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Abstract

A robot must recognize objects in its environment in order to complete numerous tasks.

Significant progress has been made in modeling visual appearance for image recognition,

but the performance of current state-of-the-art approaches still falls short of that required

by applications. This thesis describes visual recognition methods that leverage the spatial

information sources available on-board mobile robots, such as the position of the platform

in the world and the range data from its sensors, in order to significantly improve perfor-

mance. Our research includes: a physical robotic platform that is capable of state-of-the-art

recognition performance; a re-usable data set that facilitates study of the robotic recog-

nition problem by the scientific community; and a three dimensional object model that

demonstrates improved robustness to clutter. Based on our 3D model, we describe algo-

rithms that integrate information across viewpoints, relate objects to auxiliary 3D sensor

information, plan paths to next-best-views, explicitly model object occlusions and reason

about the sub-parts of objects in 3D.

Our approaches have been proven experimentally on-board the Curious George robot

platform, which placed first in an international object recognition challenge for mobile

robots for several years. We have also collected a large set of visual experiences from a

robot, annotated the true objects in this data and made it public to the research community

for use in performance evaluation. A path planning system derived from our model has

been shown to hasten confident recognition by allowing informative viewpoints to be ob-

served quickly. In each case studied, our system demonstrates significant improvements in

recognition rate, in particular on realistic cluttered scenes, which promises more successful

task execution for robotic platforms in the future.
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Preface

Although the work described in this thesis represents the novel contributions of the author,

numerous portions of the work have been carried out in collaboration with others and have

appeared in co-authored publications. This section will briefly list these collaborative works

and the chapters in which their material can be found. Each of the relevant chapters will

contain a more detailed description of the shared work.

• Chapter 3 describes the Curious George robot and material published as [MFL+07],

[FML+08] and [MFL+08].

• Chapter 4 describes the collection of a robotic dataset documented in [ML12].

• Chapter 6 describes a planning approach that is found in [MGL10].

• Chapter 7 describes an occlusion reasoning approach that is found in [ML11] and

[MWSL11].

• Chapter 8 contains unpublished work carried out in collaboration with others.

Please note that throughout this thesis the “we” voice is used to denote work done

primarily by the author of this thesis, with support from others as specified in each chapter.
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Chapter 1

Introduction

Recognizing objects is a fundamental task for intelligent systems since it maps semantic

concepts into physical action space. Reliable recognition is required for many robotic tasks

such as responding to simple natural language commands and safely navigating in human-

populated environments. Unfortunately, even after decades of study, the performance of

methods that recognize objects within visual images is not sufficient to enable many desired

tasks, especially in cluttered environments.

This thesis describes visual recognition methods that leverage spatial information sources

that are uniquely available during object recognition on-board mobile robots, such as the

position of the platform in the world and the range data from its sensors. Our research

includes: a physical robotic platform that is capable of state-of-the-art recognition perfor-

mance; a re-usable data set that facilitates study of the robotic recognition problem by the

scientific community; and a three dimensional (3D) object model with accompanying al-

gorithms that demonstrate improved robustness to clutter. Based on our 3D model, we

describe algorithms that integrate information across viewpoints, relate objects to auxiliary

3D sensor information, plan paths to next-best-views, explicitly model object occlusions

and reason about the sub-parts of objects in 3D.

1.1 Thesis Overview
This thesis describes the development of the Curious George robot: a physical platform that

achieved state-of-the-art performance on the Semantic Robot Vision Challenge (SRVC)

1



(a) (b)

Figure 1.1: Example Recognition Scenarios: (a) Our Curious George robot performing
live object recognition at the 2009 SRVC contest, where it placed first. (b) A sample data
collection trajectory that was used to build the UBC VRS dataset overlaid on the collected
3D laser point cloud.

contest, an international robotic recognition competition (see Figure 1.1(a)). During the

contest, Curious George was required to autonomously explore a single room, to collect

useful images, to recognize objects within these images, and to report results in an on-line

fashion. By placing first in the SRVC contest in several years, sometimes out-scoring the

competing teams by a large margin, we demonstrated the effectiveness of our recognition

approach. In particular, we developed a targeted visual attention system to guide our robot

and cameras. This enabled rapid success on visual tasks compared to competing approaches

such as random motion.

In order to continue our empirical study of recognition methods, we collected a dataset

that allows repeated replication of the sensory experience of a robot performing visual

recognition. Curious George collected visual survey trajectories, which covered a dense

set of the possible viewing directions of a scene. The information from the robot’s cameras,

spatial mapping system and laser range finder were archived for each scene (see Figure

1.1(b)). We developed a simulate from real data protocol that enables the repeated testing

of recognizers by drawing specific subsets of the recorded data. We annotated the ground

truth object information, to allow quantitative analysis of results. The resulting data, called

the UBC Visual Robot Survey (UBC VRS) was made available to the scientific community.

This dataset represents a more genuinely robotic visual experience than can be easily repli-

cated with existing data sources, which are often collected using hand-held sensors with

2



(a) (b)

Figure 1.2: Sample Results: (a) A kitchen scene where our method’s 3D object recognition
results, displayed over a 2D image (top), are a close approximation to the 3D ground-truth
objects, displayed over a point cloud (bottom) (mugs shown in red and bowls shown in
green). (b) An urban driving scenario where our method recognizes a partially occluded
car and its composite parts in 3D, projected into one image (top). The same scene is shown
over a 3D point cloud (bottom) both with the result overlaid (right) and without (left).

weak spatial registration between viewpoints. As such, it provides a new opportunity for

other researchers to more easily study the robot recognition problem.

Our algorithmic contributions are built upon a probabilistic 3D object model that relates

an object’s position and shape to images collected along a robot’s trajectory. An object,

represented in 3D, is explained by the visual appearance of its corresponding region in

every image, which we determine using registration of sensor positions (e.g., from structure-

from-motion or laser range finder based localization). Since images are inherently 2D, the

process of locating objects in 3D requires reconstructing missing depth information, similar

to stereo-vision. We have implemented several statistical inference procedures that reliably

perform this 3D object localization.

We have demonstrated the effectiveness of our model and associated algorithms for

3



a number of applications. First, viewpoint-aware visual appearance models allow next-

best-view planning that leads the platform to informative views. We utilize sensed range

data to explicitly capture occlusion for each viewpoint, again leveraging the recovered 3D

object locations. This occlusion model has demonstrated state-of-the-art performance on

recognizing kitchen objects in clutter (e.g., Figure 1.2(a)). Finally, we model the spatial

information of an object’s sub-parts to produce more detailed output and to enable yet

stronger parts-based occlusion reasoning. This has been demonstrated by our system’s

strong performance on recognizing occluded automobiles on a standard dataset (e.g., Figure

1.2(b)).

In combination, the techniques within this thesis form a mobile visual object recognition

system that achieves state-of-the-art performance for a number of evaluation tasks. The

potential for fusing information from many sources within a probabilistic model gives the

promise for ever-stronger performance as robots are equipped with new sensor types and

their mapping approaches become more accurate. This direction is likely to be a part of

semantic awareness systems that are able to perform tasks in the real world.

1.2 Problem
We define the visual object recognition problem for mobile platforms as recovering an

object’s name in the form of a semantic category label, where semantic is defined as “of

or relating to meaning, especially meaning in language” [dic00], using images from an

automated camera. A method that solves this problem, which we call a recognizer, must

locate objects by recovering their center and size either within a visual image or, with

additional challenge, in a 3D coordinate system. An algorithm that predicts object pose

along with location will be referred to as a pose estimator.

Note that our definition allows recognition of both generic object categories (e.g., ev-

erything a human would call bottle) and specific object instances (e.g., the bottle of a single

type and size of soft-drink). The name chosen as a recognition target implies a level of

specificity based on a human’s mapping of that term to a set of instances. Throughout

this thesis, we consider recognizing generic object categories and methods that generalize

across the appearance of different instances, except where we compete in tasks defined by

the research community, such as the SRVC contest, which has a specific instance recogni-

tion component.

4



• Input:

– Visual images from a camera that moves between frames.

– Registration information, either accurate or approximate, that relates the posi-

tions of the camera over its trajectory to a global frame.

– (optional) Sensed depth data corresponding to the images (e.g., from laser scan-

ner or stereo camera).

• Output: List of hypothesized objects, each composed of:

– A semantically meaningful category label.

– A geometric location in 2D or 3D.

– A geometric scale in 2D or 3D.

– (optional) Orientation information, sometimes referred to as pose, in 2D or 3D.

Beyond this simple description, several additional details are needed to specify the exact

nature of the recognition problem to be solved. Table 1.1 lists numerous problem dimen-

sions. Each selection of one item for each dimension represents a potential specific problem

that can be studied. For every particular application and intelligent system, the system de-

signer can choose the nature of problem that most naturally fits the requirements.

The work in this thesis covers a sub-set of specific problems that are most relevant to

the needs of mobile intelligent platforms. For some problem dimensions, this means that

we have considered only a single option. For others, we have achieved a more complete

coverage of the potential options. We will begin by discussing the problem dimensions that

are depicted in Figure 1.3, as these are the most significant for our work: the number of

viewpoints available, whether objects must be localized in image space or in three dimen-

sions, and whether the object’s pose should be predicted. The following sections will then

continue to describe all additional problem dimensions listed in Table 1.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Illustrated Taxonomy: The first row represents (a) single-viewpoint and (b)
multiple-viewpoint image space object localization. The second row shows (c) single-
viewpoint and (d) multiple-viewpoint three dimensional object localization. In the third
row, object pose estimation is depicted as an independent per-viewpoint task in (e) and as a
cross-view task relative to the world frame object in (f).
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Problem Dimension Examined Instances
Number of Viewpoints single, two (wide-baseline stereo), greater than two

Number of Localization Dim. image space, three dimensional
Pose Estimation none, per-image, global frame

Registration Information inferred, known
Sensor modalities stereo range, RGB-D, vision, laser range

Control passive, active
Objects vs Scenes independent object, joint scene model

Real-time requirements hard real-time, near real-time, off-line

Table 1.1: Robotic Recognition Taxonomy: several dimensions upon which recognition
approaches can be compared. The problem instances that are most directly considered
within this thesis are indicated by the bold text descriptions. Several of the plain text items
are discussed in minor detail.

Number of Viewpoints

As is depicted by Figure 1.3(a) and (b), we distinguish between single viewpoint recog-

nition, where only one image of a scene is available, and multiple viewpoint recognition,

where several views can be processed jointly (e.g., after they have been collected by a mov-

ing platform). The ability to reason about scenes through the motion of a platform is a

primary concern of this thesis. Some of our results do represent algorithms that treat views

independently or that are only able to handle a single image of a scene. However, the large

majority of our technical discussion and novel contributions deal with multiple viewpoint

solutions to object understanding.

Number of Dimensions for Localization

The first and second rows of Figure 1.3 contrast object locations provided in image space

with those that exist in three dimensions. 3D localization allows for our visual recognition

outputs to be used by robotic systems to perform tasks such as grasping. While we produce

2D localization systems for comparison purposes and to standardize our results with the

scientific community, a primary goal of this thesis is to demonstrate capable 3D localization

from multiple images.

To appreciate the fundamental difference between the two tasks, the reader is asked to

consider the task of translating the 2D detections shown in the right-most simulated image

of Figure 1.3(b) into the 3D object descriptions of Figure 1.3(d). Since the bowl and mug
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are overlapping in the image, the image space results of many 2D object recognizers will

produce overlapping bounding boxes. Even if sensed depth values (e.g., by an RGB-D cam-

era) are available, they will not give a consistent measurement of an object’s missing depth

dimension, since a range of distracting depth values will be present within each bounding

box. Correctly recovering 3D information requires inference of the type described later in

this thesis.

Object Pose Estimation

The final row of Figure 1.3 depicts two of the possible formats for recovering the pose

information. First, a method can predict a viewing direction local to each single image

(e.g, “side-view in the first image and back-side view in the second”), as in Figure 1.3(e).

While this information can be translated after-the-fact into a global frame common to all

images using registration information, the numerous estimates from each image may not

agree precisely and the process may need to be somewhat sophisticated. Therefore, the

second approach, directly predicting a pose in the global frame as shown in Figure 1.3(f),

is primarily considered in this thesis.

Registration Information

Our problem formulation considers information about where the camera has moved as an in-

put to our algorithms, rather than hidden information that must be recovered by the method.

The existing literature on this problem is somewhat split on whether registration informa-

tion should be assumed known while inferring semantic objects. However, the majority of

modern robots already employ highly capable localization systems that are typically based

on matching sensor readings to existing maps comprised of linear segments or point fea-

tures. There has been little evidence in the research literature that the addition of semantic

object information is able to improve localization performance. Therefore, in this thesis,

we will separate localization from other tasks, assuming it is solved by an external tool.

Sensing Modality

In this thesis we assume the inputs to a recognition system may be visual images only, or

that sensed range information such as from a laser range finder might be available. We will

not consider systems where only range information is available. Rather, visual appearance
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will be the primary signal that will be used by our systems to relate sensory information

to objects in the world. Although 3D data has become much more readily available during

the course of this thesis, for example using Microsoft’s Kinect sensor or the Velodyne High

Definition Lidar (HDL), cameras are still the most ubiquitous sensors to be available on

intelligent systems. They operate in a larger range of environments (e.g., underwater and

in bright outdoor sun) and are inherently passive as opposed to systems that radiate energy

into the world. Consequently, throughout this thesis, we base our description of semantic

objects on visual appearance in images. Many of our techniques could be adapted to utilize

range-based or hybrid object appearance models. This is a promising direction for future

work.

Control

Many intelligent systems provide an opportunity for automated control. Examples include

intelligent mobile robots and security cameras with pan-tilt mounts. In other domains, an

intelligent system can passively perceive but not guide its motion. These include passive

driving assistants, smart phones and fixed surveillance systems. Our probabilistic model is

suitable both for situations where a stream of data is obtained after a camera is externally

controlled and also for systems that simultaneously perceive and give feedback to control

the sensor. Therefore, this thesis achieves a fairly broad coverage along this problem axis.

Objects vs Scenes

Numerous authors have considered an independence assumption between the objects that

appear together in a scene, which allows for simple and efficient inference of each object in-

dependent of all others. This independence assumption is often not a faithful representation

of reality, since objects in real scenes overlap one another, influencing the local visual ap-

pearance and affecting any features or models that are extracted from the images. We have

considered both sides of this problem dimension by treating objects as independent for the

majority of the thesis and then relaxing this assumption by considering a more sophisticated

inference approach in Chapter 8.
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Real-time Requirements

We have implemented a near real-time recognition system in the Curious George robot that

is described in Chapter 3. However, the remainder of the thesis has not been evaluated

on a physical robot platform, and therefore we have not focused on real-time execution.

Many of our approaches depend on tools developed by other authors to scan single images

and score likely object locations based on visual appearance models. In particular, the

Deformable Parts Model (DPM) of [FGMR10] is used in Chapters 6, 7 and 8. This method

can take up to a full second per input image, at typical resolutions. We treat this mainly

as an external component separate from the methods in this thesis, and so if a faster image

space recognizer were used, our approaches would have more potential to be near real-

time. In particular, the viewpoint planner of Chapter 6 executes much faster than real-time

if the image detection step is ignored, although we have run this off-line. The simple parts-

based multiple viewpoint 3D object inference method of Chapter 7 is close to real-time,

but its run time scales with the number of objects present in a scene. It becomes slower

than real-time with on the order of tens of objects present. The scene inference technique

presented in Chapter 8 is currently much slower than real-time. That approach involves four

distinct image recognition methods in each image, as well as the 3D inference approach,

which requires several additional seconds to process each pair of images. In general, for all

thesis components except the Curious George robot, we have taken the approach that there

are numerous potential speed optimizations that could be made, but we have left these for

future work when the approaches are implemented on a real robot system.

1.3 Contributions and Outline
The work contained in this thesis has been published in an international journal and several

conferences. We group the research contributions contained into several distinct categories

and describe the refereed publications that have resulted from each:

• Visual robot search platform: The Curious George robot platform represents a con-

tribution both as an autonomous recognition platform that integrates existing compo-

nents in a successful way and also by contributing several novel components such as

the embodied attention system. The platform development efforts that are a part of

this thesis were published in an early form at a workshop [MFL+07] and the com-
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pleted system was described at the International Conference on Robotics and Au-

tomation (ICRA) 2008 [FML+08] and in a journal [MFL+08].

• Robotic recognition dataset: The UBC VRS dataset is a large corpus of data col-

lected by a real robot moving through many environments. The objects in these

environments were annotated carefully. Simulation and evaluation software allows

for repeatable testing of the performance of recognition approaches. This work was

published in 2012 at the International Symposium for Experimental Robotics (ISER)

as [ML12].

• Active Vision for Category Recognition: This thesis contributes a control strategy that

guides the motion of a robot’s base through an environment using learned viewpoint-

detection models of the target object categories so that informative viewpoints are

obtained. This work described at ICRA in 2010 as [MGL10].

• Occlusion reasoning multi-view 3D category recognition: Occlusion is one of the

most common failure modes for current object recognizers when images of objects

have a realistic level of clutter. We produced a method to improve the performance

of a 3D multiple-viewpoint recognition by explicitly modeling occlusion. This work

appeared at the International Conference on Robotics and Intelligent Systems (IROS),

2011 [ML11].

• Parts-based multi-view 3D object reasoning: We have considered part decomposi-

tions based on pre-determined image space geometry and on semantically meaning-

ful decompositions of objects into their 3D component parts. These methods lead

to a significant improvement in the accuracy of our multi-view 3D object detection

method. The first portion of this work was presented at the British Machine Vision

Conference (BMVC) in 2011 [MWSL11]. The most recent version of this work ap-

pears in Chapter 8 and has not yet been published at the writing of this thesis. We

plan to submit this content to an international conference or journal in the future.

In addition, the work described in Chapter 3 has been evaluated during an international

robotics competition named the Semantic Robot Vision Challenge (SRVC) [SRV]. In three

years of participation in this contest, the Curious George platform twice achieved first place

standing in the robot division of the contest. In the third year, the associated object recog-

nition system placed first in the software-only division.
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1.3.1 Thesis Outline

This thesis can be viewed as four parts:

• (Part 1) includes the introductory material, in this chapter, and a discussion of related

work in Chapter 2.

• (Part 2) describes the systems and data contributions including the Curious George

robot, in Chapter 3, and the UBC VRS data set, in Chapter 4.

• (Part 3) contains the primary technical contributions of the thesis including a high-

level model description, in Chapter 5, application of the model to active viewpoint

planning, in Chapter 6, occlusion and parts-aware object inference for indoor objects,

in Chapter 7, and scene-level reasoning with detailed object parts, in Chapter 8.

• (Part 4) concludes the thesis with a summary and discussion of open research prob-

lems, in Chapter 9.

The remainder of this thesis will be quite accessible if read in a linear fashion and the

material in each chapter builds upon the previous in non-trivial ways. However, readers

seeking to understand only one of the novel technical contributions are encouraged to begin

reading at Chapter 5, which describes the generic form of our model, and then to continue

to choose the one of the three subsequent chapters. Material specifically focusing on the

active nature of the robotic recognition problem is primarily found in Chapter 3 and Chapter

6, where two planners for the robot and its camera can be found. Some readers may come

to this thesis seeking our contributions to home robotics, which could be found by reading

about the Curious George robot in Chapter 3, our dataset of kitchen images in Chapter 4 and

the results of our technique on that data in Chapter 7. Results for automobile recognition in

urban driving can be found in Chapter 8.

1.4 Chapter Summary
This chapter has provided an overview of the robotic object recognition task and has given

a preview of the work that will be described in the remainder of this thesis. We described

motivations and background, provided a taxonomy to sub-divide the various related sub-

problems. The thesis will continue with a detailed discussion of related work.
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Chapter 2

Related Work

The research in this thesis has been conducted during a time of rapid exploration in both the

computer vision and robotics communities. Large strides were made in the performance of

visual appearance models for the single-image category recognition task. Fast and reliable

range sensors (e.g., the Microsoft Kinect) became available and these inspired numerous

methods that investigate the use of 3D features, models and abstractions. A number of new

standards were established by the research community to measure progress on recogni-

tion tasks, such as the Pattern Analysis, Statistical Modelling and Computational Learning

(PASCAL) Visual Object Classes (VOC) [EVW+12], ImageNet [DDS+09] and multi-view

Kinect [LBRF11] datasets.

In this chapter, we describe the research developed by other authors that had the largest

impact on the methods we describe within this thesis. Broadly, we will organize the discus-

sion into a summary of visual object recognition history and the current state of the art for

a number of recognition sub-problems that are closest to the work in this thesis: classifiers

that operate strictly in the space of visual appearance, pose estimators that add the ability to

predict or model the object’s orientation, recognizers that are aware of the parts-layout of

an object, and recognizers that explicitly handle some level of visual occlusion. The prob-

lem of viewpoint control will be briefly described. We then describe existing experimental

benchmarks along with current results as well as a number of physical robot systems that

are capable of embodied visual recognition. Finally, we will discuss visual tracking and

multiple-viewpoint recognition techniques that fuse information across numerous images,

as these are the most similar to our own approaches.
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2.1 Single Image Object Recognition
The study of object recognition in visual images has a long history, with notable early work

by Helmholtz [Von67], Hubel et al. [HW79] and Gibson [Gib79] contributing to the un-

derstanding of human vision, among countless others. Automated object recognition using

digital images is a classification process, where the correct label must be assigned to a

portion of the image based on analysis of the image content. A major challenge for vi-

sual recognition techniques has always been the plethora of viewing conditions and camera

properties that affect each image. A single static scene can produce a wide variety of differ-

ent images as the lighting and camera properties change. This means that simply describing

objects based on the values of raw image pixels is inadequate.

