with camera sensors are 

increasingly common, as vision is an attractive 

sensor for a variety of unstructured and human 

aware tasks. Visual tracking, vision guided robot 

control (i.e., visual servoing) and visual 

Simultaneous Localization and Mapping 

(vSLAM) are just part of the diversity of robot 

vision methods [1, 2]. Furthermore, visual data is 

acquired through a wide range and combination of 

sensor systems, including stationary camera(s) 

observing the scene, mobile-robot mounted pan-

tilt cameras, and eye-in-hand cameras mounted on 

manipulators. With the growing cadre of vision 

systems, there is a commensurate demand for 

robust robotic visual guidance in less structured 

environments.  

We consider the problem of visual target 
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tracking for single-camera eye-in-hand systems.  

Applications include assembly line part picking, 

manipulation, inspection, and surveillance. Our 

specific focus is on recovery of visual tracking 

after the loss of the target due to an occlusion, for 

example, when a human co-worker intrudes 

between the target and the camera during an 

inspection or grasping process.     

Previous researchers focused primarily on main-

taining the target within the camera field of view 

(FOV) [3, 4]. Strategies to increase the camera’s 

tracking region were proposed to overcome 

tracking failures arising from boundaries due to 

robot joint limits or kinematic singularities [5].  

Occlusions are another important source of 

tracking failure. Here, we classify occlusions into 

two types. The first involves a moving target or 

moving occluder where visibility is temporarily 

lost, but the target quickly reappears within the 

FOV without repositioning the camera, namely a 

Temporary Occlusion, as addressed by Tsai et al. 

[6]. Herein, we consider a second type, Persistent 

Occlusions, requiring search for a manipulator 

configuration to restore visibility of the lost target 

by actively “looking around” the occluder so that 

tracking can resume. This new configuration must 

avoid singularities and joint limits while ensuring 

the target is inside the camera FOV.  

For our method to restore the view of the target, 

it must first obtain an understanding of the 

occluder’s extents. This involves: i) constructing a 

map that splits the world into occlusion regions, 

free-space, and unobserved areas, ii) continuously 

updating this map with new sensory data, and iii) 

permitting queries about "how much new 

information will be gained about the occlusion if 

the robot is moved to position q". Once a partial or 

complete map is obtained, it is possible to reason 

about whether looking around the known occluder 

boundaries may restore the view of the target.  

We answer information-based planning queries 
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using the concept of entropy maps, motivated by 

Zhang et al. [7]. Therein, a visual search strategy 

for eye-in-hand manipulator planning explicitly 

avoids uninteresting regions of the world. The 

authors utilized a novel extremum seeking control 

(ESC) over entropy maps, constructed from 

images, in real time, without a priori information. 

The same concept enables our motion planner to 

locate views that are likely to yield additional 

information about the occluder’s extents. 

We note that visibility reasoning, even around 

well-determined occluder extents, is not trivial. 

The manipulator operates in configuration space 

(C-space), and the occluder exists as a set of 3D 

boundaries in the robot’s workspace. On one hand, 

workspace planning is hampered by non-linear 

mappings of joint limits and singularities. On the 

other hand, densely mapping the entire 3D 

boundary into C-space with inverse kinematics 

(IK) is both computationally expensive and 

problematic for high DOF robots that can have 

multiple (or, if redundant, infinite) IK solutions.  

Our approach involves C-space planning with 

infrequent mapping of 3D quantities into C-space. 

We are motivated by work on “Next Best View” 

planning [8, 9] which performs C-space planning 

during 3D modeling of object shapes. However, 

their approach of transferring the entire 3D 

workspace information into C-space is expensive. 

Herein, we show that our task-based visibility 

query can be answered efficiently with 

approximate sampling-based optimization. 

The overview of our lost-target recovery 

algorithm (LTRA) is as follows: A target tracking 

module estimates the occluded target’s position 

based on the latest observations and a simple 

motion model. Simultaneously, a probabilistic 

occlusion map is constructed. Based on this 

continuously-evolving map, a planning module 

uses light-weight approximate IK routines only at 

a small number of critical points defined around 

known occluder boundaries and the frontiers of 

unknown space. These critical points provide 

informative seeds for our C-space sampling, which 

increases the efficiency both of constructing the 

occluder map and also reacquisition of the target.  