Recently, significant progress has been made through the study of invariant features,

which can be extracted from images in order to produce new representations of the visual

content that remain consistent with respect to some number of these disturbances. Gradi-

ents, which are formed by taking differences of nearby pixels, provide greater illumination

invariance than the raw intensity values. The scale-space theory of Lindeberg [Lin90] has

been used by a number of authors to produce features that give a nearly consistent response

as the image resolution changes (e.g., Witkin [Wit84]). The scale-space of an image is con-

structed by repeatedly blurring an original image (i.e., applying convolution with a Gaussian

filter), and down-sampling to produce a pyramid of images at successively lower resolution.

Distance in the space of invariant features is typically a better indicator of similar con-

tent than distance in the space of raw intensities, but this still does not produce capable

recognizers. Note that the appearance of an object will change as it rotates in the image, as

parts of the object are deformed, and as the background that surrounds the object changes.

There are several approaches to overcome these changes in order to produce a successful

recognition technique. Roughly, these can be grouped into methods that extract informative

sub-regions of the image in a bottom-up fashion to focus further processing and those that

scan a template for the entire object across the image in some fashion (e.g., exhaustively

as a sliding window search or in some adaptive fashion). We will briefly describe the first

approach, which is known as local feature image description, and will then continue by

describing approaches for scanning regions within the image.
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2.1.1 Recognition with Local Features

The first method that we will describe is based on the observation that even as many aspects

of an image change with viewpoint, lighting and object motion, a sub-set of meaningful lo-

cal appearance regions are likely to remain largely unchanged. Numerous methods describe

an image based on a collection of local features including [MTS+05, KB01, BMP00, BTV].

The Scale Invariant Feature Transform (SIFT) of Lowe [Low04] is perhaps the most com-

mon scale-invariant local feature and an implementation made available by the author1 is

widely used. SIFT features describe small patches of image content in a fashion that is

invariant to scale, lighting and in-plane rotation, and tolerates a moderate amount of affine

deformation. Feature points are located at the extrema of the difference of Gaussians over

neighboring levels in scale-space, where extrema-finding can be performed with precise in-

terpolation to produce sub-pixel and sub-scale accurate feature locations. Several heuristics

prune points that are less informative and the local dominant orientation is computed at

each remaining point. Finally, a feature descriptor is constructed, respecting the orientation

that was estimated, by rotating local gradients and binning the resulting vectors into eight

discrete orientations. The patch is spatially decomposed into a four by four grid and a sepa-

rate orientation histogram is produced in each grid cell, which produces a 128-dimensional

description of the local image region.

Authors have also studied stronger invariance, for example the work of Mikolajczyk

et al., which achieves invariance to affine image transformations [MS04]. The basic prin-

ciple of this approach is to estimate the local surface orientation so that the feature can

be appropriately transformed. This makes matching possible over a wider range of defor-

mations. Numerous other authors have considered techniques for enhancing the viewpoint

invariance that can be achieved by local features (e.g., [MY09, WCL+08]).

Regardless of the type of feature, the process for recognition using local features is

somewhat similar. It involves searching for large sets of matching feature pairs that are

close in descriptor space so that the set respects geometric constraints. For simplicity, con-

sider now that only a single training image of an object is available, and we seek to rec-

ognize (locate and label) another instance of that object in our run-time processing. Local

features are extracted at the keypoints located in each of the images, and feature descriptors

are computed. For the remaining discussion we will assume that N features are found in the

1http://www.cs.ubc.ca/ lowe/keypoints/
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training image. The next step is search for the best match to every feature in the test im-

age, where we assume two features that are close in descriptor-space are candidate matches

that may explain the same image content. Brute-force search for the closest match can be

performed naively with complexity O(N), by computing the distance to every feature in the

training image. Several more efficient techniques are available to find neighbours in low

dimensions, such as the k-d tree [FBR77], with complexity that scales as O(log(N)) with

the number of features. However, the so-called “curse of dimensionality” [MS79] describes

that performance of any such exact method is dominated by the dimensionality of the un-

derlying space. In high dimensions, such as the 128 of SIFT, the naive approach is more

efficient. Approximate matching techniques such as [BL97, ML09] are often employed in

practice and allow for efficient matching at the cost of rarely locating a sub-optimal neigh-

boring point.

Any set of candidate feature matches that are found solely based on appearance sim-

ilarity is likely to contain some matches that truly correspond to the same positions on

objects and other matches that are accidental (e.g., due to image texture and repeating pat-

terns). Typical approaches model the spatial layout of visual features in the training image

and search for a sub-set of the matches that agrees upon a consistent geometric model of

some form that explains a feasible motion of the object between images. One example spa-

tial model is the space of all affine transformations of the assumed-rigid object. A robust

model-fitting method such as Randomized Sampling and Consensus (RANSAC) [FB81]

can be used to locate sets of features that agree upon the same geometric model. More

flexible spatial models have also been considered, for example by [FPZ03] and [LLS08].

The output of a local feature-based recognizer is a set of object hypotheses. This set may

be empty for an image, if zero or few matching feature points are mutually consistent. For

every large group of compatible features which are inliers for a particular object placement

within an image, the common geometric transformation can be used to estimate the image

location of the object in the query image, which forms an object hypothesis.

2.1.2 Recognition with Appearance Templates

The second major approach for object recognition in images is based upon the idea that each

position in a test image can be compared to a full-object template, which is typically learned

from numerous training examples. Methods based on learned appearance templates are par-

16



ticularly appropriate for recognition of object categories, where numerous training images

might be needed to capture the variation related to single semantic label. This variation

can be caused by the presence of sub-categories (e.g., cars, trucks, vans and convertibles

are all automobiles) or simply because instances with the same name show variation (e.g.,

each human face has a unique appearance). Numerous authors have proposed constructing

appearance templates using similar gradient-based image processing techniques to those

employed for the local features described above (e.g., [SC00, DT05, BMP00, BTV]). Many

of these approaches are suitable to describe the appearance within each image window in a

fashion that also has a number of useful invariance properties.

Each of the considered windows, once described by a feature representation, can be

classified or scored by an appearance model that is learned from training data. Classifi-

cation may be through a straightforward application of a generic technique from machine

learning such as a Support Vector Machine (SVM) as in Dalal et al. [DT05] or boosting

as in Torralba et al. [TMF04]. Alternatively, object parts (e.g., [FH05, LLS08, FPZ03]),

viewpoints (e.g., [TFL+09, SSFFS09]) or occlusion reasoning (e.g., [GFM11]) can be in-

corporated within this classification step. Here we will specifically focus on two recogni-

tion approaches that we have used extensively as inputs to the methods within this thesis:

Felzenszwalb et al. [FGMR10] and Stark et al. [SGS10].

The Deformable Parts Model (DPM) of [FGMR10]

During the course of this thesis, the method that has displayed the most consistently strong

performance on the PASCAL VOC contest has been the Deformable Parts Model (DPM)

of Felzenszwalb et al. [FGMR10]. DPM has gained wide use by the computer vision

community and the source code, which is publicly available2, has been used in numerous

places throughout this thesis. This method is based on the Histogram of Oriented Gradients

(HOG) feature that was developed by [DT05] for detecting pedestrians. HOG features are

similar to the SIFT descriptor, in that they compute discretized gradient information pooled

over spatial bins. Rather than being computed only at feature points, they are typically

computed over a dense grid that covers the entire image. Also, local normalization over

nearby groups of histogram bins provides improved repeatability. HOG features are not,

by default, rotationally invariant as they do not benefit from the local orientation estimate

2http://www.cs.berkeley.edu/ rbg/latent/
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that we described above for local feature methods. This makes the unmodified HOG fea-

ture suitable for detecting objects that always appear with the same viewpoint and in-plane

orientation.

The DPM approach extends on basic HOG templates in several ways. Perhaps most

important is the addition of numerous part templates that can deform relative to each entire

object (i.e., a part can take a variety of positions within the object’s outline). These parts, in

addition to the so-called root filter, are each composed of a HOG-like descriptors, modified

to have lower dimensionality and made invariant to reflection. The part filters are applied

at twice the resolution of the entire-object filter, to capture the finer detail that makes up

an object’s components. Numerous sets of entire and part templates are used in a mixture

model with the intuition that each mixture is able to model a different mode or viewpoint

of the object’s appearance.

A primary contribution of the DPM approach is the use of a Latent Variable Support

Vector Machine (LVSVM) representation to form the training objective function. The SVM

approach seeks to maximize the margin, which in this case is the number of misclassified

training examples. The latent variables refer to assignments of training examples to mixture

components and the placement of parts on each positive example. The LVSVM is trained

using stochastic gradient descent. To make best use of the extensive set of negative data

that is available for most recognition tasks (it is easy to find images that do not contain

the object), and particularly the PASCAL VOC challenge, only an initial sub-sample of the

negative data is initially provided to the method. In subsequent training rounds, data-mining

of hard negatives is performed. Hard negatives are the windows of negative data that obtain

the most positive scores, indicating regions where the current model is most likely to make

an error. By focusing the training process on the most error-prone background regions,

convergence occurs much faster than it would if all negative windows were used in each

round.

After training completes, the learned appearance model can be used for detecting ob-

jects in a test set, or on-board a physical robot as we discuss in this thesis. Sliding the object

template exhaustively across the entire image is an expensive process, especially when an

optimal part configuration must be associated with each detection hypothesis. In practice,

an efficient detection method based on distance transforms was proposed in [FGMR10].

[FGM10] proposed a so-called cascade detector which rapidly rejects large areas of the im-

age with initial filtering before running detailed analysis only in a small number of promis-
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ing locations. In any case, the detection outputs are a set of object hypotheses in the form of

bounding boxes in image space, with associated normalized margin scores that determine

the confidence of the classifier in each result.

The Part-Constellations of Stark et al. [SGS10]

A second approach that we have utilized within this thesis is the viewpoint-aware con-

stellation of semantically meaningful parts that were described by Stark et al. [SGS10].

While being somewhat similar to DPM in overall motivation (i.e., both approaches attempt

to model objects as collections of parts related by loose spatial relations), the training pro-

cess and model specifics have significant differences. Stark attempts to perform detailed

viewpoint estimation jointly with detection, and in each viewpoint attempts to accurately

localize a set of semantically meaningful object parts that remain consistent across views.

Note that this contrasts with the DPM object parts which are selected simply to optimize a

discriminative classification training objective and may not correspond to the part decom-

position that a human would perform.

In order to train such detailed spatial information, the method begins with 3D Computer

Aided Design (CAD) models of many instances of an object category. In order to obtain

features that can be later related to visual images, these CAD models are rendered from a 36

viewpoints (every ten degrees) for the paper’s results, but this is an adjustable parameter of

the method. Object part labels that are present in the CAD models are transfered into each

image, along with viewpoint information. Shape context features developed by Belongie

et al. [BMP00] are extracted densely over the rendered image patches. Independent part

appearance models are training using Ada-Boost [FS97], which forms a strong classifier

by combining a number of weaker classifiers. Platt Scaling [NMC05] is applied to the

raw output of the boosted classifier in order to produce well-scaled detection scores. A

so-called constellation model, which is a specific form of probabilistic graphical model

encoding variation in part placement with respect to the object’s centre, is learned for each

viewpoint. While all positive training examples are derived from rendered CAD imagery, in

order to produce an object detector that is robust to real-world image effects, a large number

of real visual images are used to form a negative set. The result of the training process are

the weights and local boosted classifiers that form a viewpoint and part-aware appearance

model.
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At testing time, each image region would ideally be compared to every learned view-

point and the optimal part layout would be found. This is prohibitively expensive for the

number of viewpoints and parts in the model, so instead a sampling-based search process

using the Metropolis-Hastings (MH) [GSS96] algorithm is used to approximate the maxi-

mum a posteriori (MAP) object configurations in an image. Local non-maxima suppression

is needed, since MH results in many likely samples associated with every true object with

a slightly shifted image location or viewpoint. The final result of the Stark object detector

is a set of object hypotheses. Each has a bounding box in image space, a viewpoint esti-

mate precise to the number of views rendered during training, an estimated part-layout that

describes where each of the human-understandable parts is likely to fall within the entire

object’s region and a confidence score. Chapter 8 demonstrates the utility of the detailed

viewpoint and object-part information available from the Stark detector for the purposes of

multiple viewpoint object reasoning.

2.1.3 Recognition of Objects Joint with their Spatial Properties

We attempt to recover 3D information about the objects in a scene so that our hypotheses

are useful for a mobile robot performing tasks based on the objects. Numerous authors

have previously considered recovering spatial information from single images of a scene,

such as: object pose, occlusion, scene layout, depth maps (e.g., [SCN08]), segmentation

(e.g,. [AMFM11, LSD12]), and material or contextual properties of regions (e.g., [PG11,

FEHF09]). The remainder of this section will discuss several examples from each of the

first three areas listed above, since these are most relevant to our work.

Pose Estimation

We consider estimation of the pose of an object, along with its category label, location and

size in Chapters 6 and 8. This task is related to approaches for building object category

recognizers that perform well over all viewpoints [SSFFS09, TFL+09, LSS08, SK00], a

challenge since many objects exhibit large variation in appearance across their aspects.

Multi-view recognition methods typically require training data in which the object’s pose

has been annotated in each image or a video sequence that captures the object from many

directions as in [SSFFS09]. The most standard approach for recognition from multiple

viewpoints is to discretize the space of viewing directions (e.g., by defining 8 views spaced
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at 45 degree increments) and to model each direction as either independent or related to its

neighbors. If an independent recognizer is trained for each viewpoint, it is common to call

the approach a bank-of-detectors. Final answers from this bank are obtained by evaluating

the detector for each viewpoint on each image and performing non-maxima suppression

to pick the viewpoint model with the highest local response. Several authors have shown

that introducing links between viewpoint models, such as enforcing shared features during

training as [TMF04, OPZ06] or some minimal appearance continuity as [TFL+09], allows

for improved multi-view recognition performance over the simpler independent detector

bank.

The above methods differ from our work in that their motivation for exploring viewpoint

is primarily to improve the performance of the recognition method. They have typically not

evaluated the accuracy of their techniques for estimating pose, and do not explicitly model

the variation or distribution of appearance with respect to pose. Several authors have also

explored the variation of object category models with respect to viewing direction (e.g.,

[LA06]). These approaches build viewpoint-aware models that predict an object’s pose with

relative accuracy and can be used within a planning framework. Our viewpoint selection

method in Chapter 6 uses a similar approach, and we will discuss related approaches further

in the context of viewpoint planning in Section 2.3.

Occlusion

Occlusion is perhaps the most dramatic effect that can alter the contents of an object’s

image patch, since the occluded portion is independent of the object and its properties. This

effect can alter the score obtained by a recognizer on an occluded object instance, as the

features will typically appear more similar to the background than for unoccluded instances.

One solution is for a recognizer to be inherently robust to occlusion, so that even heavily

occluded instances are distinguishable from background, but this is unfortunately not the

case for many current methods.

Numerous authors have considered explicitly reasoning about occlusion while recog-

nizing objects in single images. Vedaldi et al. [VZ09] employed a structural SVM based

on HOG-like features to predict object occlusion or truncation jointly with the usual di-

mensions of object location and category label. Wang et al. [WHY09] study a similar

problem but show that a second complementary image region descriptor is useful for the
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task. Schindler et al. [SD10] have considered occlusion-aware appearance models in the

context of reasoning about large-scale reconstructions of entire city scenes. In each of these

cases, if the correct occlusion for a particular image patch can be determined, the techniques

are able to preserve a meaningful score that assigns confidence in the detected region nor-

malized by the amount of visual area.

Occlusion has been studied in the context of other computer vision problems, such as

determining optical flow [JFB02] and segmentation [YHRF10]. These approaches show

promising bottom-up cues that can be used as an indication of the presence and location of

occlusion. Fusion of such information with appearance-occlusion models for objects and

3D inference is an interesting direction for future work.

In a paper that appeared after all of the technical contributions in this thesis were com-

pleted, Hsiao et al. [HH12] discuss occlusion reasoning performed from a variety of view-

points for specific instance recognition. Their method includes detailed geometric reason-

ing, priors about likely types and frequencies of occlusions and processing of each object’s

silhouette. Their method shows strong performance on occluded object instances, demon-

strated on highly cluttered kitchen data, which is similar in many respects to the UBC Vi-

sual Robot Survey dataset that we will describe in Chapter 4. Our methods are not directly

comparable, because we study object category recognition and [HH12] considers specific

instances. However, several aspects of their technique, especially the occlusion boundary

and silhouette reasoning, are suitable to be incorporated into future versions of our method.

The most similar previous approaches to ours are those which combine occlusion rea-

soning with tracking in video, as they both fuse information over space and infer a depth

layout of the scene. Pedestrian tracking methods, such as those developed by [EESG10]

and Wojek et al. [WWRS11], have inspired the mixture-of-experts formulation to com-

bine partial object detectors that we will describe in detail in Chapter 7. The primary

difference is that we utilize sensed depth information, such as from an RGB-depth cam-

era, while [EESG10] uses motion discontinuities to pre-segment regions and [WWRS11]

utilizes inter-object reasoning that requires all occluders to be detected with an appearance

model (i.e., if the background creates occlusion, this is not modeled).

22



Scene and Object Layout

Our work places 3D objects within a scene, which allows for reasoning about geometric

constraints between pairs of objects as well as between objects and elements of the envi-

ronment such as walls and support surfaces. Numerous authors have attempted to infer the

3D layout of a scene either based on generic geometric cues derived from the image (e.g.,

[TXLK11]), or by joint reasoning with the recognition process (e.g., [WGK10, BSS11,

FDU12]). Hoiem et al. [HEH06] recover a rough overall scene geometry by estimating

the orientation of surfaces in the image and by placing priors over the likely orientation of

the camera. This allows filtering and re-scoring of object detections made in image space,

which significantly improves recognition performance.

Fidler et al. [FDU12] is the approach that uses the most similar layout reasoning to

our methods. They have demonstrated that the DPM approach can be extended with 3D

geometric information. Specifically, the object’s overall shape in 3D is well approximated

by a cuboid. Their approach estimates the 3D position, orientation and scale of objects in

the scene from single images, which they refer to as cuboids and our later chapters refer

to as oriented bounding volumes. As such, both the inter-object mutual exclusion and also

expected ground plane constraints that we apply later can be formulated identically in both

approaches. Fidler’s work has been published after all technical contributions in this thesis

were complete and the authors have not evaluated their approach on any of the datasets that

we have used for results in this thesis. Direct comparison, or fusing of the methods appears

to be a promising future direction.

2.2 Previous Robot Recognition Systems
An important aspect of this thesis is the assembly and programming of a mobile robot

system named Curious George that demonstrates the capability to recognize objects in real-

world scenarios. Numerous other authors have also developed embodied object recognition

systems. Those approaches often consider elements similar to our work, in particular when

the systems are aimed towards home robotics (e.g., [SBV07, MFS+07]) or urban driving

(e.g., [SBFC03]). This section will describe a sub-set of the platforms that are most related

to our methods.

Ye et al. [YT99] describes Playbot, a robot which models the variation in viewpoint

when observing a specific object, learns this model from training data, and uses the learned
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model to guide its behaviour. We have been inspired by this approach, and have performed

a similar analysis for the response of object category detectors over many instances of each

category in Chapter 6.

Sjö et al. [SLP+08] have constructed a recognition system that was demonstrated to

successfully locate a number of objects in a realistic home environment. We note that they

consider object categories with little variation between instances, that object viewpoint is

not modeled in their work at present and that their example scenes appear less cluttered

than the ones we study in this work. However, their system considers a wider range of the

problems facing a domestic robot, when compared to the work of this thesis. This includes

interaction with humans in the environment using natural language dialogue in order to

create plans based on the users requests. Combining our perceptual techniques into a larger

integrated system of this type is a direction for future work.

A number of problems related to those in this thesis were studied during the construction

of the Stanford Artificial Intelligence Robot (STAIR) [GAK+07]. They have considered

an information-based visual guidance routine for peripheral-foveal vision and estimated

accurate object pose during recognition [SDN09], for example. The family of robots named

Personal Robot (PR1 [WBDS08] and PR2 developed commercially by Willow Garage) are

also capable recognition platforms and have been used by several authors for tasks such as

the construction of semantic object maps [PTPB12].

In the domain of visual understanding within the workspace of a robot arm, Rasolzadeh

et al. [RBHK09] describe a vision system that enables the arm to interact with a set of

objects. Their use of visual saliency and object segmentation in this work is quite similar

to the visual attention system of the Curious George robot. However, their relatively simple

object models and overall goal of achieving successful object grasps for simple objects

differs significantly from recognition of generic objects within unstructured environments.

The robots described in this section use a wide variety of approaches for each sys-

tem component, but all have been demonstrated to be reasonably successful at recognizing

objects in a number of visual environments. This demonstrates the diversity of available

solutions in this domain. Our efforts to participate in the Semantic Robot Vision Challenge

and to publish a public dataset collected by our robot are motivated by the need to compare

between platforms of this type.
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2.3 Active Vision for Object Recognition
Control of the robot and its sensor pose is a critical aspect of the robotic object recogni-

tion problem. The robot’s camera must not only continue to observe the object within the

field-of-view, but it should also ideally find the viewpoints that most assist with recogni-

tion. This is closely related to the so-called Active Vision [AWB88] problem from computer

vision, where the only distinction is whether constraints from the robot’s control system are

considered. Early work by Whaite et al. [WF94] identified the importance of modeling un-

certainty, or the lack of information about certain pieces of information, and to find control

actions that minimize this uncertainty. This concept has been applied to the problem in a

wide variety of work including: to combine object-related planning with a visual attention

process [DCTO97], to guide recognition based on optical flow features [AF99] and to find

objects jointly with recognizing indoor place-types [GAP+11], among numerous others.

One challenge for a viewpoint-control system is that planning trajectories of many steps

is a costly task, where each single step can require significant simulation from a probabilis-

tic object viewpoint model. Vogel et al. [VM07, VdF08] have proposed several computa-

tional methods to allow multi-step planning for viewpoint control. These approaches are

similar to the related problem of finding multi-step trajectories that allow for efficient robot

localization [PR09, FBT98, SJC00].

Another approach to achieving efficiency in the planning process is considered by La-

porte et al. [LA06], who consider efficient computation over single actions. We will

describe this method is detail as it motivates our approach in Chapter 6. Laporte uses a

Bayesian model to integrate object information over the collected views and models several

latent variables such as the object’s orientation and the scene lighting. Principle Compo-

nent Analysis (PCA) is used to produce simple object appearance models for a number

of viewpoints. A necessary step in many viewpoint selection algorithms is computing the

distribution of the next unseen observation, conditioned on potential motions under consid-

eration as well as the latent variables. In the case that there are many unknown dimensions,

computing this distribution can be time consuming and often requires sampling to approx-

imate the desired marginal (e.g., with Metropolis-Hastings). Laporte demonstrates that the

observation model can be factorized and that several components may be pre-computed

after the object model is known, to minimize test-time computation. Our work adopts the

Bayesian evidence integration formulation, but we have used modern object recognizers
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such as the DPM technique, which is largely invariant to illumination. So, we have not

found the need to model lighting as a latent variable.

Active Vision and robotic viewpoint planning are often considered in small workspaces,

as this allows for systematic evaluation and restricts the planning dimensions. However, it

is also important to evaluate viewpoint planning approaches on robots in less constrained

environments. Our Curious George robot planned motions through a contest area on the

order of 100 m2 during the SRVC contest. Other examples of physical robots that use

viewpoint planning for physical robots over relatively large spaces include the work of

[Eid10].

2.4 Recognition from Heterogeneous Data Sources
In several sections within this thesis, we fuse visual appearance models with sensed geo-

metric information, such as that from a laser range finder. Other authors have also consid-

ered fusing information between depth sensors and images [GBQ+08, SXBS10, QBG+09,

FSD10, HL10, RLXF11]. In some cases, depth information has been used as an indirect

input, which guides the recognition process but does not directly appear in the feature rep-

resentation. For example, Sun et al. developed a depth-aware Hough Transform [SXBS10]

and several authors have considered using depth to reduce the set of scales to be searched

at each image pixel [FSD10, HL10], during visual recognition. In contrast, both Lai et al.

[RLXF11] and Quigly et al. [QBG+09] extract features from both visual and depth im-

agery, so that the resulting appearance models have primary contributions from both sensor

types. Our work can be classified with those that make indirect use of sensed ranges. We

use depth both to reason about occlusion and to locate objects in three dimensions, but do

not extract appearance features from the range data.

2.5 Applications of Object Recognition by a Mobile Platform
A number of authors have considered the use of detected objects, along with minimal spatial

information for each object, in order to perform the task of place recognition. Vasuvedan et

al. [VGNS07] use expected co-occurrence distributions between object counts and the type

of room to label places (e.g., office, hallway, or kitchen). Ranganathan et al. [RD06] also

model a place by the set of objects located there, but study the task of localization using

sets of detected objects.
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In some cases, the interaction between the spatial properties of objects and humans in

the world is the primary concern. For example, Grabner et al. [GGV11] parse the geometry

of a scene by analyzing what locations are likely to be “sittable” by a human as part of

their procedure to locate chairs in the environment. Kulić et al. [KC05] have developed a

system for safe interaction between a robot arm and a human working in close proximity

that leverages visual information about the human within the planning algorithm.

In the case of autonomous driving safety, it is essential to recognize and locate nearby

cars, people and traffic signs. Numerous methods have used object recognition from vi-

sual images, range data or the combination to solve this task. Prisacariu et al. [PTZ+10]

have used the recognition of street signs from multiple viewpoints to assist in driver safety.

Dolson et al. [DBPT10] consider the important problem of interpolation between sparse

points of range data in order to produce detailed geometric object descriptions while driv-

ing, which could be incorporated into our work on car recognition in Chapter 8 in future

work.

A number of authors have combined object information with video cues such as motion

and moving segmented regions in order to automatically build an understanding of space.

Swadzba et al. [SBWK10] use recognized objects along with motion information (i.e., fore-

ground and background segmentation) to construct a so-called “articulated scene model”.

Xu et al. [XK10] use moving objects as part of their object semantic hierarchy which is a

general description of the world that can be used during developmental learning.

2.6 Evaluation Procedures for Object Recognition
Evaluation procedures are required to judge the quality of various object recognition ap-

proaches and to describe their expected performance on new tasks. Realistic data is required

for this analysis, and we will discuss a number of relevant data sources shortly. Recogniz-

ers can describe object locations in a variety of ways (e.g., with 2D bounding boxes, 3D

bounding volumes, with or without poses) and this must be respected during performance

evaluation. Here we will briefly discuss some of the most common evaluation algorithms

for several types of object descriptions.
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Evaluating 2D Bounding Boxes

The standard evaluation method for algorithms that localize objects as a 2D bounding box is

precision and recall (PR) analysis and the average precision (AP) statistic. Each object box

hypothesized by the recognizer is determined to be either true or false, based on whether

it overlaps sufficiently with an annotated object region. A point on a PR curve represents

a precision, the ratio of true positives to number of hypothesized objects, and a recall,

the ratio of true positives to number of annotated objects. Each point corresponds to a

thresholding of the recognizer’s results at a single confidence value. A curve is formed

by simulating a range of threshold values. Average precision is a summary statistic that

captures performance across all possible thresholds with a single number by measuring the

area under the PR curve. Perfect performance on the task would give all of precision, recall,

and average precision equal to 1.0 which indicates every object instance is correctly located

without any false positives.

Note that computing a PR curve for an arbitrary recognizer can be quite a complicated

task, as each hypothesis must be labeled as a true or false positive for a variety of confi-

dence thresholds. Also, multiple object categories, multiple instances of each category, and

multiple hypothesized detections from the recognizer may appear in the same image. De-

cisions such as how closely a hypothesis must agree with the ground truth, how to handle

multiple hypotheses for the same true object, and how to handle the image boundary can

greatly change the final result. In the computer vision community, the evaluation methods

of the PASCAL VOC challenge [EVW+12] are the most widely accepted, and we have

followed these closely throughout this thesis. In particular, the VOC criteria requires the

ratio between intersection and union of bounding boxes to exceed 0.5 in order for there to

be a true positive match, allows only a single object hypothesis to be a true detection for

each labeled object and provides for truncated and difficult flags that allow the annotator to

exclude problematic object instances from consideration.

Evaluating 3D Object Volumes

Recognition algorithms that estimate the position of objects in 3D can be evaluated against

datasets with 3D object annotations. In principle, the PR analysis describe above is still

an appropriate quality metric. In practice, computing the overlap between pairs of oriented

volumes can produce misleading results, as this measure confounds errors of several types
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including: position, scale and orientation. When 3D volumes are derived from image data,

there is also an inherent non-uniformity in resolution (i.e., close objects are measured at

higher resolution and can be localized more accurately). To address these issues, other

authors have previously considered the elements of 3D localization independently. Specifi-

cally, they evaluate the accuracy of predicting the object’s 3D centroid and also the accuracy

of predicting orientation. We will discuss approaches for each of these tasks.

Bao et al. [BS11] have developed an evaluation method that compares only the esti-

mated and ground truth 3D centroids.Their approach thresholds the error in predicted cen-

troid by a constant, σ . A reasonable value for this threshold has been considered to be the

maximum dimension for a particular object category, such as 2.5 m for cars. Evaluation at

a variety of thresholds can also be performed to better describe the sensitivity of 3D local-

ization. After labeling each hypothesized detection as true or false, precision and recall can

be computed in the same fashion as was described for 2D bounding boxes.

A numer of authors including [SFF07, SGS10] have utilized confusion matrices over

eight viewpoint-bins (i.e., left, right, forward, backwards and the four intermediate views)

to evaluate the accuracy of object pose estimation. A two-phase process is required to

form such a confusion matrix. First, we must associate 3D object detections to ground truth

regions. This can be done by taking only the objects that were scored as true positive during

3D localization analysis, so that an assignment is available. Each hypothesis-annotation pair

places a vote into one of the matrix entries. When the estimated pose matches the true pose,

a vote is given to a diagonal entry, while errors result in votes for off-diagonal entry. The

resulting confusion matrix allows for visualization of the common errors of pose estimators,

such as the off-diagonal bands that arise from nearly symmetric objects.

2.7 Similar Object Datasets
This thesis describes a recently-established evaluation benchmark specifically tailored to

the robot recognition problem, named the University of British Columbia Visual Robot Sur-

vey (UBC VRS). It has been motivated by the example of object recognition in computer

vision, where rapid progress has been made through standardization around the PASCAL

VOC challenge [EVW+12] and benchmark tasks for distinguishing large numbers of object

categories, such as Caltech 101 [FFFP04] and 256 [GHP07]. Several robotics challenges

exist, including the Semantic Robot Vision Challenge (SRVC) [SRV] and Solutions in Per-
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ception Challenge [Bra], which compare near real-time systems on robot recognition tasks

at a particular venue once per year. These contests capture the full scope of robot recogni-

tion, but the requirement to travel to the contest location in order to participate limits their

accessibility.

Several datasets based on RGB-D data such as that available from the Microsoft Kinect

have recently been released. For example, the Berkeley 3D Object Dataset [JKJ+11] is

composed of many indoor scenes contributed by the community through crowd-sourcing

and annotated by humans. While there are more images and more object types in this

dataset than the one we present, each scene is captured from only a single viewpoint, which

does not allow exploration of recognition methods involving robot motion. The Multi-View

RGB-D Object Dataset by Lai et al. [LBRF11] includes a large number of scenes containing

a single object on a turn-table, captured with an image-depth sensor from a number of

viewpoints, as well as a smaller number of scenes containing multiple objects captured

with hand-held trajectories. This dataset allows for rapid iteration and direct comparison

between methods, but the single trajectory through each scenes precludes its use in the study

of active perception.

In order to learn the viewpoint detection function for an object recognizer, validation

data containing multiple viewpoints of numerous instances of each category is required.

Many image-only databases containing multiple viewpoints of objects have recently been

made available, however, we found that many of them did not fit our purposes. For example,

Viksten et al. [VFJM09] collected a database with fine-grained viewpoint sampling for

each object, but only a single instance of each category is present, as their efforts have

been targeted towards grasp planning for industrial applications. The use of the Internet

as an on-line forum for users to annotate data has been used to produce very large labeled

databases such as LabelMe [RTMF08]. Also, on-line task auction sites are suitable for

dataset construction and have been used in ImageNet [DLD+09] and also by [VG09]. These

large category datasets have so far not been annotated with image viewpoint. A dataset

collected by Savarese et al. [SFF07] contains 72 views (8 azimuth angles, 3 heights and

3 scales) of each of 10 instances for 10 common object categories. While containing far

fewer object instances than some other resources, the precise viewpoint labels associated

with each image make this dataset suitable for evaluation of multi-view techniques, and it

will be used to construct our viewpoint detection response functions in Chapter 6.

We primarily evaluate the techniques of this thesis on the UBC VRS dataset, and on the
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Ford Campus Dataset of Pandey et al. [PME11]. We will describe the VRS data in detail

in Chapter 4 and will give more information about the Ford Campus data in Section 8.7.

These datasets were selected because, at the time of this thesis, they represented the largest

available sources of data where the images contained realistically cluttered visual scenes

and where registration information was readily available between different viewpoints. The

VRS data contains indoor kitchen objects, and the Ford Campus subject matter is largely

parking lots in an urban area. This variety allows us to demonstrate that our techniques are

relatively general and to discuss differences between the situations, such as the fact that the

appearance of cars have strong correlation with viewpoint, while many kitchen objects are

roughly cylindrically symmetrical.

The contribution of our UBC VRS evaluation benchmark is to allow the unique aspects

of the robot recognition problem to be explored with statistical significance and repeatabil-

ity. These aspects include: the use of 3D and visual sensory data; the ability to actively

control the robot’s path and influence the series of images obtained; and the challenge of

cluttered scenes present in real environments.

2.8 Multiple Viewpoint Recognition and Tracking in Three
Dimensions

The core of our work is recovering 3D object information from a sequence of 2D visual im-

agery captured from a variety of viewpoints. We have drawn inspiration from a number of

authors who previously performed similar tasks in a variety of domains including inference

of human motion from videos and object recognition from multiple images. Specifically,

we focus our discussion on methods that leverage the recent advances in object recogni-

tion from single images, using per-image object recognizers as an input to later tracking

layers, which is commonly known as tracking-by-detection [LCCV07]. The most similar

approaches to our own are those that use detections in several images to infer 3D object

information (e.g., [WRSS10, ESLV10, BS11, WWR+]).

A canonical example of these approaches is [WWR+], which is one of the top perform-

ing methods for identifying cars and people in urban driving data as of the writing of this

thesis. This approach first applies an object recognizer to all input images. So-called track-

let reasoning is then performed, which takes into account that, in video data, subsequent

frames represent very similar moments in time. This observation is exploited by merging
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detection hypotheses which are nearby in image space in neighboring video frames to form

tracklets over a short number of frames (e.g., three to five are commonly used values for

tracklet length). Tracklets are useful in that they eliminate spurious false detections that

occur only in a single frame, without support from neighboring frames. Wojek lifts track-

lets into 3D object detections through an inference procedure that accounts for inter-object

occlusion, but not for occlusion by the background or by un-modeled objects. Each object

is modeled in 3D space and the projections of the objects into each image are related to the

tracklet evidence through a mixture-of-experts framework that can incorporate object part

information in each view, if available. The final output of this method are tracked 3D cars

and people near to the data collection vehicle.

Our work shares many aspects with [WWR+]. Our Chapter 7 is a collaboration between

the author of this thesis and Wojek which extends their previous approach to indoor data

where sensed range is available. Chapter 8 further extends the 3D model by adding detail

for the object parts. Note that, because our data is composed of multiple discrete images that

can sometimes be from entirely different locations within the scene, we cannot apply the

tracklet pre-processing step. This makes our inference problem slightly more challenging,

as we must relate 3D objects to individual detections, which are more likely to be incorrect

than entire tracklets.

Several other approaches for urban driving differ slightly from this primary approach.

Ess et al.[ESLV10] utilized stereo as well as structure-from-motion during the tracking pro-

cess. The so-called Semantic Structure from Motion (SSFM) method of Bao et al. [BS11]

has a similar core formulation to the approach just described but, almost uniquely within

the literature, the authors attempt to recover the full camera pose information by adding

point correspondences along with object detections. They optimize jointly over object and

camera locations. Their results represent one of the first indications that semantic object

information can be an important input to position estimation for a moving camera. This

type of semantic mapping is an interesting direction for future study.

Several innovations to the basic tracking-by-detection framework have occurred in the

domain of image space tracking of players in sports videos. Okuma et al. [OTD+04] track

players in sports videos using a particle filter formulation that explicitly combines detection

results from an Ada-Boost [FS97] classifier in the tracking likelihood. Lu et al. [LOL08]

expand upon this formulation by additionally inferring the pose of the players at each point

along the track. Most recently, [BRL+09] have demonstrated that the initiation of tracks
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only from object hypotheses of a recognizer, which in practice are simply local maxima

of a detection scoring function, is not an optimal approach. Rather, they reason about the

raw score map that underlies the usual detection results. Intuitively, this more faithfully

represents the appearance likelihood for an object appearing at a particular location and

scale, as it is not affected by image space non-maxima suppression techniques.

Our work is also similar to approaches that recover 3D human pose from video. The

approach of Andriluka et al. [ARS10] has been particularly inspiring for our approach.

The authors applied multi-view reasoning to recover the time-evolving 3D pose of human

subjects from video data. In contrast to our analysis of static scenes, typical human motion

is a strong cue for such analysis and a Gaussian Process Latent-Variable Model (GPLVM)

motion prior proves an effective regularizer for inferring the motions. Similar to our ap-

proaches, their method leverages bank-of-detector appearance models to perform weak

viewpoint prediction, and they consider this viewpoint variable when reconstructing the

direction of the human’s body.

Several authors have performed recognition of kitchen objects from a number of view-

points. Helmer et al. [HMM+10] was an early collaboration including the author of this

thesis. That work included many elements of the multiple viewpoint reasoning approaches

that are included in this thesis, but it did not attempt to infer accurate 3D object locations.

Rather, 3D information was represented implicitly, by reasoning about the compatibility of

2D detections in various images. More recently, Susanto et al. [SRS12] have considered

using multiple Kinect sensors with overlapping fields of view. The positions of the sensors

were pre-registered with the Iterative Closest Point (ICP) approach, so that the input data

resembles that which we use for the experiments in much of this thesis. However, Sustanto

combines features extracted from the depth data and combines these with the visual fea-

tures, while we model appearance only from visual imagery. Finally, [LBRF12] have also

considered Kinect data with kitchen objects as the subject matter. In their method, visual

detections from a number of viewpoints are used to label the point cloud that is produced by

fusing range information from many viewpoints of a scene. This detailed surface analysis,

at the level of pixel-accurate segmentation, is a different output than is produced by our

system, but it is a potential avenue for future work.
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2.9 Chapter Summary
This chapter has surveyed the previous work in the fields of computer vision, robotics and

machine learning that is most similar to our own. We depend on a number of previous

object recognition methods and spatial models. Those approaches have been described

here in detail to simplify later discussion.

The next chapter will begin the detailed discussion the contributions of this thesis by

describing the Curious George robot platform that has been used as a physical testbed for

evaluating recognition algorithms and to collect data for off-line experiments.
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Chapter 3

The Curious George Visual Object
Recognition Platform

3.1 Introduction
In this chapter, we will describe an intelligent system, comprised of a physical robot plat-

form and accompanying software algorithms, that was assembled to support the robotic

object recognition research described in this thesis. This platform, named Curious George,

has directly or indirectly been the test-bed for the majority of our research. Testing our

algorithms on a physical platform has provided insights into the challenges that face such

systems, allowed the automated collection of a dataset that will be described in the Chapter

4, and validated that the algorithms described in the remainder of the thesis are practical

and successful in the real world.

This chapter will outline the aspects of Curious George that have the most impact to-

wards its success as a visual recognition platform. A suite of sensors measure the robot’s

surroundings including: a high resolution visual camera, a stereo camera with lower reso-

lution, and several laser range finders. Several control algorithms allow the robot to safely

and effectively navigate in its environment and gather visual information suitable for ex-

tracting semantic information. These include: a peripheral-foveal visual attention system;

a navigation, localization and mapping technique; and top-level heuristic planners that se-

quence the order of simpler robot behaviours. The chapter will conclude by presenting

laboratory-based empirical evidence suitable for evaluating the attention control algorithm
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and describing the performance of Curious George in an international contest that estab-

lished its state-of-the-art performance amongst existing research platforms with the goal of

object recognition.

The material contained in this chapter is based upon [MFL+08], however it contains

significant additional description of work on the Curious George platform that occurred

after that publication. The geometry-based attention and SRVC sections are the two most

notable additions.

3.1.1 Statement of Collaboration

While the author of this thesis has been the lead researcher responsible for the creation of

Curious George, a relatively large number of other students and researchers at the UBC

Laboratory for Computational Intelligence (LCI) have collaborated on aspects of the work.

Curious George was used as the University of British Columbia’s entry into the SRVC in

three separate years. In each case, a team of students collaborated on preparing the robot

for the contest and the produced system was made public as open-source code. The work

described throughout this thesis has leveraged that SRVC code-base.

Per-Erik Forssen and Kevin Lai were highly involved in the initial selection of sen-

sors, development of navigation methods and the creation of a prototype object-finding

behaviour. Scott Helmer, Sancho McCann and Ankur Gupta have implemented a variety of

recognition algorithms for early testing on the robot. These are distinct from any recogni-

tion approach described in the remainder of this thesis, but their presence facilitated robot

design, allowed successful performance in the SRVC contests, and have inspired the tech-

niques used in our later work. Marius Muja and Matthew Dockrey assisted with hardware

design and electronics of the final physical form of the robot as well as the porting of many

of the previously existing algorithms into the Robot Operating System (ROS) software

framework. Marius Muja was also instrumental in collaborating on the geometry-based

attention mechanism.