The contributions of our algorithm are to 

identify feasible visibility restoring configurations 

(a 3D property) without expensive C-space 

mapping and with minimal calls to IK. Our 

entropy-guided mapping term ensures that the 

occluder is also mapped with few sense/plan/act 

iterations. Our algorithm does not require a priori 

knowledge of the occluder size or shape, and the 

target motion can be arbitrary.  

II. PROBLEM FORMULATION AND PRELIMINARIES 

This section formalizes the inputs, goals and 

assumptions of our LTRA. We assume the target 

has been previously tracked, and thus an estimate 

for its motion is available. Our algorithm initiates 

when the target is no longer visible in the FOV 

due to occlusion, thus, the tracking system fails. 

We accept that all boundaries of the occluder may 

not fall within the FOV, but expect that the sensor 

can detect at least one occluder edge as it intrudes. 

This generalization distinguishes our prior work 

[10], where all relevant occlusion boundaries were 

assumed visible at initialization. 

Our planner must locate configurations resulting 

in restored target visibility. In principle, a planner 

with a multiple-step planning horizon could be 

desirable, but we consider 1-step planning in this 

work to maintain real-time operation. After 

planning, the robot moves to the specified 

configuration, more data is collected and the 

planner repeats if the target remains occluded.  

We denote by X a point in Cartesian space, q a 

point in C-space (representing a robot 

configuration), diag(Y) a diagonal matrix formed 

by a vector Y, and    the unit vector along any 

vector Y. The subscripts t and t+1 represent the 

current and the next time step respectively.  

III. METHODOLOGY 

We formulate the task of finding next-best-

views for target recovery as optimization of a 

mixed-initiative cost function defined in C-space 

(i.e. as a function of the vector of joint angles, q): 
 

                                (1) 
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The cost function terms are the pan-

configuration, tilt-configuration, distance, map-

ping, and visibility, respectively. In the following 

sections we describe each term, followed by our 

sampling-based method for minimizing (1). 

A. Configuration Terms:                  

In [10], capitalizing on the typical arm plus 

spherical wrist manipulator configuration, we used 

a decoupled search, with sensor placement (using 

the arm) in the visible region followed by a pan-

tilt search (with the wrist) to reacquire the target. 

To facilitate the pan-tilt search, the sensor 

placement strategy maximizes the searchable 

region by ensuring that the pan and tilt joints are 

centered within their range of motion when the 

camera is pointing towards the estimated target 

location,      
 . This estimated location is provided 

by a particle filter based algorithm [11]. For the 

example camera-mount configuration (Fig. 1) on a 

n-DOF robot, the optimal placement is such that 

the distal joint Z-axis (  ) is perpendicular to the 

line connecting the camera center,   
 , to      

 . 

This intuition is captured with two cost function 

terms. The first is related to the pan axis: 
 

                      
    

        (2) 

 

The second ensures that the tilt joint, qn-1, is 

centered by aligning the qn-2 and qn Z-axes. This is 

achieved by minimizing the cross product norm:  

 

                          (3) 

 

One can extract the joint axes of rotation (Z-

axes) in (2) and (3) from the Jacobian matrix at q. 

By centering joint qn-1, joint qn-2 can redundantly 

compensate for qn motion so that qn (pan joint) can 

also be centered easily. Each of      and       take 

values in the range [0 1], with smaller values 

indicating more favorable configurations. We 

enforce the same [0 1] range on each component 

of our mixed-initiative planning function, so that 

scaling and weighting of terms are intuitive.  

B. Distance Term:          

As gross motion has time and safety costs, paths 

for reacquiring the target should minimize 

manipulator travel distance. Here, we consider the 

Euclidean distance in C-space from the current 

configuration, qt, to a possible next step, qt+1 and 

minimize:  
 

            
           

           
 
 

 
   

 
          (4) 

 

where qimin and qimax are the joint limits of the i
th

 

joint and n is the number of joints. The Euclidean 

distance is normalized to range over [0 1]. 