3.2 Goals and Design
In the robotic recognition scenario that faces a robot in an ever-changing home environ-

ment, recognition, navigation, planning (both for robot motion and the robot’s view), and

interaction must all occur simultaneously. The robot needs to avoid obstacles to operate
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Figure 3.1: Curious George Hardware: Two iterations of our robot platform.

safely. Camera view control is also an essential aspect, as the sensor must capture objects

and places of interest. Only once these basic competencies are accomplished can higher-

level tasks such as object recognition be completed.

The Curious George project began with the goals of accomplishing these basic robotic

abilities, to enable long term study of robot recognition algorithms. We were inspired ini-

tially by the work of Ekvall et al. [EJK06] and Ranganathan et al. [RD07], as both of these

approaches produced systems with the basic capabilities to navigate and image simple en-

vironments. However, many challenges remained. For example, we seek systems that make

more efficient use of robot motion, target the camera intelligently, and integrate the learned

visual object representations with other robot behaviours.

Our goal at the outset of the Curious George project was to design behaviours that al-

low numerous, high-quality views of each of the objects to be collected efficiently. This

should largely be completed before performing object recognition by quickly identifying

promising objects and regions, which we will refer to as potential objects. The identifi-

cation of candidate object locations without evaluating object models everywhere leads to

greatly increased computational efficiency. This pre-semantic identification of interesting
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regions was inspired by the model of human visual attention proposed by Rensink [Ren00],

where proto-objects are detected subconsciously in the visual periphery, and attention shifts

between these to allow more detailed consideration. Note that we distinguish detection of

proto-objects from the object discovery task. As described by Southey et al. [SL06], object

discovery methods attempt to faithfully segment meaningful objects using numerous cues.

In comparison, we produce a less precise segmentation with less computation and rely on

subsequent recognition to refine the result.

This chapter will continue by describing the system that resulted from our implemen-

tation of these goals. We will first describe the robotic hardware and sensors. We will then

discuss the attention system that guides the robot’s camera to capture high-quality images

of proto-objects. Next, we will discuss Curious George’s ability to build spatial models of

its environment, and to use those models to navigate safely and effectively. The chapter

will conclude with discussion of our results in the lab as well as in the international SRVC

robotic recognition contest.

3.3 Hardware
Hardware design is an important consideration when constructing a robot that is targeted at

operating in a man-made environment. Many extant robot platforms have limited ability to

perceive interesting objects due to their height, navigation ability or fixed-direction sensor

platforms. For example, objects located on desks or bookshelves in an office are often too

high to be seen by a robot’s cameras. Our robot platform, Curious George, was designed to

have roughly similar dimensions and visual dexterity to a human, so that relevant regions

of the environment could be easily viewed and categorised. Our robot is an ActiveMedia

PowerBot. A SICK LMS 200 planar range finder is mounted horizontally, roughly 0.1 m

above the floor. This laser is referred to as the base laser and is used for 2D navigation

and mapping. The robot’s cameras are raised by a tower with height approximately 1.5 m.

The cameras are mounted on a PTU-D46-17.5 pan-tilt unit from Directed Perception which

provides an effective 360◦ gaze range. See Figure 3.1.

We employ a peripheral-foveal vision system in order to obtain the high resolution re-

quired to recognise objects while simultaneously perceiving a large portion of the surround-

ing region. This choice has again been modeled after the human perceptual system, and was

also inspired by design choices made in [KB06]. For peripheral vision, the robot has a Bum-
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blebee colour stereo camera from PointGrey Research, with 1024× 768 resolution, and a

60◦ field-of-view which provides a low resolution survey of the environment. For foveal

vision, the robot has a Canon PowerShot G7 still image camera, with 10.0 megapixel res-

olution, and 6× optical zoom which allows for high resolution imaging of tightly focused

regions.

Curious George possesses a second means of collecting 3D range information. A small

and light planar laser range finder from Hokuyo has been mounted on a pan-tilt unit and

is swept over the scene with a periodic motion pattern. The planar scans are assembled,

utilizing the sensor’s geometry, to form a densely sampled point cloud over a portion of the

robot’s environment. One example of such a 3D point cloud is visualized in Figure 3.2.

3.4 Attention System
The attention system identifies potential objects in images from the peripheral vision sys-

tem. It then focuses on these objects to collect detailed images using the foveal system, so

that the detailed images can be further processed for object recognition. Identifying poten-

tial objects correctly is a non-trivial problem, due to the presence of confusing backgrounds

and the vast appearance and size variations amongst the items that we refer to as objects.

Our system makes use of multiple cues to solve this problem. The depth information from

the robot’s stereo camera and tilting range finder are used to perform simple structural de-

composition of the environment. This can filter large completely flat regions likely to be

unoccupied floor or table regions. Areas above a threshold of curvature are more likely

to be objects. We process visual information directly with a saliency measure to detect

regions with distinctive appearance. This section will describe the structural and saliency

aspects of the attention approach in detail. We will then describe the subsequent collection

of high-quality images from the robot’s foveal camera.

3.4.1 Geometry-based Attention

As mentioned, the range data available from stereo vision or the tilting laser sensor is useful

to produce a structure-based attention operation. Using the robot’s accurate internal calibra-

tion, we can transform the measured range values into a global frame where the geometry

of the floor plane is known (e.g., a Z-up frame with known floor height). A simple height

threshold can then be used to separate floor regions from objects supported by the floor
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(see Figure 3.3). The resulting noisy binary map is cleaned-up by a series of morphological

operations. This helps to remove small disparity regions, which are likely to be erroneous,

and also fills in small gaps in objects. The resultant obstacle map is used both to avoid

collisions with objects and tables while navigating, and in combination with saliency to

determine likely locations of objects that sit on the floor, which may be pieces of furniture,

or objects directly resting on the floor plane.

Within each segmented floor-supported region, a second phase of processing is ap-

plied to determine if the region is likely to be furniture that, in turn, supports one or more

smaller objects of interest. To accomplish this, we apply an approach described by [Rus09].

Horizontal planes are robustly detected within the sensed structure using the Randomized

Sampling and Consensus (RANSAC) algorithm [FB81]. This algorithm attempts to find a

model that supports a sufficiently large set of inlying points by iterative sampling. In our

case, the model equation is that of an infinite 2D plane embedded in the 3D space of our

sensory data:

n̂ · [X−X0] = 0, (3.1)

where n̂ is the 3D normal vector to the plane and X0 are the 3D coordinates of one selected

point on the plane. All sensed 3D points satisfying Equation (3.1) are so-called plane inliers,

and the target of the plane-finding algorithm is to obtain model parameters with sufficiently

many inliers.

The next step in the geometry-based attention operator is analyzing the structures sup-

ported by planar surfaces. A simple agglomerative clustering approach, called Euclidean

Clustering is used to determine contiguous regions and to segment these from one another.

Figure 3.2 provides a visualization of the bounding volumes determined by Euclidean Clus-

tering for one single table viewed by Curious George. For well-spaced collections of objects

that all have sufficient height to appear distinct from the supporting plane, this algorithm

can return groupings that perfectly match the real physical objects. When objects touch

eachother, or are low and difficult to separate from the table plane, the algorithm can ei-

ther falsely group objects together or falsely split a single object in two. Therefore, further

stages of analysis are needed to correctly determine the shape of the objects present, and

we refer to the outputs of the geometric attention operator as potential or proto-objects.
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Figure 3.2: Geometry-based Attention: The 3D point cloud data assembled from the tilting
laser range finder is displayed along with visualized results of the geometry-based attention
operator.

3.4.2 Visual Saliency-based Attention

The second cue used by our attention system to determine likely objects of interest is the

visual saliency of regions within the peripheral camera images. We compute the saliency of

every point within the image using a modified version of the spectral residual saliency mea-

sure defined in [HZ07]. We extend the measure to colour in a manner similar to [WK06].

That is, we compute the spectral residual on three channels: intensity, red minus green,

and yellow minus blue. The results are then combined by summing the channels to form a

single saliency map. Regions of multiple sizes are then detected in the saliency map using

the Maximally Stable Extremal Region (MSER) detector [MCUP02]. This detector is useful

since it does not enforce one single partitioning of the scene. Instead, nested regions can

be detected, if they are deemed to be stable. Typically, MSERs are regions that are either

darker or brighter than their surroundings, but, since bright in the saliency map corresponds

to high saliency, we know that only bright regions are relevant here, and consequently we

only need to run half the MSER detector. Bright MSERs are shown in red and green in

Figure 3.4. Regions are required to have their smallest saliency value above a threshold
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Figure 3.3: Stereo Processing: Top to bottom: Left and right input images, disparity map,
and obstacle map superimposed on right input image.

proportional to the average image intensity, which is justified since spectral saliency scales

linearly with intensity changes. This gives us automatic adaptation to global illumination

and contrast changes. The regions are further required to be more than 20% smaller than

the next larger nested region, to remove regions that are nearly identical. To ensure that the

salient regions are not part of the floor or support surface, they are also required intersect the

obstacle map (see Section 3.4.1) by 20%. Regions which pass these restrictions are shown

in green in Figure 3.4.

Compared to [WK06], which can be considered state-of-the-art in saliency detection,

the above described detector offers three advantages:

1. The use of spectral saliency and the MSER detector makes the algorithm an order of

magnitude faster (0.1 instead of 3.0 seconds per peripheral image in our system).

2. The use of the MSER detector allows us to capture both objects and parts of objects,

whenever they constitute stable configurations. This fits well with bottom-up object

detection. Since objects typically consist of smaller objects (object parts), we would

not want to commit to a specific scale before we have analysed the images further.
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Figure 3.4: Saliency Computation: Top to bottom: Input image, colour opponency channels
(int,R-G,Y-B), spectral saliency map, detected MSERs, and MSERs superimposed on input
image. Figure best viewed in colour.

The multiple sizes also map naturally to different zoom settings on the still image

camera.

3. The use of an average intensity-related threshold allows us to adapt the number of

salient regions reported, depending on the image structure. In particular, this thresh-

olding technique will report that there are no salient regions when analysing a highly

uniform image such as a wall or floor. This is in contrast to the Walther toolbox

[WK06], which, due to its built-in normalisation, only orders salient regions, but does

not decide that there is nothing interesting in the scene. Their normalisation approach

could also be modified to take into account relation of region saliency to average im-
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age intensity, but this would not be straightforward due to non-linear effects in the

method.

Note that the potential objects from visual saliency are not necessarily what a human

would normally call objects. They are equally likely to be distracting background features

such as intersecting lines on the floor, or box corners. The purpose of saliency is merely to

restrict the total number of possible gazes to a smaller set that still contains the objects we

want to find. This means that it is absolutely essential that the attended potential objects are

further analysed in order to reject, or verify their status as objects. We will briefly describe

the recognition techniques used on Curious George in Section 3.7. A detailed descriptions

of the recognition techniques developed within this thesis can be found in Chapters 5 – 8.

3.4.3 Gaze control

In order to actually centre a potential object in the still image camera, we employ the sac-

cadic gaze control algorithm described in [For07]. This algorithm learns to centre a stereo

correspondence in the stereo camera. To instead centre an object in the still image camera,

we centre the stereo correspondence on the epipoles (the projections of camera’s optical

centre) of the still image camera in the stereo camera.

In order to select an appropriate zoom level, we have calibrated the scale change be-

tween the stereo camera and the still image camera for a fixed number of zoom settings.

This allows us to simulate the effect of the zoom, by applying the scale change to a detected

MSER. The tightest zoom at which the MSER fits entirely inside the image is chosen.

3.5 Spatial Representation
An embodied recognition system must be able to move through its environment in order to

obtain perceptual information. Performing this motion safely, planning collision-free paths

to new locations, and reasoning about the expected value of perceptual information that can

be obtained from each location requires a system to have 3D spatial-awareness. Curious

George achieves this awareness through a well-calibrated model of its on-board sensors, an

accurate map model of its surrounding environment that is constructed online from sensory

data, and a localization system that tracks the robot within the environment map. We will

describe these components in the remainder of this section.
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3.5.1 System Calibration

Perceptual information is used to build all models of the environment surrounding a robot,

and the first step in relating perceptions over time and space is an internal model that de-

scribes how various sensors and devices on the robot are spatially related. This internal

model, which we will call system calibration, has been partly collected from the physical

specification and design of Curious George, and the remainder of unknowns are determined

accurately through a calibration procedure.

We have calibrated each of the robot’s cameras independently using the technique de-

scribed by [TL87]. This procedure inolves capturing numerous images of a planar target

from a variety of viewpoints. The calibration algorithm locates points in the images of the

target whose real physical locations are known precisely. An optimization procedure deter-

mines a model for the camera which best fits the observed correspondences. In practice, this

procedure produces camera calibration accurate to less than a pixel of reprojection error, so

long as sufficiently many calibration images are collected, the calibration target has been

carefully constructed, and the correspondence finding process is able to correctly locate all

image points with no false matches.

The pose of the laser relative to the cameras is estimated with the technique of [UH05].

This information is represented as 3D rigid-body transformations between frames represent-

ing the position and orientation of each sensor, composed with dynamic frames for moving

parts such as the pan and tilt units that actuate the sensors. The laser to camera calibration

also uses a planar target, but in this case it is observed simultaneously by both sensors. The

optimization is over the relative pose between sensors, and is somewhat less accurate in

final results due to the need to match information between two sensors with different noise

characteristics. It should be remembered that mapping of laser information into images is

therefore less trustworthy than geometric operations based only upon the cameras.

Using the combination of our system specification and calibration information, Curious

George is able to relate the information from each sensor to its base frame, and to produce

coherent spatial estimates of quantities in the world relative to a still robot. However, the

robot moves through the world, so it is also necessary to register between the poses of the

robot at different times. This is solved by mapping and localization, which will be described

in the next section.
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3.5.2 Mapping and Localization

Our system performs mapping with FastSLAM, a Rao-Blackwellized Particle Filter imple-

mentation [MTKW03], which builds a probabilistic occupancy grid map [ME85] based on

readings from the laser range finder readings from the robot’s planar base laser and the

robot’s odometry, and simultaneously tracks the robot’s position within the map. An occu-

pancy grid is well suited to guide navigation and planning tasks for a mobile robot moving

on a flat surface since it mirrors the inherently 2D nature of this environment. The robot

produces a map as it moves through an environment for the first time. For accurate maps,

several so-called loop-closures, or repeated observations of the same location, are required.

Several example maps produced by Curious George are visualized in Figure 3.5.

Upon building a complete map, the robot can optionally cease the updating of the map

and transition into a localization-only procedure within a static representation of the envi-

ronment. Curious George uses a sampling-based localization package based on the work of

[FBT99] to estimate its position within a static map.

3.6 Planning and Control
We have described the sensors that Curious George uses to observe its world and the al-

gorithms used to spatially relate sequences of these observations. We next describe the set

of planning and control procedures that allow the robot to autonomously explore an envi-

ronment and to locate instances of a variety of object categories. These behaviours must

allow the robot to cover its environment. That is, the time-evolving geometric map should

eventually be a complete representation of the 2D traversable space within the environment.

This requires moving the robot’s base to sufficiently many locations in the world so that the

planar range finder observes each wall and surface in 2D. The 3D world should also be

covered by the visual sensor, so that all object instances are observed. Finally, in order to

allow high confidence in final decisions, each object should be imaged from a variety of

viewpoints. We describe a set of planners to achieve these goals in the remainder of this

section.

3.6.1 Low-Level Safety and Navigation

Safely and effectively moving through an environment to a target point within a map is a

fundamental behaviour for mobile platforms, and is the goal of Curious George’s low-level
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(a) (b)

(c) (d)

Figure 3.5: Sample Paths: (a) Paths towards the frontier of unexplored space (indicated
by blue dots) allow for exploration of the entire environment. (b) Three potential camera-
fields-of-view are considered to achieve coverage by the visual sensor. (c) The object per-
manence cost function considers the value of capturing each object from a new viewpoint.
(d) A path to another clear view of an object (indicated by a yellow dot) is chosen. Legend
for images (a) and (d): + start of path. • end of path.

navigation routines. In early versions of the robot platform, we implemented A∗-search

through the occupancy grid map to produce a path from the robot’s current position to

its goal, which avoids obstacles. The robot then attempted to actually follow this path

and reacted to moving objects and map changes using the Vector-Field Histogram local

planner described by Borenstein et al. [BK91]. In later iterations, we found that a robust

and Open-Source implementation of similar behaviour was made available within the ROS

architecture. Curious George currently uses the so called nav-stack from ROS to achieve
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safe navigation to goal points.

3.6.2 Exploration Planning

We employ the frontier based exploration technique described by Yamauchi et al. [YSA98]

to quickly cover the environment with the laser scanner and produce an initial map. As is

illustrated in Figure 3.5(a), a frontier is defined as the border between explored and unex-

plored space. For our system, these frontiers will be the locations just beyond the range

of the laser scans, and in the laser shadows created behind objects or around corners. The

frontier planning technique identifies candidate locations where laser scans would be most

likely to uncover new regions to explore. First, one of these promising locations is chosen,

then the robot moves to this location using the low-level navigation routines through the

partial map, and the map is updated. This process is iterated, until all regions have been

explored.

3.6.3 Visual Coverage Planning

Each time a region of the environment is observed with the peripheral camera, the attention

system has the opportunity to detect potential objects within that area. In order to maximise

these opportunities, the camera should be pointed in directions that cover as much new ter-

ritory as possible. We use an iterated greedy search based on visible area weighted by the

number of previous observations to select favourable directions. This approach causes the

camera to cover the environment roughly uniformly and give an equal chance of detect-

ing potential objects in any location. One snapshot of the cost function employed by this

planner is depicted in Figure 3.5(b).

3.6.4 Object Permanence

We refer to object permanence as a visual-spatial memory preserved by the system after

objects or proto-objects have initially been identified. The task of the object permanence

planner is to attempt to obtain additional observations of these promising regions for pu-

poses of verifying or becoming more confident about their identities. As mentioned in the

descriptions of our visual attention operators, the proto-objects located by attention are of-

ten incorrectly segmented. The set of proto-objects also includes distracting non-object

items such as texture on support surfaces, which repeated observations may be able to filter.
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Even once the system establishes an initialy hypothesis about the category label of an

object, further verification is often wise. A major reason for this is that the set of available

object poses in visual training data is often incomplete. One tends to get the characteristic

views [Pal99] (e.g., a shoe is normally photographed from the side, and hardly ever from

the front), rather than a uniform sampling of views. A second reason is that objects are

often more recognizable from some viewpoints than from others. A cannonical example

is a bicycle, for which side views yield significantly more visual features than front or

rear views. In order to perform successful recognition in the face of limited training data

and biased 3D object properties, we attempt to collect numerous views of each potential

object by repeatedly looking back to the same locations as the robot moves. This requires

awareness of an object’s location even when it is not in the visual field, which we refer to

as object permanence.

The behaviour of looking back from many views increases the likelihood that one of the

collected images is taken from a similar view to that of the training data. However, if the

sampling over viewpoints is performed randomly, significant duplication may occur. Curi-

ous George’s object permanence planner attempts to obtain unique viewpoints by allowing

the previous views of an object to vote for nearby angles into a histogram with values in the

range [0,2π]. Histogram bins with low scores are selected. That is, views from a completely

new direction are favoured over those from similar angles. We employ greedy search over

histogram values and iterate the procedure to obtain roughly uniform coverage of viewing

angles. Once a direction is selected, the hierarchical planning method moves the robot to the

desired viewing position and a foveal image is collected. Figure 3.5(d) shows an example

of a path produced during this behaviour. Please note that this simple object permanence

planner will be extended in Chapter 6 with a more detailed planning approach that accounts

for learned object properties.

3.7 Visual Appearance Modeling
We have included a variety of visual recognition routines on the Curious George platform.

These routines are responsible for analyzing the images collected and forming hypotheses

about the category labels for the objects present in each. The earliest set of visual recog-

nition routines were developed by collaborators of the author of this thesis. So, they are

not described in detail here. These include a specific object recognition method based on
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(a) (b) (c)

Figure 3.6: Spatial-semantic Maps: Combining the spatial awareness provided by SLAM
with object recognition, meaningful object labels can be assigned to locations in the map.
(a) Training data for object “robosapien”. (b) Overview photo of the room the robot is
exploring. (c) The map with three objects, and the locations from which they were observed.

matching SIFT features with geometric verification over sets of potential matches and sev-

eral object category recognizers including the so-called spatial pyramid matching approach

of Lazebnik et al. [LSP06]. We will describe the visual learning and recognition algorithms

developed within this thesis in subsequent chapters.

The autonomous exploration and planning behaviours of Curious George are largely

agnostic to the specific recognition method, however several basic criteria are required in

order to interface with the geometric reasoning and planning modules. Specifically, ob-

ject hypotheses must contain localization information including scale, as this is essential

for estimating the 3D position of the object in the world, which is leveraged for object

permanence planning and active vision.

3.8 Experimental Results
We have evaluated the performance of the Curious George recognition platform both with

experiments in our laboratory as well as by entering the platform in an international contest

for visual recognition. This section will begin by describing the laboratory experiments,

where we describe the goal as semantic mapping, or correctly placing semantically mean-

ingful objects into a spatial representation of the world. We will then describe the Semantic
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Robot Vision Challenge and the results of Curious George on that task.

3.8.1 Semantic Mapping

The combination of techniques described in the previous sections endow a mobile agent

with the ability to autonomously explore its environment and to recognise the objects it dis-

covers. In simple environments, this behaviour can be extended to spatial-semantic map-

ping by back-projecting the recognised objects into the robot’s map representation of the

world. Later in this thesis, we will consider more sophisticated algorithms that are capable

of locating objects in 3D, even in cluttered environments. The probabilistic occupancy grid

constructed from laser range scans fed through the FastSLAM algorithm can be augmented

with the locations of visual objects. For example, Figures 3.6(b) and 3.6(c) illustrate the lo-

cations of objects matching the labels “robosapien”, “basketball”, and “recycling bin”. The

object recognition subsystem was provided with between 2 and 4 example views of each

object, see Figure 3.6(a) for an example. Each object shown was identified by the attention

system and observed from various locations, giving several pieces of information about its

position, and allowing for collection of numerous views for recognition or future matching.

We envision that the types of maps illustrated here could be easily used in a human-robot

interaction system where the human operator would be able to relay commands to the robot

in semantically meaningful terms.

3.8.2 Comparison of Attention Approaches

To validate the effectiveness of the saliency and structure based attention systems described

in Section 3.4, we compared its performance against two other methods for selecting foveal

views which will be described shortly. In order to ensure a fair comparison, the remaining

components of our system were held constant. This suggests the following decomposition

of our system into three parts:

1. (Identical for each method) Robot motion to a location that allows coverage of the

environment and collection of a peripheral image of a large region at low resolution.

2. (Three different attention methods compared) Selection of a number of sub-regions

and collection of foveal images.
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Figure 3.7: Attention Comparison: Methods were compared in a number of ways. (a)
Shows recognition results for the three classes of approaches. (b) Demonstrates that for the
random view selection approach, recognition performance increases with the parameter n,
which is the number of foveal views sampled at each robot pose. Each result is averaged
over 3 separate runs of the robot.

3. (Identical for each method) Classification of the collected foveal images by the object

recognition system.

The three attention methods evaluated were the visual saliency and structure approach

described in Section 3.4 and two comparative methods:

1. Peripheral view only. This method took only one low-resolution peripheral image at

each robot pose, simulating the lack of a foveal vision system. The image covered

the entire peripheral region at a wide zoom setting. Recognition results from this

approach should be viewed as a baseline for any more selective attention system.

2. Random view selection. This method sampled from sub-regions of the peripheral

view by randomly selecting n pan-tilt and zoom values from the view-cone visible in

the peripheral camera, where n is a tunable parameter. The space of possible images

collected by this method is the same space in which the guided attention system

searches. As such, there is some likelihood that these samples are identical to the

interesting views obtained by the guided attention system, or are even better views
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(by chance). So, the recognition results from this approach can be used to evaluate

whether or not our guided system is better than chance at selecting interesting views.

To additionally enforce fairness of comparison, we ran each of the three attention meth-

ods from identical robot locations. That is, once the robot had moved to a point, each one of

the three attention methods was executed in sequence. The pan-tilt unit and zoom settings

were reset to their defaults between each method, and the robot base was kept stationary

during the process.

Figure 3.7 displays the evolution of recognition performance over time for each of the

3 approaches. To demonstrate the utility of using attention to guide the robot’s camera,

we allow the random approach to sample many more views than our guided approach.

Specifically, Figure 3.7(a) describes a trial where the random view sampler uses 8 images

at each location. The attention method varries the number of images it takes based on the

saliency of the visual content at each location, but in this trial it averaged 3 images per

robot pose. Even with many more overall images taken by the random strategy, results

show that the planner based on our visual attention system is able to recognize more objects

correctly. The peripheral-only method, which only has access to a small number of low-

resolution images (1 per robot pose) performs worse than both of the methods that obtain

high resolution images from the foveal system.

To confirm that our comparison was fair, we performed several additional runs where

we varied the parameter n for the random view selection strategy, to observe its effect on

recognition performance. Figure 3.7(b) demonstrates that for all of 2,4, and 8 views per

pose, the collection of more data generally increases performance. Again, even with more

than twice as many foveal images, the random approach does not perform as well as our

guided attention measure. This is strong evidence that the visual saliency method is indeed

guiding the robot to obtain promising views of objects, and that it is performing well in

realistic scenarios.

3.8.3 The Semantic Robot Vision Challenge Contest

Our second approach to verifying our methods experimentally was to enter the Curious

George platform in several iterations of the Semantic Robot Vision Challenge, which we

will describe in detail shortly. In both the 2007 and 2008 SRVC contests, Curious George

obtained the highest score on the robot hardware version of the contest and was awarded
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first place. In 2009, due to a software malfunction, the physical robot platform was unable

to complete the navigation portion of the contest, however the accompanying learning, fil-

tering and recognition system placed first in the software-only version. This section will

provide a brief overview of the SRVC contest format and will provide discussion of the

results of each Curious George’s three contest performances.

3.9 SRVC Description
The goal of the SRVC contest was to evaluate the ability of the scientific community to

produce a complete physical and computational system capable of recognizing a wide vari-

ety of objects in the real world. The contest organizers specified the following priorities: a

limited amount of manual labeling is required for systems to learn models of new objects;

robots are completely autonomous in their movements and decision-making; the visual sur-

vey of environment should happen relatively rapidly; and both generic object categories

and also specific object instances should be recognized. Note that an important aspect of

the SRVC was to enforce sharing of source code by each participating team. The source

code related to this chapter is included online along with that of all other contestants1.

The SRVC contest took place in three phases. First, systems were given time to learn

object models. To eliminate the reliance on manually collected training data, the list of

twenty target objects for each year’s contest was not released ahead of the contest. Rather,

on the day of the contest, teams were given the list as a text file. This file had to be the start-

ing point for a learning procedure where the robot produced appearance models solely from

this text file plus any internal resources that had been prepared and an Internet connection.

In practice, all teams used web-based image search engines such as Google Image Search,

as well as on-line databases of labeled objects such as ImageNet [DLD+09]. These sources

provided training data for each of the target objects. This first training phase of the contest

took place over a period of time that ranged from four to twelve hours in different years. At

the conclusion of phase one, all download and processing of the training images must have

completed, yielding appearance models suitable for use in subsequent phases.

The second phase in the contest was robot exploration of a real physical environment.

The contest organizers placed one or more instances of each object along with distracting

objects and furniture in a section of a conference room with clearly delineated boundaries.

1http://www.semantic-robot-vision-challenge.org/teams.html
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Contestant robots were required to autonomously explore this environment and collect as

much perceptual information as possible for the purposes of locating the objects. Any

robot that contacted the furniture or objects was technically disqualified, although small

exceptions were made in practice. Only very minor human interaction with the robots for

the purposes of safety was allowed. Note that phase two of the SRVC encourages the type of

coverage and object permanence planning that we have described previously in this chapter.

Any object in the environment that is not quickly captured by the robot’s sensors through

autonomous planning cannot be recognized by the platform, even if the learned appearance

model for that object is flawless. This was a common failure mode of teams entering the

contest.

The third SRVC phase was automated object recognition based on the perceptual data

collected. Each robot’s answers were delivered to the contest organizers, in real-time for

two out of three years, in the form of images labeled with a bounding box and object name.

The image, bounding box and label were all produced automatically from the software

system running on each robot. Scoring of these results was done with a procedure similar

that defined by the PASCAL VOC contest [EVW+12], which we have described in Section

2.6. The SRVC scoring slightly modified the basic procedure to weight correct detections

by localization accuracy. Perfect overlap with the human’s annotation was worth full points

while increasing amounts of mis-match lead to lower scores, and any mislabeled object

received zero or negative points, depending on the year.

In each year, the contest was split into two independent leagues: the robot league and

the software league. The robot league, where participants required a physical platform to

explore the environment, involves all three phases described above. The software league

is a modified version where the organizers provided a robot to explore the environment

and collect a standardized perceptual experience, effectively removing phase two, along

with the need for contestants to provide their own physical robot platform. Teams in the

software league only performed web-based appearance learning and then detected objects

within the standardized image set to obtain a score.

3.9.1 Summary Results

Over the three years in which the SRVC occurred, Curious George placed first in the robot

league of the contest twice and first in the software league once. Table 3.1 summarizes
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the performance of each of these systems. In the 2009 contest, Curious George received

a zero score for the official robot league contest because the autonomous control system

crashed due to a power malfunction. Curious George was restarted manually, which dis-

qualified it from official scoring. However, our unofficial analysis based on the performance

after the manual restart showed that the robot’s score would have been similar to the score

we achieved in the software-only league, and approximately triple the score of the official

robot-league winners for that year.

Some trends were apparent in the results of Curious George and all other participants in

the SRVC contest. The scores for recognizing specific instances were always significantly

greater than those for recognizing generic object categories. The temporal trend for all

participants in the contest was for stronger performance in each subsequent year, although

details of the objects chosen and contest setup led to significant year-to-year variability.

Year Category Performance Instance Performance
2007 - robot 1 correct and 1 partial out of 9 5 correct out of 10
2008 - robot 0 correct out of 10 5 correct and 1 partial out of 10

2009 - software 3 correct out of 9 10 correct out of 11

Table 3.1: SRVC Result Summary: The scores for the Curious George platform for the first
place finishes in various contest leagues and years.

The remainder of this section will briefly describe the objects selected and in the contest

environment prepared by the contest organizers in each of the three years of the SRVC

contest, and will describe the results of the Curious George platform in each year.

3.9.2 SRVC 2007 at AAAI

The 2007 SRVC contest was held in Vancouver, Canada at the Conference of the Asso-

ciation for the Advancement of Artificial Intelligence (AAAI). In this first iteration, the

contest environment was relatively simple. Objects were placed on regularly shaped tables

covered by white tablecloths as well as on floors and chairs. The majority of objects were

well-spaced. The contest area was relatively uncluttered, so it was possible for nearly all

of the objects to be observed from a single position in the environment. This meant that

only minimal robot motion would have been required. However, this fact did not prevent

Curious George and other platforms from traveling significant distances during the contest.
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Year Type Name Result
2007 category scientific calculator

fork
electric iron
banana
green apple
red bell pepper
rolling suitcase
red plastic cup
upright vacuum cleaner

no attempt
incorrect
incorrect
incorrect
incorrect
correct
incorrect
partial
incorrect

instance Ritter Sport Marzipan
book “Harry Potter and the...”
DVD “Shrek”
DVD “Gladiator”
CD “Hey Eugene” by Pink Martini
Lindt Madagascar
Twix candy bar
Tide detergent
Pepsi bottle
yogurt Kettle Chips

no attempt
no attempt
no attempt
correct
correct
incorrect
incorrect
correct
correct
correct

Table 3.2: SRVC 2007 Results: Detailed results of the robot-league performance of Curious
George for the 2007 SRVC.

Table 3.2 describes the detailed results obtained by Curious George and Figure 3.8 provides

example result visualizations.

3.9.3 SRVC 2008 at CVPR

The difficulty of the visual task was increased significantly for the second version of the

SRVC contest, which was held in Anchorage, Alaska, in 2008 at the Conference for Com-

puter Vision and Pattern Recognition (CVPR). A much wider variety of furniture was used

to support objects, which significantly limited the visibility-range of objects and made robot

motion a necessity. The furniture included included tables of various sizes and height as

well as chairs placed independently, or in realistic proximity to tables (i.e., objects on chairs

were nearly underneath tables). Also, the spacing between furniture and other obstacles was

reduced, so it was more difficult for robots to navigate through the environment and fewer
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objects were clearly visible from any single location. Figure 3.9 provides several example

images from the 2008 SRVC environment, and Table 3.3 summarizes Curious George’s

results from that year.

The selection of objects was changed, although several of the same objects were re-

tained. Notably, one object category, ulu, was unique to the Alaskan setting. Only a small

number of examples were available in the web-based training data for this category, and

performance was poor overall. This highlighted the limitations in using generic image

sources to learn about object appearances rather than operating with specific knowledge of

the location.

For SRVC 2008, teams were encouraged to report results in real-time through a bonus

point system. A correct answer delivered by a robot in real-time was worth one additional

point.

Year Type Name Result
2008 category apple

saucepan
remote control
digital camera
upright vacuum cleaner
banana
eyeglasses (not present at contest time)
fax machine
ulu
frying pan

incorrect
incorrect
incorrect
incorrect
incorrect
incorrect
incorrect
incorrect
incorrect
incorrect

instance CD “Retrospective” by Django Reinhardt
book “Paris to the Moon” by Adam Gopnik
Spam
Ritz crackers
book “Big Book of Concepts”
DVD “I, Robot”
DVD “300”
game “Crysis”
Doritos Blazin’ Buffalo Ranch
Kiwi Strawberry Snapple

correct
incorrect
correct
correct
correct
partial
incorrect
incorrect
incorrect
correct

Table 3.3: SRVC 2008 Results: Detailed results of the robot-league performance of Curious
George for the 2008 SRVC.

58



3.9.4 SRVC 2009 at ISVC

The final SRVC contest was held in Las Vegas, Nevada, in 2009, at the International Sym-

posium for Visual Computing (ISVC). The robot arena was the largest of all in this year,

and for the first time objects were placed on the boundary of the environment, which pro-

vided a challenge for platforms to distinguish objects on the boundary from the crowd of

spectators just beyond. Figure 3.10 shows several examples images from the 2009 SRVC

environment. The object selection was changed once more, and several of the object cate-

gories were purposely selected to be mutually similar in appearance (e.g., orange, pumpkin,

soccer ball). Similar to 2008, objects were placed such that they were hidden from all but a

small range of positions, so robots needed to cover the space thoroughly. The most varied

set of supporting furniture was chosen in 2009 with multi-layered wood steps and a table

with textured shelves and detailing being added to a selection of tables and chairs that was

similar to those used in the previous two years. For the first time, in 2009, a subset of the

object categories was released prior to the contest date. This was meant to give teams the

advantage of being able to carefully train appearance models before arriving at the contest.

Also, real-time result reporting was a requirement in 2009, rather than a recommendation.

Table 3.4 displays the results obtained by the software portion of the Curious George sys-

tem in 2009, since the physical platform was not able to officially compete in that contest

iteration.

3.10 Chapter Summary
This chapter has described the Curious George robotic system, developed as part of the

author’s doctoral studies. Curious George is able to autonomously navigate through envi-

ronments and find objects. A set of planners driven by saliency and several heuristics allow

the robot to accomplish this task relatively efficiently. We have shown results both in a labo-

ratory setting that we constructed for the purposes of illustrating the robot’s abilities as well

as in an international contest organized by members of the robotic recognition community.

In both cases, Curious George successfully navigated through the environment with a large

degree of autonomy. The planners and recognition approaches succeeded in directing the

robot’s sensors and correctly locating many of the objects in the environment.

The primary limiting factor in all of the tasks described in this chapter has been the

final step of correctly labeling an object once it has appeared in one or more visual images.
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Year Type Name Result
2009 category pumpkin

orange
red ping pong paddle
white soccer ball
laptop
dinosaur
bottle
toy car
frying pan

incorrect
correct
incorrect
incorrect
incorrect
incorrect
correct
incorrect
correct

instance book “I am a Strange Loop” by Douglas ...
book “Fugitive from the Cubicle Police”
book “Photoshop in a Nutshell”
CD “And Winter Came” by Enya
CD “The Essential Collection” by Karl ...
DVD “Hitchhiker’s Guide to the Galaxy”
game “Call of Duty
toy Domo
Lay’s Classic Potato Chips
Peperidge Farms Goldfish Baked Snack ...
Peperidge Farm Milano Distinctive ...

correct
incorrect
correct
correct
correct
correct
correct
correct
correct
correct
correct

Table 3.4: SRVC 2009 Results: Detailed results of the software-league performance of
Curious George for the 2009 SRVC.

Failures in this step occur because object recognizers have a large number of false positives,

leading to objects being hypothesized at incorrect locations. Also, objects are often incor-

rectly localized in 3D because the image space 2D localization of the recognition methods

is imperfect. Finally, 3D effects such as occlusion and non-informative appearance from

the observed viewpoint often lead to errors in final object recognition results. This obser-

vation has motivated the majority of the remainder of the work in this thesis to focus on

the task of more robustly recognizing objects from a particular set of images rather than on

refining our attention approaches for obtaining good images or on controlling the robot’s

base within the environment.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: SRVC 2007 Images: Recognition results recorded during the official run of
the 2007 SRV Contest. (a-d) High quality views obtained by the focus of attention system
allow for correct recognitions. (e-f) The system’s best guesses at objects for which no good
views were obtained. These are clearly incorrect.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: SRVC 2008 Images: Images of the 2008 SRV Contest environment, located in
Anchorage, Alaska.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: SRVC 2009 Images: Images of the 2009 SRV Contest environment, located in
Las Vegas, Nevada.
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Chapter 4

The UBC Visual Robot Survey
Benchmark Dataset

4.1 Introduction
Repeatable experimental procedures and benchmark tasks have been instrumental to recent

progress on a number of tasks in automated perception. Upon completing of the SRVC

challenge, we sought a repeatable benchmark that would allow testing of a robot’s ability

to recognize objects using the full set of cues that were available to Curious George: visual

images, knowledge of the motion that had occurred between images, active control of this

motion and 3D range sensing. Standard visual recognition benchmarks typically consisted

of datasets of images with labeled objects. These either lacked auxiliary geometric cues or,

as for [Min09], the geometry linking the images was imprecise. On the contrary, robotic

datasets often contained accurate geometric information regarding the robot’s trajectory, but

the visual content typically contained few objects and these were not annotated.

This chapter describes a new benchmark task that we have produced, known as the

UBC Visual Robot Survey (VRS), which captures all of the uniquely robotic aspects of

object recognition. We used a robot to exhaustively sample sensory information from a

number of environments and record the robot’s trajectory, its visual images and the sensed

3D information. During training and testing of robot recognition algorithms, the recorded

data can be provided to recognition algorithms by a simulator that mimics a robot’s sensing

and response to control input by selectively replaying perceptual elements from the recorded
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data. We refer to this procedure as simulate-from-real-data. Except for small limitations

due to sampling discretization, this allows repetition of the same perceptual and control

feedback experience that a robot would experience.

In order to ensure that our benchmark adequately mimics real-world conditions, we

replicated cluttered kitchen-like indoor scenes composed of many mutually occluding ob-

jects. A small number of instances from many naturally-occurring object categories were

present and annotated, but we emphasized three categories by purchasing many instances

for each of: mugs, bottles and bowls. The VRS contains on the order of one hundred unique

instances for each of these three highlighted categories. This allows for the division of the

data into training and test sets, while maintaining sufficient statistical support for general-

ized performance. We collected information from thirty different scenes, each with a unique

background, unique set of object instances and unique layout of those objects. Overall, the

UBC VRS dataset is a reasonable approximation of the visual recognition task that would

face a robot operating in a kitchen. Performance on our benchmark is likely to predict per-

formance within real kitchens. This is supported by evaluation of our own methods on both

the UBC VRS and real kitchens later in this thesis (see Figure 7.5).

4.1.1 Statement of Collaboration

This chapter is an extended version of the material previously published in [ML12]. The

author of this thesis was the originator of the UBC VRS concept, programmed the majority

of the tools, collected most of the data and produced all manual annotations. However,

numerous researchers provided essential discussion and assistance at various stages. The

author worked with Scott Helmer and Marius Muja during the writing of [HMM+10]. That

paper used an early version of the dataset where 3D range information was not available and

the data was collected with a hand-held camera, rather than by a robot. The cube registration

target that we will soon describe was developed during that work and a number of the

software tools were developed such as the registration procedure to triangulate 3D points

from 2D correspondences. During the collection of the robotic data, Hana Yoo assisted with

some of the early Graphical User Interface development during her stay at the Laboratory

for Computational Intelligence as a summer volunteer.

Christian Wojek and Bernt Schiele, co-authors of [MWSL11], had crucial input on the

necessary quality of 2D annotations for a modern vision dataset, which led to a complete
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Figure 4.1: UBC VRS Overview: Our robot collects a number of images of a scene. Geo-
metric registration allows 3D object information to be projected into each image. Accurate
2D bounding box annotations are also provided.

re-annotation and the highly reliable bounding boxes now present in the dataset.

Finally, the author also kindly thanks Mark Fiala and the National Research Council

of Canada (NRC) for making the AR Tag [Fia05] library available for research use, first

through release on the NRC website and later through licensing with the purchase of Dr.

Fiala’s text [CF08]. Accurate registration between the numerous images contained in our

dataset would have required extensive manual effort or a costly motion-capture setup, but

both of these were avoided by building our calibration target from AR Tag markers which

can be automatically localized with sub-pixel accuracy and nearly zero false positives.

4.2 UBC Visual Robot Survey Dataset
This section describes the method use to collect, register and annotate the data that forms the

UBC VRS. Briefly, we recorded the actual sensory experiences of the Curious George robot
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(a) (b) (c)
Sub-set Scenes Views Instances Boxes Mugs Bottles Bowls
Training 19 453 184 4026 56/1405 42/1119 17/378

Validation 11 295 116 2701 33/711 33/839 17/346
Test 30 334 303 3466 85/935 57/589 64/681

UBC VRS 60 1082 603 10193 174/3051 132/2547 98/1405
(d)

Figure 4.2: UBC VRS Details: (a) The Curious George robot platform used for data collec-
tion. (b) A sample point cloud, and poses from the survey path followed by the robot. (c)
A sample image with 3D wire-frames projected to display user-annotated ground truth vol-
umes. (d) Summary statistics of the annotations available for the UBC VRS database. The
final 3 columns represent the (unique instances / number of bounding boxes) that are present
for the selected category. Note that the dataset contains numerous additional categories that
could not be shown specifically, but are included in the overall totals.

while it was commanded on a trajectory that covered many of the reachable poses within a

number of environments. The visited poses are registered to a consistent coordinate frame

using a cube-shaped registration target that has visually identifiable patterns on each face.