C. Mapping Term:          

Our occlusion mapping process includes: i) the 

probabilistic model used to represent the system's 

partial knowledge of the occluder extents from a 

sequence of images; and ii) the information-

theoretic measure used to capture representation 

completeness and fidelity and to compare the 

value of making each new observation. Here, we 

assume the occluder is a convex hull of known and 

potential edges. Our map construction process is 

illustrated in Fig. 2. 

In the first camera image where the target is 

occluded, only a sub-set of the edges of the 

occluder are detected. We label these as known 

edges (e.g., edge 1 in Fig. 2). The boundaries of 

the image limit our spatial perception. We name 

the limits of known occlusion regions caused by 

image extents as potential edges (e.g., edges 5, 6, 

and 7 in Fig. 2). Until mapping is complete there 

are unknown edges (e.g., edge 4 in Fig. 2). Our 

system assumes such edges exist because the 

occluder is a connected, bounded object, but has 

no knowledge of their location until they are 

directly observed in the sensor. 

     
a)                                    b)  

Fig. 1. a) A schematic representation of persistent occlusion.  

b) Mounted camera configuration on the last link. Figures generated 

using Barrett Technology’s WAM CAD model. 

zc 

z7 

z6 

z5 
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Our probabilistic mapping model is formed from 

the edge-set by a flood-fill operation. Regions 

surrounded by known and potential edges are 

occlusion with certainty. The occlusion/visibility 

of regions beyond potential edges is considered 

uniformly uncertain, as our only a priori 

knowledge of the occluder shape is that it is 

bounded and connected. Finally, areas outside 

known edges are considered visible with certainty.  

Our mapping algorithm incrementally constructs 

the edge map with each new image observation in 

order to resolve potential and unknown edges into 

known edges. Each camera motion that observes a 

previously unseen portion of the occluder will lead 

to some additional map information, but we 

encourage actions that lead to as much new 

knowledge as possible. This is captured with 

expected Information Gain,      , as: 

 

         
           

         (5) 

 

where    
    refers to the entropy of the 

occupancy probability, pt, at time step t, of a map, 

m, defined as: 

 

   
                            (6) 

 

Here we use an occupancy grid map where mj 

denotes the grid cell with index j. Hence, the 

information gain is defined as the measure of all 

the unexplored grid cells set. This is computed by 

a ray casting procedure similar to [12].    

Finally we compute the maximum possible 

Information Gain by resolving all of the remaining 

edges to a known state within a single step, and 

normalizing each computed       by this value, 

IGt, to obtain         in the range [0 1]: 

 

                  . (7) 

 

D. Visibility Term:          

The final term in our cost function measures 

whether the target will be visible at the proposed 

location (i.e., the line from the camera to the target 

does not pass through the occluder), the overall 

goal of our system. The visible region, Rvis, is 

computed using shadow planes. The shadow plane 

(visibility plane) separates the environment around 

the target into two half-spaces of visible and 

shadow region constructed by occluder edges. Fig. 

3 illustrates the geometry used to construct 

shadow planes from the target’s estimated 

position,    , and an occluding edge. Each edge of 

the occluder defines a shadow plane.  

C-space planning points, q, are mapped via For-

ward Kinematics (FK) to find the camera Car-

tesian locations. These locations are checked 

against Rvis to determine whether or not q leads to 

target visibility. The cost-function term is derived 

from this computation as follows: 

 

          
                       

                        

    (8) 

 

 

 
Fig. 3. A schematic representation of a shadow plane and closest point.  

 
a)                    b)  

Fig. 2. a) Detecting only a single edge of the occluder. b) A view of 

the occlusion plane with the projected camera FOV, defining different 

types of occlusion edges. 1-3 represent known edges (due to convex 

hull assumption), 4 represents an unknown edge and 5-7 represent 

potential edges. 

Ps 
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E. Monte-Carlo Optimization 

The previous sections have described each term 

in mixed-initiative cost function (1). The goal of 

our LTRA planner is to determine the minimum 

cost arm configuration at each step. Since all of 

the terms in (1) are non-linear - the mapping and 

visibility terms are discontinuous - we have 

chosen a gradient free minimization method based 

on data-driven importance sampling.  