A human manually annotated the locations of all object instances from several categories,

both in the 3D coordinate frame and within each collected image. Figure 4.1 illustrates the

final product of this procedure, which is robot sensor data from a set of viewpoints of each

scene, along with geometric knowledge relating all data to a common coordinate frame and

object annotations in both 3D and 2D.

4.2.1 Robotic Data Collection

The sensor data that comprises the UBC VRS dataset was collected with the Curious George

robot that was described in Chapter 3 and is shown in Figure 4.2(a). During data collection,
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the robot moved through a dense set of poses covering the space of possible visual expe-

riences. We achieved this by planning a path consisting of three concentric circles. Along

each circle, stop-points were located at an angular spacing of at most ten degrees, and at a

finer resolution for selected scenes. When the robot reached each stop point, it turned to

face the center of the scene and it collected a single reading from each of its sensors. Figure

4.2(b) shows a sample path in one environment.

In the ideal case, this data collection method ensures that, for every robot pose, T , in

the environment, there exists a real sensor reading in our dataset that is less than 5 degrees

in horizontal angle (i.e., azimuth) from T . However, constraints of our robot and the envi-

ronments prevented a complete sampling. Factors such as building layout, uneven floors,

and furniture obstacles caused the robot’s navigation routines to skip some of the requested

stop-points. Data from these skipped viewpoints is not available to recognition methods,

which is also the case for real robotic systems exploring an environment. Recognition meth-

ods must therefore be robust to this realistic property of the dataset. Figure 4.2(d) displays

the final number of images and scenes that were collected.

As has been stated in Chapter 3, the Curious George robot has a variety of sensors suit-

able for object recognition. Images from the robot’s high-resolution digital camera capable

of 10 mega-pixel imaging were down-sampled to 1600 x 1200 pixel resolution, to balance

overall data size with sufficient resolution to capture objects in detail. A planar laser range

finder was tilted with a continuous periodic command to capture an entire 3D sweep of the

scene from each viewpoint. The set of scans was then assembled to form a point cloud com-

prised of roughly 500,000 individual points. Each point is represented with a 3D position

as well as an intensity value measured by the laser. The relative positions of the robot’s sen-

sors were calibrated as often as possible with the method previously described in Section

3.5.1. However, a moderate degree of calibration error remains a factor, as is the case for

many commodity robotic platforms.

4.2.2 Geometric Registration

When a physical robot platform explores an environment, it typically has access to several

forms of sensor feedback that can be used to determine its position. Also, it can actively

control its position by issuing movement commands. In order to replicate this situation as

closely as possible when performing recognition from our pre-recorded data, all information
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Figure 4.3: A Single Face of the Registration Target: A cube-shaped target, composed of 6
such faces, is used to register images contained in the UBC VRS dataset.

in the database was registered to a common coordinate frame. First, the set of camera

poses was registered using automatically detected fiducial marker points that correspond

to known 3D target geometry. These correspondences allow us to solve for the camera

poses in a global frame. Then, pre-calibrated transformations that relate the camera to other

sensors and the robot’s base were applied to globally register all information types. Using

this common registration, robot control can later be simulated, in combination with the real

sensor data. This section will describe the process for registering the camera poses in detail.

The cube-shaped target displayed in our example images (e.g., Figures 4.3 and 4.4) is

comprised of ARTag visual fiducial markers [Fia05]. Each square AR Tag maker encodes

identity information in the form of an integer value represented by its internal white–black

binary pattern. Detection of markers in realistic, challenging images (i.e., those with partial

tag occlusion, many similar tags, and small scales) is achieved with robust image process-

ing, and by using redundant encoding that makes checksums and error correction possible.

The ARTag library provides a tag decoder that achieves virtually zero false positives and

simultaneously localizes the corners of the fiducial patches in the image with sub-pixel

accuracy.

As shown in Figure 4.3, we have constructed our registration cube such that each face
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contains 9 ARTag markers. We have selected a different set of integer identifiers for the

squares on each cube face, so that by decoding the tags, the viewing pose of the camera

with respect to the cube is uniquely identified. For example, the top-left square shown

in Figure 4.3 has the identity 500, and the subsequent squares shown in the figure have

identities ranging from 503 to 525. Consecutive identities are not chosen because these are

slightly less easily distinguished by the ARTag decoding algorithm. We have manufactured

the cube target from six printed faces, taking care to achieve precise 3D geometry such as

right angles between faces and identical proportions and sizes for each face.

Each detected image location (i.e., tag corner) provides a 2D to 3D constraint on the

extrinsic camera parameters (pose) using the typical pinhole camera projective equation

α

 x

y

1

 = K[R|t]


X

Y

Z

1

 , (4.1)

where: x and y are the image coordinates of the detected corner pixel; K is the known

intrinsic camera calibration containing the focal length, offsets and skew; R and t are the

unknown rotation and translation of the camera at a particular pose, which we seek; X , Y ,

and Z are the 3D coordinates of the corner point using the known layout of the target; and α

represents projective scale. Our target provides between 36 (the 4 corners of 9 squares on a

single cube face) and 108 (all of the corners on 3 cube faces) visible corners, depending on

the viewpoint. This yields a highly over-determined system. We estimate the solution using

an approach similar to camera calibration methods such as [TL87], which involves making

an initial guess using homography constraints that exploit the known planarity of the tar-

get’s faces, and then by refining the estimate using the Levenberg Marquardt algorithm to

minimize re-projection error.

We have validated this registration method on a number of test images by projecting

known 3D points (e.g., a cube corner, or another point we have physically measured in 3D)

into each of the images and manually observing the error in re-projection. The registration is

typically accurate to within a pixel with the maximum error on the order of several pixels.

Figure 4.4 illustrates the registration accuracy in a set of example images. Registration
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(a) (b) (c)

Figure 4.4: Sample Registered Scenes: Each column holds two views of the same scene.
Our system uses the estimated camera positions relative to a global frame along with pre-
vious intrinsic calibration estimates to render a wire-frame of the extents of the calibration
target (shown in red where colour is available) into each view. Accurate alignment of the
wire-frame to image content in both views indicates accurate registration.

information is stored with the raw sensory data and both are used during annotation and

simulation of robot motion for testing.

4.2.3 Object Annotation

In order to evaluate the performance of recognition algorithms, a human has annotated the

ground truth object information in each scene and image in the dataset. We seek to describe

objects both in 3D, in the common registration coordinate frame, as well as in 2D, in each

image. Annotating this information is a time-consuming process, so we have leveraged

the registration information described above to ease the manual burden. We provide the

annotator with a software tool that allows selection of the 2D image points corresponding

to a feature that is visible in each of a number of views, such as the object’s centroid. The

software triangulates a 3D point in the global frame that best explains all of the selected

image points, and an object is instantiated in that location. Finally, a set of controls are

provided to the user to fine tune the object’s orientation and scale in 3D, and another set are
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available to refine an automatically initialized 2D bounding box for each object. Please see

Figure 4.5 for visualizations of both the final 2D and 3D ground truth that we produce. We

will continue by providing more detail on our annotation procedure.

As mentioned previously, each image in our dataset has been accurately registered into

a common coordinate frame. This allows projection of 3D information into each image, and

it also permits triangulating a set of image points that correspond to a single 3D point. The

first step in our annotation process is for a human to mark a central and identifiable feature

on an object in 3 or more images. We then solve for a 3D point that falls closest to the rays

through each marked pixel. As described in Hartley et al. [HZ00], this can be represented

as the solution to an equation of the form AX = 0. A is formed as

A≡


x1P3

1−P1
1

y1P1
3 −P1

2

...

xnP3
n−Pn

1

ynPn
3 −Pn

2

 , (4.2)

where each Pi for i∈ {1, ...,n}, is the three row by four column projection matrix combining

extrinsic and intrinsic parameters: P≡ K [R|t]. Subscript notation indicates selecting a par-

ticular 1-indexed row of the matrix. We use superscripts to enumerate the image points and

projection matrices for each of the n marked correspondences. The result of triangulation

is an estimated 3D center point for the object. Our annotation tool instantiates a 3D object

region composed of a 3D centroid initialized to the triangulated point, a 3D scale initialized

to be the mean size of the object category, and an azimuth angle (i.e., rotation around the

up or Z axis) initialized to zero. The annotator is then able to refine each dimension so

that the projections of the oriented 3D bounding volume match the object’s extents in each

image. We have found that, if the image points are specified accurately at the outset, there

is little extra effort required beyond specifying the true object orientation and making small

refinements to the scale. Upon approving of all properties of the 3D annotation, the annota-

tor saves the object volume and this is recorded along with the sensor data and registration

information to be available for use of the data in training or test.

Image space 2D annotations are also available for all of objects in all images in the
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dataset. The 2D annotations share the format used by PASCAL VOC and other recognition

challenges. That is, they are made up of a bounding box, with extents tight to the object

content, a category label, and additional meta-information such as that the instance may be

difficult, in that it is an uncommon representative of the class (e.g., a toy coffee mug in the

shape of a cartoon character is a difficult mug), or that the instance is occluded in the image.

For occluded objects, the annotator estimates the ratio of the object’s area that is visible,

and this is recorded in the dataset for later use during evaluation.

Creating 2D bounding boxes for more than ten thousand views of objects is also time

consuming. To assist the annotator, the previously created 3D annotations are leveraged to

expedite the process of creating 2D annotations. Volumes are projected into every image in

which they are visible, and a bounding box that encompasses the 3D corners is created. The

annotator’s task is then simply to refine the precise image locations and meta-information

values, rather than having to create each bounding box. This saves significant effort and

reduces the probability that an image region will be missed due to human error.

At this stage, the annotator also often makes small adjustments to the 2D bounding

box to ensure that it is pixel-tight to the underlying object content within the image. This

hand-adjustment is needed because we project imprecise shape models (i.e., a box-shaped

3D volume, rather than the object’s true 3D shape), and to account for any small errors

introduced by 3D to 2D projection. Once again, when the annotator is satisfied with the

quality of the data, the 2D box and meta-information are saved to the database.

The code and tools of our labeling pipeline can be re-used for any series of moderately

well-registered images, such as video sequences from well-calibrated vehicles possessing

accurate inertial positioning and a camera, or sets of highly overlapping photographs where

structure-from-motion can be used for registration. We have made our software tools avail-

able and open-source to the community on-line along with the dataset1.

4.2.4 Scene Details

We have described a procedure for collecting robot sensor readings of an environment with

a robot platform, geometrically registering the sensor positions, manually annotating the

object locations, and storing all of the information for future use. This procedure is only

meaningful if the environments covered by the robot are sufficiently realistic and interesting

1The data and code are both available at http://www.cs.ubc.ca/labs/lci/vrs/index.html
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(a)

(b)

(c)

(d)

Figure 4.5: Sample Annotated Scenes: The left column shows 3D annotations projected
onto the image (another verification of accurate registration) and the right column represents
annotated 2D bounding boxes, which are manually verified and adjusted in each image. The
first pair of rows, (a) and (b), are two views of the same scene, and the second pair of rows
(c) and (d) are a second scene. The colours (where available) represent the object category
with: bowls in green, mugs in red and bottles in blue.

to evaluate robotic object recognition. As the focus of our research is to produce capable

home robots, the ideal data would originate from real physical home locations. Unfortu-

nately, the Curious George platform is large and cannot easily be transported between a

large number of homes. Therefore, we have made our best effort to replicate home-like
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scenarios within our lab setting. We have obtained a wide variety of real object instances

from categories that occur in homes, laid out these instances to simulate the density and

configuration that would be expected, and varied the supporting furniture and room con-

figurations as appropriate. In order to minimize dataset bias, we ensured that exact object

instances were not re-used between the training and test portions of the dataset. This does

not preclude multiple similar instances of the same category from occurring in both subsets.

This occurs within our data mainly for categories with little intra-category variation such as

bowls, and when a large portion of the instances of a category are obtained from a single

source in the real world, such as Ikea for kitchenware in North America.

As many modern recognition approaches require the use of labeled data to construct

appearance models or to set parameters, we have split the scenes into training, validation

and test sets. We have followed the same practices for selecting realistic objects across

the three sets, and each consists of real physical scenes. However, the scene backgrounds

available to us did vary somewhat in their similarity to real homes, and we have placed the

most realistic environments largely into the test set. This makes the problem of classifying

objects in the test set as hard as possible and ensures that final results of the methods can

most accurately represent expected performance in the real world. Some training set scenes

have backgrounds that could occur in homes, but in other cases, a plain table cloth has been

used with little additional clutter and few distracting objects.

4.3 Evaluation Protocol
This section describes a set of protocols that leverage the information provided in the dataset

to simulate the tasks that face robot recognition platforms and to evaluate the performance

of algorithms on these tasks. The flow of data for this general process is illustrated in Fig-

ure 4.6. Specific robot recognition scenarios can be replicated by varying the nature of

the data that is exposed to the object recognizer. In each case, data is provided through a

simulation tool with an interface similar to those present on typical robot platforms, follow-

ing the simulate-from-real-data protocol. The performance of recognizers is evaluated by

comparison against the annotation information produced by our human labelers, using the

well-accepted techniques that were described in Section 2.6.

The UBC VRS data and simulator allow for study of each of the robotic recognition

scenarios that were previously described in Figure 1.3. Here we will briefly describe how
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Object
Recognition

Program

Robot
Simulation
Program

Performance
Evaluation
Program

List of object hypothesis data including:
   - Confidence
   - 2D bounding boxes in each image
   - 3D centroid or 3D bounding volume
   - Orientation as 
     viewing or global azimuth

Quantitative
performance

data

UBC VRS sensory and 
registration data

Simulated robot exploration 
data including:
   - images
   - point-clouds
   - robot and sensor positioning
   - time / sequence 

UBC VRS
 annotation data

Robot control 
commands 
(optional)

Figure 4.6: The simulate-with-real-data Protocol: A flow chart indicating the data and soft-
ware programs involved in assessing the ability of a proposed object recognition algorithm
to complete the task of localizing objects in the UBC VRS benchmark.

each of these tasks can be accomplished with our data:

• Single View Recognition – can be achieved by simply providing an index file into

each of the raw images that make up our dataset. In this case, a robot is not truly

being simulated, so no special software is required. Although this problem instance

does not capture the robotic aspects of the recognition task, it can be a useful measure

of the strength of an image-based recognizer and we will use such results throughout

this thesis as baselines for more integrated methods.

• Passive Multiple View Recognition – requires our software simulator to query co-

herent sets of data from the same physical scene and to link the data from each lo-

cation with the common registration or path information that records how the robot

moved during data collection. To model a passive approach (i.e., one that does not

send control inputs), the sub-set of robot poses for each scene is chosen by the simu-

lator from the full set of possibilities that were visited during data collection. Several

modes are available for this selection including: selection of sequential poses along

the robot’s real path; random selection of poses that disregards ordering; or selection
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of poses that achieve a desired angular spacing. The data from all poses can be pro-

vided to the recognition method in a single shot for batch inference, or one pose at a

time can be processed to support filtering-type methods.

• Active Multiple View Recognition – involves a recognition method providing con-

trol feedback to the simulator based on the data that has been examined so far. In

this context, the simulator only yields data from one view at a time. It then models a

robot motion that corresponds to the given control input as closely as possible. Our

software can only sample from poses that actually occurred during data collection,

so there is a discretization of the requested control inputs (i.e., the simulator returns

the view that best matches the given control). This is the most realistic representa-

tion possible of the real robot exploration experience, given the data that we have

collected.

A set of standard tools for results evaluation is available as part of the dataset software.

These tools implement the community-accepted performance evaluation metrics that were

discussed in Section 2.6, based on the annotation data within our dataset. Several subse-

quent chapters will rely on this analysis.

4.4 Discussion
While careful collection and annotation of a dataset with sufficient scale for meaningful

evaluation is a large effort, the resulting repeatable evaluation will hopefully be of value

to the robotics community. Beyond data, a key contribution of our method is the labeling

and evaluation pipeline. The tools related to these can extend to a variety of additional data

sources. For example, we have already succeeded in using the same tools to annotate and

evaluate our approaches using Kinect data that was registered without the use of our fiducial

marker (i.e., using the software of Endres et al. [EHE+12]) as well as outdoor data collected

by an automobile with a highly accurate inertial measurement unit [PME11]. A number of

authors have already obtained the UBC VRS and are currently beginning to develop new

solutions. Ideally, this will lead to additional performance improvements being published

in coming years by a variety of authors.
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4.5 Chapter Summary
This chapter has described the collection of the UBC VRS dataset as well as the associated

tools and protocols that allow repeatable evaluation of robot recognition methods using

our data. We outlined the simulate-from-real-data framework, which allows realistic sen-

sory characteristics, while still providing the ability to evaluate effects of information from

multiple viewpoints and active control on recognition performance. This chapter has not

described any solutions for recognizing the objects that are present in our data. This will

occur primarily in Chapter 7, where the UBC VRS dataset is used as the primary quantita-

tive evaluation. Several authors have also previously used the UBC VRS or early sub-sets

for evaluation of published recognition approaches. At the time that this thesis was submit-

ted [HMM+10, ML11, MWSL11] have used our VRS dataset for evaluation, and several

additional methods are likely to be released in the near future. The remainder of this thesis

will describe the algorithmic and technical contributions, which includes a number of ap-

proaches for multiple viewpoint object recognition and active control of a robot platform

that is performing recognition.
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Chapter 5

A Multiple Viewpoint 3D Object
Model

5.1 Introduction
The previous chapters of this thesis described the robotic object recognition problem, our

physical platform and the data collection efforts that support the research in this thesis. The

remainder of this thesis will describe our algorithmic contributions, including a viewpoint

planner and robotic recognition techniques. There will be little further discussion of hard-

ware platforms, specific sensors, visual attention, or robot navigation. The experiments will

be conducted in a repeatable fashion on publicly available data (e.g., the UBC VRS set or

others), rather than with trials of live robots. Motivated by embodied recognition, we con-

tinue to consider the active and passive multiple viewpoint recognition problems that were

described in the previous chapter, and we choose datasets that are close to those facing real

platforms.

Our methods combine 3D reasoning with visual appearance modeling for object cat-

egories. A common theme is that the 3D positions of objects are inferred based largely

upon 2D cues in sensor data. The missing depth dimension can be difficult to recover even

with available range sensing, since realistically cluttered environments contain structure at

multiple depths within most image regions. Our methods locate corresponding semantic

content across multiple images to robustly recover this depth information. However, occlu-

sion and clutter also complicate the process of identifying objects within a single image and
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determining correspondences between images. We address all of these issues with a robust

probabilistic relation between objects, visual evidence and 3D physical constraints.

We express the relation as a Bayesian probabilistic model, following recent trends in au-

tomated perception. Each source of information from each available viewpoint is explained

by an independent generative model, potentially containing parameters and latent variables.

This allows powerful inference tools to be employed and enables us to learn model param-

eters from training data. The expected visual appearance of each object category is related

to object instances in three dimensions using the tracking-by-detection framework. This

means that we explain the intermediate outputs of an appearance model and do not examine

the pixels of the image directly. Where available, sensed range information is used to reason

about 3D locations and object occlusions.

A common model formulation has been used for several distinct contributions, as our

ideas and implementation evolved over the second half of the author’s PhD studies. This

fact is reflected by the structure of the next several chapters. In this chapter, we introduce

the common underlying material by describing the form of our probabilistic model and by

outlining several options for each component. However, we will not completely instantiate

the model here or present results for any specific task. The following three chapters will

then make the form of each model component explicit, as it has been used for specific tasks

and has evolved in our implementation over time. These chapters will contain experimental

evaluations to demonstrate the usefulness of each approach. Chapter 6 will describe the

use of viewpoint-aware object models to plan paths so that the robot’s action assists in

distinguishing an object correctly. Chapter 7 will describe a model suitable for overcoming

occlusion caused by cluttered scenes by modeling the visibility of object parts. Finally,

Chapter 8 will introduce the scene understanding problem and our solution, which is based

on even more detailed 3D object-part models.

5.2 Model Components
We express the robotic object recognition task probabilistically, as P(X|E): the probability

of a state of the world, X, given the observed evidence, E. We seek to recover the world state

as a set of objects, each with a semantic category label and a spatial description (e.g., 3D

shape and pose). The evidence available to modern robots often includes visual imagery

from on-board cameras, sensed range information (i.e., from a tilting laser range finder
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or depth camera), and geometric knowledge such as calibration of system components or

localization information about the robot’s position. We continue by formally defining both

objects and evidence.