To avoid joint limits and singularities, we draw 

samples from the robot’s C-space. To avoid 

exceeding joint limits, we introduce a penalty 

function, Wq, on C-space samples, q : 

 

    
    
   
    

 

 

  (9) 

          
  

                    
                

         
 

where k is a user defined parameter used to control 

the acceptable safe distance from the limits, and is 

set to 0.2 in our experiments.  

Uniform sampling of a manipulator’s n-DOF 

solution space would be prohibitively expensive. 

Hence, we focus our samples to promising C-

space regions using a data-driven proposal 

distribution. This proposal distribution uses 

information about the current manipulator position 

and map representation to sample two heuristically 

promising types of C-space regions: those that 

accomplish zooming back and those that allow 

looking around the occluder. The overall proposal 

is formed from these two sub-components. 

The Type I proposal component captures 

zooming back to gather more information by 

broadening the camera’s FOV. We construct a 

multivariate Gaussian distribution,   , in C-space 

with mean at   . We consider a covariance,  , that 

directs the distribution towards a location farther 

from the target than the current camera, while it 

orients the camera towards the predicted target 

location. The covariance is formed from the 

pseudo inverse of the Jacobian matrix   
 
. 

 

 

              (10) 

     
         

        
    

       
    

 

The Type II proposal component guides the 

robot towards looking around the occluder to find 

the target. We construct one Gaussian for each 

shadow plane, l (l=1,…,np). The mean of each 

distribution in C-space,      
, is derived using IK 

at the closest point Ps,l to the current camera 

location that falls on the shadow plane, as shown 

in Fig. 3. The Type II proposal component is: 

 

              
    

  

   
  (11) 

         
            

       

 

IK is an expensive operation and our method 

utilizes very few executions of this procedure 

relative to methods that exhaustively map 3D into 

C-space. Also, rather than using a complex or 

tailored solver, we relied on two options for 

efficient approximate IK solutions. The first 

involves 1-step along the gradient direction 

defined by the inverse of the manipulator’s 

Jacobian evaluated at the current configuration. 

While this only yields valid solutions in a small 

region of convergence the computational cost is 

very low [10]. The second solver, a slightly more 

costly gradient based iterative method with 

random re-starts, is capable of handling 

configuration changes and singularities [13].  

Our overall sampling policy combines the 

components in (10) and (11) to form the following 

multivariate Gaussian mixture model as the net 

proposal:  

 

         . (12) 
 

The cost function, (1) is evaluated at a number 

of samples drawn from   , and the sample with 

minimum cost is output from our planner as the 

best next arm configuration.  An overview of our 

proposed LTRA is presented below.   
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IV. EXPERIMENTS 

Evaluation of a multi-faceted (non-analytically 

tractable) planning approach such as ours requires 

multiple repeated trials to test robustness to a 

variety of configurations.  To efficiently validate 

the system we have implemented a detailed 

simulator of a Barrett WAM 7-DOF robot, a 

moving target, and an occluder with simple 

geometry. As shown in Fig. 5, each joint angle 

command issued by our planner results in a 

simulated image that is used to drive subsequent 

planning. Target tracking and occlusion analysis 

are also simulated, although for simplicity we 

assume error-free visual measurement is possible.  

Multiple trials involving a variety of initial 

conditions of the arm were executed, and planning 

results are aggregated to compare methods. A 

single trial starts with the target recently lost from 

view due to occlusion.  The planner provides a 

new robot pose, simulating arm motion to that 

pose, and then the simulation updates the target 

and occluder information accordingly. This is 

repeated until the target is re-acquired. The 

following presents numerical results of our 

method within this simulation environment. 

A. Simulation Results 

We validate our approach against a number of 

simple base-line strategies: 

 Pure pan-tilt refers to a strategy that does not 

re-locate the arm, but simply moves the last two 

joints to orient the camera towards the target. This 

planner cannot make clearing motions, so will 

only restore object tracking when the target’s own 

motion moves it clear of the occluder. 

 Random motion refers to a planner that 

randomly selects a set of joint angles within the C-

space of the robot at each step.  

 Random sampler begins with the same number 

of samples as the following two methods. These 

derived samples from a uniform distribution over 

C-space are weighed using our cost function.  

 LTRA-IK refers to our complete approach 

including the Gaussian-mixture proposal based on 

shadow planes and our cost function. However, 

the promising closest point “seeds” are mapped 

from Cartesian space to C-space using a more 

computationally expensive gradient based IK.  

 LTRA-IJ (Inverse Jacobian) refers to our 

complete approach including the Gaussian-

mixture proposal based on shadow planes and our 

cost function. However, the promising closest 

points “seeds” are mapped from Cartesian space to 

C-space using the cheaper 1-step estimation based 

on the pseudo inverse of the robot’s Jacobian. 

Table I lists the initial conditions used for each 

of the experiment-types in our evaluation. We 

have attempted to cover a range of reasonable 

joint configurations. Of note, the pose labeled 

“home” is a singular configuration for our 

simulated manipulator. 

 

TABLE I.  INITIAL CONDITIONS 

Parameter Terms Quantity 

qElbow Down 

qHome 

qElbow Up  

qmin 

qmax 

XT(0) 

VT 

XOccluder 

 

 

 
 

                

                

                

                 

                

                

            

           

          

          

          

[0 -1.57 0 1.57 -1.5 0 0] 

[0 0 -1.3 0 0 -0.2 0] 

[-1.57 0 -1.57 1.57 0.5 0.2 1] 

[-2.6 -2 -2.8 -0.9 -4.76 -1.55 -3] 

[2.6 2 2.8 3.1 1.24 1.55 3] 

[-1.4  5  0.2] 

[0.1   0  0.02] 

[-0.5  2  0.2; 

 -0.5  2  1.2; 

 0.5   2  1.2; 

 0.5   2  0.2] 

 

Lost-Target Recovery Algorithm (LTRA) 

 

1. Initialization: target is occluded at time t.  

 Estimate      
  by particle filter and obtain   

  through 

FK. 

 For l=1,…,np find Ps,l through updated map m, then 

obtain      
 by IK. 

 Derive ns samples from πt in (12). 

2. Cost function evaluation: for r=1,…,ns do 

 Calculate (2) and (3) through Jacobian matrix at qr. 

 Calculate (4) and (7) at qr. 

 Calculate (8) through FK at qr. 

 Calculate Γr as the summation of the terms in (1). 

3. Optimization: find qr with minimum Γr and set  

qnext= qr. 

 Move to qnext and acquire new sensory data. 

 If target is recovered, abort and resume tracking, 

otherwise continue. 

4. Update: if the occluder is not thoroughly mapped, 

update the map, m, based on acquired sensory data. 

 Set t = t+1 and go to 1. 
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TABLE II.  SIMULATION RESULTS 

Planning Strategy 

Initial Configuration 

Elbow 

Down 
Home Elbow Up 

Pure 

Pan-tilt 

Steps mean 27 27 27 

Steps SD* 0 0 0 

Dist.** mean 0.46 0.50 0.89 

Dist. SD 0 0 0 

Random 

Motion 

Steps mean 17.4 16.45 23.9 

Steps SD 11.42 14.78 16.01 

Dist. mean 71.01 65.59 99.91 

Dist. SD 51.08 67.26 72.5 

Random 

Sampler 

Steps mean 14.65 12.10 17.05 

Steps SD 10.03 7.62 8.68 

Dist. mean 54.54 43.71 65.37 

Dist. SD 41.64 34.45 35.82 

LTRA-

IK 

Steps mean 5.25 20.65 6.45 

Steps SD 2.43 7.29 2.78 

Dist. mean 12.49 15.78 19.48 

Dist. SD 12.82 9.66 13.44 

LTRA- 

IJ 

Steps mean 12.05 10.85 20.6 

Steps SD 7.94 12.85 3.73 

Dist. mean 5.99 3.94 6.74 

Dist. SD 2.96 4.95 1.7 

*Standard Deviation      **Euclidean distance in radians 

 

The C-space search performed by our method 

primarily involves points nearby the initial robot 

position to find configurations that are useful for 

mapping and target re-acquisition. Therefore, 

performance around a joint singularity 

demonstrates the robustness of our approach. 