5.2.1 Objects

We represent a set of objects symbolically as: X = {O1, ...,Oi, ...}. For each object, Oi, the

semantic category label is represented as Oc
i . We will often employ an oriented bounding

volume model for three dimensional spatial information, or pose, of an object, which we

represent as the centre position, Ocent
i =

[
Ox

i ,O
y
i ,O

z
i

]T , scale (composed of length, width

and height), OS
i =

[
Ol

i,O
w
i ,O

h
i
]T , and orientation (composed of roll, pitch and yaw), Oori

i =[
Oroll

i ,Opitch
i ,Oyaw

i

]T
.

Note that spatial information is not indexed by time. Throughout this thesis, we make

the static world assumption, which implies that we solve localization and not tracking.

While many of the methods we describe can be extended to moving objects, that has been

left for future work.

5.2.2 Evidence

The evidence available to a robot can be modeled as a stream of observations gathered

over time and space, as the platform moves: E = {Z1, ...,Zt , ...}. We study the case where a

visual image, It , and optionally a synchronized range image or point cloud, Ct , are available,

at a number of discrete instants in time t. The position of the platform at each time is

also assumed known throughout our work. This registration information, which can be

obtained from structure-from-motion or mapping methods, is expressed as a coordinate

transformation matrix, W
V Tt , which expresses the pose of the vehicle in the world frame.

Figure 5.1 illustrates the geometry available to our system. The observed data from each

view is Zt = {It ,Ct ,
W
V Tt}. The sequence of observations from the beginning of time until

the present is represented as: Zt = {Z1, ...,Zt}.

Evidence Geometry

We seek three dimensional object information relative to a stationary, global frame of ref-

erence, which we will refer to as the world frame. For some tasks, the origin of the world

frame will coincide with a physical element on the robot at a particular time, such as its
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Figure 5.1: Multiple Viewpoint Geometry: Selected coordinate transformations available
to our object recognition system. The figure shows mapping information that relates the
robot’s position to the world frame at two distinct times: W

V T1 and W
V T2. Also, the calibration

information relating the camera’s position to the base of the robot (vehicle) is shown as V
I T .

By composing transformations, sensory data can be related to object locations.

pose at the beginning of the trajectory considered. Elsewhere, we will place the origin on

a landmark in the environment, such as a corner of the cube registration target described in

Chapter 4. In all cases, we will clearly describe how the world frame has been defined.

Since the platform is moving, the relationship between the sensory information and the

fixed world frame changes over time. Pre-calibration of the sensor positions gives access

to rigid-body transformations between the base frame of the vehicle and each sensor: V
I T

for the image from a camera and V
CT for the point cloud from a depth sensor if available.

Note the lack of a time subscript indicates that the calibration information is static and not

related to the platform’s motion. We consider calibration information a part of the system

parameters, and therefore do not include it within the list of observed evidence at each time.

Sensed point clouds are denoted as Ct . The 3D information contained within each

cloud is initially expressed relative to the range sensor’s local coordinate frame. Mapping
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and calibration information allows each point cloud to be expressed within the world frame,

and denoted WCt , by composing transformations as

WCt = W
C TtCt (5.1)

= W
V Tt

V
CTCt . (5.2)

Cameras are pre-calibrated, so the the intrinsic parameters, K, are known. In this case,

the relationship between sensed images and the world is through projection into the image

as

α

 x

y

1

 = I
W Pt


X

Y

Z

1

 (5.3)

α

 x

y

1

 = K[IW R|IW t]


X

Y

Z

1

 , (5.4)

where P represents a projection matrix and x and y are pixel coordinates within an image. A

three dimensional point is represented as X , Y and Z. I
W R represents the rotation sub-matrix

(top three rows and top three columns of I
W Tt) and I

W t represents the translation vector

(rightmost row, top three columns of I
W Tt). I

W Tt is obtained by reversing the directions and

composing mapping and calibration information as

I
W Tt = W

I Tt
−1

(5.5)

= (WV Tt
V
I T )−1 (5.6)

= V
I T
−1W

V Tt
−1
. (5.7)

We have now defined all of the symbols needed to express the quantities of interest
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in the multiple viewpoint robotic recognition problem. The next section will continue by

expressing the probabilistic model that relates objects to evidence.

5.3 Probabilistic Model
The likelihood of an object given the available data is expressed using Bayes rule and by

making the naive Bayes assumption to achieve independence between viewpoints. That is

p(X|E) ∝ p(X)p(E|X) (5.8)

≈ ∏
t

p(X)p(Zt |X) (5.9)

= p(X)∏
t

p(It ,Ct ,
W
V Tt |X) (5.10)

= p(X)︸ ︷︷ ︸
ob ject prior

∏
t

p(It |Ct ,
W
V Tt ,X)︸ ︷︷ ︸

appearance

p(Ct |WV Tt ,X)︸ ︷︷ ︸
geometry

p(WV Tt |X)︸ ︷︷ ︸
registration

. (5.11)

The above equations demonstrate how the likelihood of a set of objects can be explained

with four sub-models. We will continue by explaining each in detail.

5.3.1 Object Prior

The object prior, p(X), represents our knowledge of the properties and layout of objects,

independent of any source of sensor data. Subsequent chapters will describe how this term

encodes penalties on objects occupying the same physical space, the expectation that ob-

jects lie on a supporting plane within the environment and have appropriate scale, and our

expectation on the relative frequencies of various objects occurring.

5.3.2 Appearance Likelihood

The appearance likelihood term, p(It |Ct ,
W
V Tt ,X), explains the visual image evidence given

the objects present, the sensed geometry and the camera’s pose when it obtained the image.

Throughout our work, we relate objects to image evidence using the proxy of trained object

appearance models, inspired by the so-called tracking-by-detection framework that was

described previously. Rather than including raw pixel values in our probabilistic model, we

initially apply an object detector (specific choices to be explained in subsequent chapters),
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Figure 5.2: Object-Model Cartoon: Using the tracking-by-detection framework, each in-
ferred 3D object is projected into many views and related to image space detections, di,
that are generated by an appearance model. Alignment errors ∆i reflect the difference be-
tween the expected image position and scale and that generated by the 2D recognizer. The
likelihood of each object hypothesis is expressed based on the 3D geometry, the score of
matching detections modulated by occlusion and the error in projection.

to produce a set of detections in the image D(It) = {dt
1, ...,d

t
j, ...}, where dt

j is the jth 2D

object hypothesis output by the recognizer in the image at time t. A single detection, dt
j

carries a variety of information, depending on the outputs of the detection model. In all

cases, it includes a floating point confidence score and a 2D bounding box around the object,

which we represent as a centre-point and a scale.

The appearance likelihood, therefore, explains the output of an object detector as

p(It |Ct ,
W
V Tt ,X) ≈ p(D(It)|Ct ,

W
V Tt ,X). (5.12)

Numerous factors affect the appearance likelihood including the properties of the object
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recognizer that produces the set of detections, D, physical properties such as occlusion that

can be treated as latent variables, and geometric properties of the object category such as

whether or not it is symmetric. We will continue by briefly discussing a number of these

factors within this chapter, in particular highlighting those that will be featured in more

detail in subsequent chapters.

Object Recognizers, Training and Validation

For the purposes of this thesis, we treat an image space object recognizer as a gray-box func-

tion that takes a visual image as input, and produces a set of scored bounding box detections

as output. A perfect recognizer would produce detections with full confidence only on the

true locations of objects within an image and no detections elsewhere. In this case, the task

for robotic recognition would simply be to recover the three dimensional object locations

that explained these image space detections geometrically. However, currently no visual

object recognizer achieves perfect performance on the visual images that we consider. Our

appearance likelihood model allows us to gracefully handle errors in visual recognition and

to accumulate evidence across viewpoints as a component of Equation (5.11).

Current state-of-the-art methods are based upon learning visual appearance models

from numerous labeled training examples. Throughout the remainder of this thesis, we

will use models that have been carefully trained to perform as well as possible on the object

categories and imaging conditions present in our evaluation environment. The appearance

likelihood function, which relates detections to objects, is obtained after the model train-

ing process, through a validation procedure using a held-out set of labeled data. That is, the

gray-box recognizer is first trained so that it performs as well as possible without knowledge

of 3D properties, and then its performance is described probabilistically with a model of the

form given in Equation (5.12). One example can be found in Section 6.2.1 which describes

an approach to estimate the detector’s non-uniform response to the different viewpoints of

an object.

Data Association

Objects in three dimensions and detections in image space are both discrete quantities, and

each represents a different type of spatial information. We perform data association in order

to reason about them jointly. Specifically, each object is projected into each available view,
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and a matching function attempts to locate a corresponding detection, using proximity. We

express data association symbolically as A(Oi,
W
V Tt ,D(It))t = dt

j, which tells us that the three

dimensional object, Oi, has generated detection dt
j, a detection in image t.

The association function, A(.)t , is a matching between objects in 3D and detections in

2D image space. It is not trivial to find the correct matching in the general case. In cluttered

scenes, objects can mutually overlap and occlude one another in views. Some true target

objects may lack image space evidence: a false negative error. In other cases, detections

will occur in locations where no object exists: a false positive. Multiple detections with

slightly incorrect geometry may be present in an area with only a single true object: a

multiple detection. Therefore, numerous potential matchings are worthy of consideration

by a search procedure. However, the data association step often occurs as the inner loop of

a learning or inference procedure. So, if association is an expensive operation, the entire

object recognition method is likely to be inefficient.

A simple heuristic matching function can perform well in practice, even without guar-

antees of optimality. Consider one of the simplest reasonable possible choices, which we

call Greedy Matching, that is described in Algorithm 1. The output of Greedy Matching

depends on the ordering of objects within O, and it does not guarantee the global optimal-

ity of the assignments. However, it is efficient to compute. It requires only a single pass

through the objects for each image, and the NearestUnclaimedNeighbour sub-step can be

implemented with a k-d tree index on detections to provide O(log(n)) over n detections in

the image, if desired. The majority of our approaches and results have been produced us-

ing Greedy Matching or a slight variation, since this has provided suitable performance on

real-world tasks. Consideration of other association functions is an avenue for future work.

Object Viewpoint

Some object recognizers perform pose estimation. The appearance of objects varies as they

are viewed from different angles, and a pose estimator attempts to recover the unknown

viewpoint based on the observed appearance. In principle, pose-estimation can be per-

formed in three dimensions, but in all cases that follow, our input pose estimators simply

estimate the azimuth viewing angle, which represents rotation about the object’s canonical

up direction. Our method utilizes inferred pose information from the recognizer during

3D object inference, during both data association and likelihood computation. During data
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Algorithm 1: Data Association Algorithm: The Greedy Matching data association
function

Data: O, a set of objects in three dimensions, D(It), a set of image space detections,
and W

V Tt , the mapping information at time t
Result: An association A from each object-index i ∈ {1, ...n} to detection-indices j

of the assigned match, or /0 if no detection matches
Set all d j ∈ D unclaimed ;
for i← 1 to n do

A(i)← /0;
projObjit ← project(Oi,

W
V Tt);

j← NearestUnclaimedNeighbour(D,projObjit);
if d j agrees with the position and scale of projObjit within a threshold then

A(i)← j;
Set d j as claimed;

association, the matching function can discard some very unlikely pose assignments. For

example, if the three dimensional object’s pose indicates a side-view, we may not allow

detections that indicate a front-facing object to be assigned. As with all of our model com-

ponents, this step must be robust to errors in the pose estimator. We have considered a

number of alternative approaches in each instance and choose the one that gives the best

empirical performance.

Chapter 6 will describe how viewpoint-aware object recognizers can allow informative

viewpoint planning for a platform while it performs recognition, and Chapter 8 will show

that 3D object pose can be inferred from 2D viewpoint estimates and that this information

can increase the detail with which our method can understand the objects within a scene.

Occlusion

Occlusion changes the visual appearance of the object in an image by obscuring many of

the features that we use to describe an object. Object recognizers can overcome occlusion

to a certain extent through robust modeling. In particular, if occluded instances are provided

during training, there is some potential for the recognizer to have learned the typical patterns

of appearance under occlusion, and to correctly identify both occluded and un-occluded

instances. However, in practice, occlusion is one of the most prominent failure modes

for the object recognizers that perform well at the time of this thesis (as is empirically
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verified by [HCD12]). When 3D objects appear occluded in images, there will often be

no detection provided by the recognizer, or the detection will have low confidence, which

typically indicates a low likelihood of an object actually being present.

A focus of Chapter 7 is to examine the effects of occlusion on the appearance of objects

within images, to learn a model for the performance of a particular recognizer under oc-

clusion, and to exploit the three dimensional nature of our object models along with sensed

range data to improve our ability to perform the multiple viewpoint recognition task under

heavy occlusion.

Object Parts

Recent visual recognition approaches have often included a hierarchical model for the ap-

pearance of objects. A collection of parts describe distinguishable components of the object

and these are spatially-related to other parts or to the object as a whole (e.g., [FGMR10]

and [TFL+09]). Starting with Chapter 7, our work is able to leverage the part information

from an image space detector. We reason about part-detections alongside the whole-object

detections. Also, we have extended this part reasoning to our 3D object models, reasoning

about an object as a collection of parts that are have spatial relations to the whole object.

We will discuss our three dimensional parts models in Chapter 8.

5.3.3 Geometry Likelihood

The third term in Equation (5.11), p(Ct |WV Tt ,X), relates sensed range evidence, Ct , to the set

of objects in the world and the position of the vehicle. As mentioned previously, we do not

consider detailed shape models in 3D, and instead make only generic shape assumptions

based on the oriented bounding volume model described above. This model allows sensed

range values to be roughly related to the visible surface of each object. An important part of

our geometry modeling is to reason about a number of distinct outcomes for each element

of range data, including: (1) the object’s pose agrees well with the measurement since its

front surface is at the sensed depth; (2) the sensed depth is in front of the object, meaning

either a pose error has occurred or the object is occluded; or (3) the sensed depth is behind

the object, which could indicate transparency (e.g., the window of a car) or a pose error.

We have used this approximate surface model to reason about likely positions for objects as

well as the likely occlusion patterns in each view in Chapters 7 and 8.
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5.3.4 Registration Likelihood

The final term in (5.11), p(WV Tt |X), represents the likelihood of a view’s registration in-

formation. While every existing registration and mapping procedure is inexact and pro-

duces position estimates that are corrupted by slight errors, we have neglected these errors

throughout our work. This choice has been made because the expected magnitude of regis-

tration errors using modern techniques is quite small compared to the uncertainty in object

localization from images, at least in the environments we consider. So the loss in precision

by neglecting this term is also assumed small. We leave joint modeling of mapping and

object localization for future work, and briefly describe these extensions in Chapter 9.

We express this neglect of the localization term probabilistically with the Dirac delta

function centered on the registration estimate provided by an external mapping algorithm,
W
V T mapping

t . This is expressed as

p(WV Tt |X) = δ (WV Tt −W
V T mapping

t ). (5.13)

This function is only non-zero when the registration precisely agrees with the observed

value, making it unnecessary to consider any other value. Throughout the remainder of our

discussion, we remove this term from our expressions.

5.4 Parameters and Learning
Each of the generative sub-models that we have described has the potential to include a

set of learned parameters. We will use θ as a generic term to describe all system pa-

rameters, and use subscripts when we refer to specific parameters. For example, θviewpoint

describes the parameters used for a viewpoint recognizer, which would be expressed as

p(Oi|Zt ,θviewpoint). Validation data subsets are used for evaluating the behaviour of a

learned model after it is produced on a training set. The separate fold of validation data

allows the post-hoc learning of parameters for a trained model without the bias that would

be introduced if the training dataset itself was used. Simply put, a recognizers performance

on its own training set is not a good measure of real-world performance, but a previously

unseen validation set is likely to uncover the features that can be expected on arbitrary test

sets. Subsequent chapters will describe the parameters needed for each model component.
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5.5 Inference
The probabilistic model that we have described above is defined in a state space with a

potentially large number of continuous dimensions. Probabilistic inference is required in

order to locate the most likely single object or set of objects within the state space – the task

of object recognition. Depending on the specific forms of the appearance and geometry

likelihoods, this inference problem often lacks analytical closed form, but approximation

methods are able to yield good practical performance. We will briefly discuss some of the

generic inference concerns here. Particular inference techniques will be described in later

chapters.

It is instructive to consider the form of the inference problem and several potential

solution techniques that can be applied. Our likelihood has a discrete-continuous nature,

which is introduced due to the tracking-by-detection framework and related data-association

procedure that we have described in Section 5.3.2. First, consider directly maximizing the

likelihood in the object state space. We note that the target likelihood is discontinuous, due

to data association with discrete detection evidence. However, in local areas of the space

that share a fixed data association, continuous optimization may be possible, depending on

the form of the appearance and geometry likelihoods. Intuitively, this step involves finding

the 3D object position that best explains a set of detections across images, as well as the

sensed range data, and can be thought of as a semantic triangulation. We have applied such

local optimization (e.g., gradient descent) as a solution for this sub-step in our inference

techniques, in some cases.

We must also consider searching the space globally for subsets of detections that explain

the same 3D object. Intuitively, this process involves discarding false positive detections in

image space and choosing the correct single detection for an object when the recognizer

returns several nearby detections. This combinatorial optimization problem has a hypoth-

esis space that grows as O((|O||D|)n), where there are |O| objects in the environment and

our recognizer returns |D| detections, in each of n available images. For our problems,

these values are bounded by |O| < 20, |D| < 100 and n < 10, and this is far too large for

consideration by a brute force approach, especially since scoring each possibility requires

a continuous optimization over the local 3D object pose. Efficient search is crucial. For

example, we use approximate techniques such as sampling to prioritize the most promising

sets of associated detections. Many pairs of detections can reasonably be discarded quickly
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by a rapid heuristic check for compatibility. This allows reasonable approximate inference

to proceed and to give good performance in practice.

5.6 Chapter Summary
This chapter begins our discussions of models and algorithms. We have presented a generic

probabilistic model that relates objects in the world to perceived sensory information. Each

component of the model was discussed, and for each we outlined a variety of factors and

challenges that will face the specific methods that come in the following chapters. Inference

and learning were also introduced, which are the tools needed to apply the generic model to

real data and to perform robotic recognition. The following chapters will describe particular

methods for these tasks by instantiating the generic model in a slightly different form, and

by re-visiting many of the issues we raise here. Each of these will provide a complete

discussion of inference, and will include empirical results to validate the approaches.

For purposes of continuity, here we list the general model components that must be

specifically defined to solve a robotic recognition task in a specific context or for a specific

problem. We will revisit this list a number of times to compare and contrast between our

approaches.

1. State space: one or more semantically meaningful objects. The geometry of each

object is described by a subset of the 3D shape properties that we have mentioned

here.

2. Evidence: images and/or point clouds from a number of viewpoints.

3. Object Prior: a distribution for the expectation of object positions, occurrence fre-

quencies, or layouts, independent of observed sensory data.

4. Appearance Likelihood: a distribution relating detection results as a proxy for visual

appearance, to 3D objects.

5. Geometry Likelihood: a distribution relating sensed range data to the surfaces of

oriented bounding boxes that represent objects in the world.

6. Learning Method: a procedure to set the parameters of the above models based on

training or validation data.
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7. Inference Method: a procedure to output a distribution or point estimate of the objects

present in the world based on observations.

The next chapter will describe the use of a simple instantiation of these seven elements

in order to derive a robot control algorithm that guides a robot towards viewpoints that are

likely to lead to confident object hypotheses. This will be followed by two chapters that

describe methods for 3D object localization in challenging environments with significant

occlusion and clutter. In each, we will refer back to the seven elements listed here and

describe how the specific choices made later fit into the generic Bayesian multiple viewpoint

model of this chapter.
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Chapter 6

Viewpoint Planning

6.1 Introduction
When uncertain about the identity of an item, humans often pick the object up and rotate it

or move their head from side to side in order to obtain a variety of viewpoints. In some cases

this behavior allows a “canonical” viewpoint of the object to be obtained (e.g., the label

on a bottle) and in other cases, the movement may allow disambiguation between similar

items (e.g., searching for the logo to identify the brand of car being viewed). Humans

integrate information over the numerous viewpoints that they see without effort and can

rapidly decide where to move next. In contrast, the analogous scenario remains a challenge

for current visually guided mobile robots.

This chapter describes a method for viewpoint planning during the Active Multi-View

recognition task. Our approach is based upon learning viewpoint-aware detection mod-

els from training data that is annotated with viewpoint information. After a number of

viewpoints have already been analyzed, we use these models to plan the movements that

are most likely to result in additional useful information being obtained. An information-

theoretic next-best-view planner is proposed, and its performance is demonstrated on an

existing database of simple multi-viewpoint imagery that is available from the computer

vision community. Simulation results verify that our viewpoint planning approach requires

fewer viewpoints for confident recognition than would be needed if the robot moved ran-

domly.

We will not emphasize pose estimation in this chapter, although we will propose a
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Figure 6.1: Viewpoint-dependence Example: The response of the DPM recognizer from
[FGMR10] on images of a bicycle from numerous viewpoints. Images shown below align
with data points, and bounding boxes drawn in images represent detector responses that
exceed a threshold pre-calibrated to balance precision and recall.

method that models some aspects of an object’s pose. Our focus in this chapter is on the

viewpoint planning process and we have simplified the evaluation and discussion appro-

priately. A more detailed approach for pose estimation will be presented later in Chapter

8, which is capable of estimating the orientation of a number of self-similar objects in a

crowded scene. At the time of the study performed in this chapter, models suitable for

modeling the pose variation across instances of an object category were inexact in nature.