Table II summarizes the results from running 

our simulator for twenty trials and averaging 

results, in each of the cases described. There are 

clear trends in both the number of steps required to 

restore tracking and the required travel distance. 

Fig. 4 presents a sample experimental trial with 

the “Elbow Down” initial configuration. 

 

 

B. Discussion 

The Pure Pan-Tilt strategy requires the least 

motion of any planner, as it keeps the majority of 

the robot’s joints stationary, at the cost of waiting 

until the object reappears from behind the occluder 

for a large number of steps. The Random Motion 

and Random Sampler approaches both draw 

samples from the same uniform distribution, and 

only differ in the Random Sampler’s use of our 

cost function to select from the sample-set.  

The latter prioritizes samples that lead to the 

target being re-acquired more quickly, validating 

our cost function. The Random Sampler and LTRA 

strategies employ the same cost function, but 

LTRA has the benefit of our adaptive proposal 

distribution, so the set of samples are focused 

around regions likely to yield useful views. 

Finally, we draw the reader’s attention to the 

performance of the two variants of LTRA.  There 

is a clear reduction in both the number of steps 

and the distance travelled. In many cases, our 

planner is able to re-acquire the target after 

making a small number of mapping motions, and 

then choosing a sample near one of the shadow 

planes, allowing rapid recovery of object tracking. 

The primary difference of these two strategies is in 

the strength of the IK utilized. The simpler 1-step 

solution (LTRA-IJ) expends much less 

computation, but can only recover solutions near 

the manipulator’s current position.  The iterative 

solver (LTRA-IK) will find joint angles for any 

reachable configuration. 

 

 

 

 

 

 

 

 

 

 

 

 
       a)             b)             c)             d) 

Fig. 4. Four steps of an experimental run for Elbow Down scenario given in Table 1 based on LTRA-IJ. a) Starting point, target is visible (green point).  

b) Step # 1 after occluder intervenes between robot and target (red point). Occluder is partially mapped. c) Step # 8 after occluder intervenes, occluder is 

almost mapped. d) Step # 12 after occluder intervenes, target is recovered (green point) and the occluder is mapped. 
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Our results show that when the iterative solver is 

used, our method requires fewer steps, but 

produces paths with larger manipulator motions 

(i.e., each step is larger on-average).  This is 

intuitive, since the more complete solver enables 

us to jump between promising regions within the 

workspace, while the 1-step method considers a 

larger number of small motions.  

V. CONCLUSION AND FUTURE WORK 

This paper has described a method to regain 

visual tracking of a lost target for an eye-in-hand 

manipulator system. Our method captures many 

intuitive aspects of this problem, including the 

active construction of a map of the occluding 

object, and the use of this map to compute poses 

that allow the robot to look around the occluder. 

Our algorithm rarely employs expensive IK (once 

per shadow plane), and the remainder of our 

computations are completed efficiently in C-space. 

As a result we are able to rapidly trade off 

searching for the target with acquiring further 

information about the occluder’s extents.  This 

rapid search approach is essential when tracking 

quickly moving targets. Our results have 

demonstrated that the disparate planning goals of 

our system can be effectively balanced using our 

multi-objective cost function.  

Our future work will include advancing the 

occlusion map as well as the information-theoretic 

feedback to the planner that leads to effective 

mapping actions. We are investigating smoothing 

models for the occlusion probability within 

unobserved regions as well as more detailed 

modeling of occluder’s extents. Finally, in 

previous work we have implemented a simple 

target re-acquisition strategy on a physical 

manipulator and performed hardware trials [10] 

(Fig. 5). We are currently extending the presented 

simulation approach for demonstration on that 

platform for further validation of our approach. 
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a)          b) 

Fig. 5. a) View from eye-in-hand camera. Detected target (the yellow 

glove) is marked by a red circle and the detected known occluder edge 

is shown by a red line .b) View of experimental set-up.  
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