Several methods included [SSFFS09, TFL+09, LSS08]. Our viewpoint-dependent models

of detector response can be seen as a soft form of pose estimation and are inspired by the

approaches listed.

6.1.1 Relation to Generic Multiple Viewpoint Object Model

The planner described in this chapter is based upon integration of information over view-

points using a procedure that is similar to the one described in Chapter 5. Here we will

describe detailed model components that instantiate the generic Bayesian Multiple View-

point object model. Our focus here is the planning problem, and we show how the model

can be used to determine the next best view from which to observe an object. Briefly,

this involves analysis of the expected change in information contained in the model over a
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number of candidate actions. We describe an automated method to perform this reasoning.

Our method is centered on learning models of a category detector’s response with re-

spect to viewing direction using training data from a multi-view category database. For

example, Figure 6.1 shows the detection responses of a state-of-the-art category recognizer

on a number of views of a single bicycle – a motivation for the work in this chapter. Certain

views of the bicycle give stronger support for the presence of the object than others, and

a planner would do well to find the actions that lead to the side views being observed in

order to maximize the confidence of the recognizer. We capture this intuition in the form

of viewpoint-aware appearance models with parameters that are learned from training data.

These models summarize the responses of a detector across numerous instances to capture

its dependence on viewpoint, and are the instantiation of the generic appearance model

component of Equation (5.11) within this chapter. Informative viewpoints can be chosen

based on the current probabilistic estimate of the object and the learned viewpoint model,

which allows an active system to recognize an object with fewer views.

For consistency, we will briefly preview in point form how the approach in this chapter

instantiates all model components described in the previous chapter:

1. State space: binary category label (object of type c is present or absent) and dis-

crete viewpoint (one of 8 uniform poses) for one object at a time. Localization is

ignored here. Very simple version of the recognition problem that allows focus on

the planning task.

2. Evidence: images from a discrete number of viewpoints that have been captured

ahead of time to form a multi-view image dataset. Data is accessed by our system

through a robot simulator.

3. Object Prior: uniform distribution over the object’s presence or absence and over all

potential poses. The maximally un-informed prior for our state.

4. Appearance Likelihood: learned viewpoint-aware detector models which allow com-

putation of the expected responses given an observation of an object from a particular

angle.

5. Geometry Likelihood: none here because no range data is present in the evidence.
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6. Learning Method: two steps: 1) learn viewpoint-agnostic object models from a large

set of images with labeled object regions that do not possess viewpoint labels and 2)

use images from a held-out validation set that are labeled with viewpoints to derive

viewpoint-aware models.

7. Inference Method: sequential Bayesian updates that integrate information one view

at a time to allow planning of new poses.

6.1.2 Statement of Collaboration

The method described in this chapter was developed in collaboration with Ankur Gupta,

a co-author of [MGL10]. At the time that this work was carried out, Ankur was a junior

student starting in the UBC Laboratory for Computational Intelligence. The paper’s con-

cept, formulation and development were developed by the author of this thesis, but Ankur

provided significant assistance with coding the tools, especially related to automatically

training the Deformable Parts Model (DPM) [FGMR10] 2D category recognizer on collec-

tions of training images.

6.1.3 Chapter Outline

In the next section, we will describe how the probabilistic multi-viewpoint object model that

was described in Chapter 5 is modified for sequential recognition and simplified to focus our

discussion on a simple evaluation of our planning method. Subsequently, we will describe

our strategy for learning viewpoint detection functions, and an entropy minimization next-

best-view planning algorithm. Finally, we will present the results of our evaluation of the

system on a simulator and discuss a proof-of-concept demonstration of the technology on

board the Curious George robot.

6.2 Sequential Category Recognition Model
In this chapter we focus on the planning aspect of the multiple viewpoint robot recognition

problem. To reduce complexity, we simplify several of the other aspects of the problem.

In particular, we assume that locations of the world have been identified as potential object

candidates (proto-objects), for example by a mid-level visual attention system that identifies

regions of the world that are likely to be objects, but does not verify their semantic category
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or spatial properties. We also specify a simplified objective, of optimizing recognition

performance after as few views as possible. Note that this ignores other planning objectives,

such as minimizing robot travel distance. We restrict our focus to informative views here, in

order to achieve a limited complexity and expect that additional planning constraints will be

added when the technique is applied on-board a physical system such as Curious George.

This leaves the task of choosing the next viewing angle from which to observe one of the

candidate objects. Additionally, for the purposes of this chapter, we consider the scenario

where a single new object has been encountered and the robot is tasked to verify its identity

before moving on to the next candidate object.

We represent this restricted variant of robotic object recognition using small-case o to

represent that there is only one object considered at a time. This corresponds to a state of

O = O1 in the terminology of Chapter 5. Our task is inferring a binary category label oc, or

simply c, which expresses that the proto-object is a member of the queried category or not.

We will neglect some spatial properties of the object that are considered elsewhere, such

as ocent , through the assumption that a proto-object identified by an attention system has a

fixed position. A component of our viewpoint planning process is to jointly reason about

the object’s orientation, so we will treat one angular dimension, rotation about the up vector

known as azimuth, as a latent variable. We write this symbolically as oaz or simply az.

As images are collected, we will model p(c|d(I(θ1)), ...,d(I(θi))), the probability that the

proto-object is a member of category, c, conditioned on the responses of an object detector

over the i images, collected from viewpoints, [θ1...θi], by the robot so far. Note that we

also exclude representation of data-association here. At each step, our planning system

must choose the next viewing angle, θi+1, from which to observe the object, which is a

simplification of the general motion planning problem for a mobile platform that neglects

detailed interactions such as planning paths through maps and avoiding obstacles.

Our solution to the planning problem is inspired by the observation made by [LA06],

that appearance models for objects are highly correlated to the angle from which those

objects are viewed. In order to incorporate this intuition into the recognition and plan-

ning process, we jointly infer the category of the object being considered as well as the

pose of the object. Specifically, we have trained a number of generative detector models:

p(d(I(θi))|c,az), where d represents the response of an object category recognizer when

presented with an image patch of an object with category c oriented at angle az and ob-

served from viewing angle θi. For simplicity in much of the discussion, we will describe a
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detector’s response as di, indexing only by i, the order in which the image was taken. The

reader is asked to remember that the detector’s response is a function of the viewpoint and

environmental factors.

6.2.1 Learning a Viewpoint Function

As mentioned, a number of factors including training data bias and object shape proper-

ties affect the responses of an object detector over the viewpoints of an object. Correctly

modeling this fact will allow a visual search system to correctly infer the state of the world,

and so we set out to model the detection response as a function of viewpoint for several

state-of-the-art object recognizers trained on a variety of datasets. In particular, we have

examined three object recognition approaches that are currently used heavily in computer

vision. Please note that in this chapter we have not considered so-called bank-of-detector

approaches that are specifically targeted to recognizing individual viewpoints, as is done in

later chapters of this thesis. Such approaches would give more specific viewpoint prediction

capability and could potentially be a great benefit to our planning method. We have chosen

standard single detectors here in order to validate that our approach works even with such

inputs and we leave planning over detector banks for future work. The detectors used in

this chapter are:

1. SIFT matching is an algorithm based on the observation that local image features can

be reliably detected and described in a fashion that is largely invariant to changes

in scale, lighting and in-plane rotation [Low04] (N.B. the list of invariances does

not include viewpoint changes, although invariance over a small range of views is

possible, as discussed in [MTS+05]). In particular, we have implemented image

matching based on SIFT features with RANSAC to fit a fundamental matrix to a

candidate set of point matches in order to discard outliers and return highly confident

match results.

2. Bag-of-Features matching is equivalent to SIFT-matching without checking of the

geometric consistency between feature matches. This allows the method to general-

ize better across intra-category variation in geometry and makes the approach more

suitable for category recognition. Note, for clarity, that the method we call Bag-of-

Features matching is the simplest possible modification of SIFT matching in that we
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match to nearest neighbors in the original feature space and have not utilized vector-

quantized features or an SVM for classification. Those extensions and others have

been attempted by [GD05] and other authors. Algorithms of this nature often share

the “Bag-of-Features” description, and are likely to have different properties, so we

explicitly draw the distinction for clarity.

3. Deformable parts model is an algorithm that combines several feature types and

jointly infers parts and object labels with an SVM. This method was selected due

to its strong performance on the PASCAL VOC [EVW+12]. We have used the au-

thor’s implementation for this method [FGMR10].

Each of the three methods was evaluated across a large number of views drawn from

the “Multi-view Object Categories” dataset which has recently been collected by Savarese

et al. [SFF07]. Recall that each image in this dataset contains a category label and a

viewpoint label. The results of a detector on this dataset characterize its distribution of

responses as a function of category and viewpoint. We modeled the empirical distribution

of detector response with a univariate normal per {c,az} pair. This produces a generative

viewpoint detection model, p(d|o,az), which can be evaluated for each detector response

and integrated into the overall recognition framework as will be shown below.

Several viewpoint detection models for the DPM recognizer are displayed in Figure

6.2. Each row in the image represents the response given for a different category: bicycle,

car and monitor. Some notable structure is present in each. Responses for the bicycle

category show clear symmetries, and, as was clear in Figure 6.1, the front and back views

give much lower detector responses than views from close to the side. Responses for cars

have a similar shape, but the front and the back views are somewhat more recognizable due

to a car’s greater width and identifiable features such as headlights. Finally, the response

function for monitors shows that the canonical straight-on front view is highly recognizable

while there is very little information available in rear or side views of a monitor. Note that

in all cases, the expected detector output (shown in red) is significantly higher for positive

images where the category is truly present, than for negative images that do not contain the

object. The ratio between the positive and negative responses describes the discrimination

power of the recognizer. This indicates the DPM model is a relatively effective recognizer

for objects in the set of images we have used for evaluation.
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Figure 6.2: Viewpoint-Detection Functions per Class: Example viewpoint detection func-
tions that are learned for the DPM recognizer for classes: (top) bicycle, (middle) car, and
(bottom) monitor. The radial coordinate represents the detector response to positive(left)
and negative(right) samples. The angular coordinate represents the viewing azimuth of the
sample. The solid red line is the expected value and dotted blue lines depict the uncertainty
in the response.

Figure 6.3 shows the viewpoint detection models of the SIFT matching and Bag-of-

Features matching approaches when trained to recognize bicycles. The viewpoint profile of

the responses for both methods are similar to those observed in the previous figure, which

adds support to the observation that side views of bicycles are more readily distinguishable

than front and rear views. In contrast to DPM, however, we found that these detectors’

response functions for negative instances (images that do not contain bicycles) were nearly

as strong as those for the positive instances (images containing bicycles) over most of the

viewpoint range. This is due to the fact that the feature matching step in both of these

approaches returned a small number of features for instances of the category not present in
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Figure 6.3: Viewpoint-Detection Functions per Detector: Viewpoint detection function for
the (top)SIFT matching and (bottom) Bag-of-Features matching detectors. The radial co-
ordinate represents the detector response to positive(left) and negative(right) samples. The
angular coordinate represents the viewing azimuth of the sample. The solid red line is the
expected value and dotted blue lines depict the uncertainty in the response.

the training set. That is, the local object appearance varied too greatly for correct matching.

This is can be seen in the figure in that the mean values for both positive and negative

responses are similar. For this reason, we have primarily focused on the DPM approach in

the rest of the results given in this chapter. Integrating a specific view recognizer such as

the SIFT matching approach with a general category recognizer is left for future work.

6.2.2 Multi-view Bayesian Estimation

This section describes our approach to integrating the scores of classifiers over images of an

object from multiple viewpoints. We build upon the viewpoint detection models described

previously. Consider inferring p(c,az|d(I(θ1)), ...,d(I(θN))), the probability that an object

is present and has orientation az, based on N detector responses in images captured from

viewpoints θ1, ...,θN . This is derived using Bayes’ Rule as
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Figure 6.4: Evolution of Posterior Example: The posterior distribution over object pres-
ence and pose is updated as each image is collected. This is demonstrated for 4 steps of
one robot recognition simulation trial. The graphs display: the prior top-left p(c,az), the
posterior after one image top-right, p(c,az|d1), and so on. In each graph, the radial coordi-
nate represents the belief probability for the object occurring and having the pose indicated
by the angular coordinate. This trial is evaluation of the category label “car” and the true
world state is that a car is present with pose 135◦. The magenta “x” shows the pose of the
object and the blue circle shows the robot’s pose at each time step.

p(c,az|d1, ...,dN) =
p(d1, ...,dN |c,az)p(c,az)

p(d1, ...,dN)
(6.1)

=
p(d1, ...,dN |c,az)p(c,az)

∑
ci∈{t, f}

∑
az j∈{0, π

4 ,...,
7π

4 }
p(d1, ...,dN |ci,az j)p(ci,az j)

. (6.2)

We make the standard naive Bayes assumption, that each pair of classifiers is condition-

ally independent given the object label and viewpoint. Also, we apply an uniform prior for

p(c,az), so it can be factored out. The expression becomes
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p(c,az|d1, ...,dN) ≈

N

∏
k=1

p(dk|c,az)

∑
ci∈{t, f}

∑
az j∈{0, π

4 ,...,
7π

4 }

N

∏
k=1

p(dk|ci,az j)

. (6.3)

This expression represents the probability of a given object configuration based on the

observed data (detections). It is based on the generative viewpoint detector models for

p(dk|c,az) that are learned from data, as described previously. Our use of a uniform prior

for p(c,az) is appropriate here since we are modeling each object in an unbiased fashion.

In extensions to integrated systems, it is likely to be beneficial to use domain knowledge

to specify an informative prior such as the likelihood of each type of object occurring in

each room of a house, or the fact that all objects in a parking lot are likely to be mutually

parallel. Several examples are discussed later in this thesis. Also, please note that we have

excluded a model for robot motion in this work. For simplicity, we assume that the robot’s

motion is known exactly. While this is not true in general, our work makes a very coarse

discretization of angle into 8 bins, and so it is likely that we can correctly determine the

correct bin for the robot’s position a large fraction of the time from odometry or SLAM

position estimates.

Equation (6.3) expresses the distribution over the object label and viewpoint after N ob-

servations, but we must also consider how to update this model as new images are acquired,

along with new detection results. p(c,az|d1, ...,dN ,dN+1) involves the addition of another

viewpoint detection model term to the numerator and requires re-normalizing by computing

a new denominator that involves terms for all N +1 images. Figure 6.4 illustrates how the

joint distribution over object category and viewpoint evolves over each time step for the

object category “car”. As each a new observation is made, the updated function becomes

narrower and eventually puts the majority of its belief on the correct object pose and its

reflection. This corresponds to probabilistic estimation of pose and category.

6.2.3 Viewpoint Planning

The active component of our robot recognition system requires a decision making strategy

to control the position of the camera in the world – the viewpoint from which objects are
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observed. The choice of camera motions allows numerous views to be collected so that, for

example, the canonical viewpoint present in the training data can be observed, or a view can

be obtained that allows objects with similar appearances to be disambiguated. We employ

entropy as a measure to determine the confidence of the recognition system in its belief

about the presence (or absence) of the object. The entropy of a random variable x is defined

as

H(p(x)) = −∑
i

p(xi) log(p(xi)). (6.4)

For the viewpoint planning problem, we attempt to minimize the expected entropy of the

posterior over object category membership c, after selecting the next viewpoint, θi+1. Note

that the previous statement explicitly does not state our goal as entropy minimization over

the joint posterior on category and orientation. This is a design decision and has been made

due to the fact that our system is generally able to disambiguate an object’s category, but

for many objects, the orientation remains uncertain even after many views are collected. By

marginalizing over orientation, we separate these concerns within the planner. In symbols,

our goal is expressed as

θ
∗
i+1 = argmin

θ j∈{0, π

4 ,...,
7π

4 }
E[H(p(c|d1...di,di+1(I(θ j))))]. (6.5)

The distribution p(c|d1...di,d(I(θ j))) is derived from Equation (6.3) by marginalizing

over all possible orientations. This is tractable because we have discretized into discrete

orientation bins. The expected value is used in Equation (6.5) because we are computing a

quantity based on a yet unseen observation. d(I(θ j)) represents the value of the detection

response after the robot moves to viewpoint θ j, which has not yet happened. This is dis-

tinguished from detections up to the current time d1, ...,di, which we assume have already

been integrated into our model. We estimate the expectation by averaging over samples for

the response of the detector drawn based on the posterior from the previous step and our

learned viewpoint detector models. This is a common technique in information theoretic

planning (e.g., [PR09]).

This completes the description of our method to select next-best viewpoints based on
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Figure 6.5: Viewpoint Planning Results: A comparison of detection results between a sys-
tem using entropy minimization planning and a system which uses a random planning strat-
egy. The graph on the left shows the sum of detector responses for true positives minus the
sum of responses for true negatives, a summary statistic for classification performance. The
graph on the right shows the entropy of the marginal p(c = x|d1, ...,di), the detector’s belief
in the true category label x. All results are averages over 160 random selections of an object
instance and starting viewpoint.

learned viewpoint-detection models and a multi-view Bayesian model. Algorithm 2 for-

mally outlines the overall procedure. The remainder of this chapter will describe our results

and evaluation.

6.3 Experimental Results
We have constructed a simulated multiple viewpoint recognition environment to test our

planning approach to this restricted robot recognition problem. Based on an early version of

the simulate from real data protocol, our simulator models a robot’s position with respect to

an object, and returns a pre-collected image drawn from a hold-out portion of the Savarese

et al. [SFF07] dataset used during validation. We evaluated the DPM category recognizer

on each image and used the responses to update our recognition system’s belief about the

object’s presence and viewpoint.

We compare our method with a non-adaptive viewpoint selection strategy that chooses a

random previously unseen view at each time step. This method has been a favorite approach
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Algorithm 2: Viewpoint Planning Algorithm
input : Learned viewpoint-detection function p(d|c,az)

Random initial robot position, θ1
Observe initial image, I(θ1), and detector response, d1;
Compute p(c,az|d1) using Equation (6.3);
/* move to n next-best views */
for i← 1 to n do

/* implement Equation (6.5) to find θ ∗i+1 */
hmin← ∞;
for θ j ∈ {0, π

4 , ...,
7π

4 } do
/* draw m samples from generative model */
for k← 1 to m do

dk← sample(p(d|c,θ j));
hk← H(p(c|d1, ...,dk));

/* integrate over samples */

hθ j ←
∑k hk

m ;
if hθ j < hmin then

hmin← hθ j ;
θ ∗i+1← θ j;

Move the robot (real or simulated) to θ ∗i+1;
Observe image, I(θi+1) and detector response di+1;
Compute p(c,az|d1, ...,di+1) using Equation (6.3);

for contestants in the SRVC contest, and was suggested in [MFL+08] as an approach that

obtains coverage of viewpoints while reducing viewpoint overlap early in the search pro-

cess. Compared to other non-adaptive strategies, the random approach may find interesting

views faster, at the cost of additional robot motion.

Our comparisons were performed by using multiple trials of our simulator. At the outset

of each trial, an object instance is chosen at random from the testing set. Also a random

initial viewing angle is chosen from one of the 8 azimuth angles available in the Savarese

dataset. The object’s identity (whether or not it is of the target category) and its initial

viewpoint are hidden from the planning approaches. So, the situation is a realistic approx-

imation to the situation where the robot segments a proto-object from the world, has no

prior knowledge about the category label or viewpoint of the object, and must infer these

quantities by collecting and analyzing images.
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Each trial proceeds with the simulator determining the current image based on the hid-

den object instance and viewing direction, as well as the known simulated robot position.

The image space object recognizer is run on the image and its detection result is provided

to our multiple viewpoint approach. This information is assimilated into the belief and the

updated information may be used as stimulus for the next control action which is a request

for a new viewpoint. Note that, in the case of the base-line random strategy, the detec-

tion information is integrated, but it does not impact the selection of the next action. The

simulator responds to the motion command, updating its simulated viewing direction. The

process repeats with the next simulated image. For statistical significance, 160 trials were

conducted with an equal probability (p = 0.5) of the target object category or a distracting

object being selected for each trial.

Figure 6.5 summarizes the results of the simulation trials. Planning to reduce entropy

allows the recognition system to confidently infer the category label from fewer test im-

ages, since it is able to use the history of detector responses to determine the viewpoints

that are most likely to discriminate the object. As more and more views are collected, the

probability that the random strategy finds these views increases also, and once each method

has exhausted the available viewpoints, performance is identical. Note that in this dataset,

8 unique views corresponds to every available image having been seen so all methods give

similar performance at this point. The right of the figure demonstrates the our system be-

comes more confident, as measured by posterior entropy, with active planning. The rapid

initial in entropy results from the planner discovering discriminative views, and the subse-

quent small increase results from the fact that we force the planner to continue even after it

has essentially converged on its decision about the object. Later in the process, it encoun-

ters the viewpoints that are difficult to discriminate (recall that we only choose between 8

viewpoints overall and do not allow for planners to repeat the same view). A decision could

likely have been made before this point. In both cases, the results demonstrate that adaptive,

entropy minimization planning aids in the sequential object recognition process.

6.3.1 Application to Visual Search with the Curious George Platform

The Curious George platform uses visual saliency and depth cues to locate possible objects

in the environment. As mentioned above, these mid-level vision techniques limit the search

space which includes infinite locations and point of views. Figure 6.6 shows a sample
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Figure 6.6: Example Use-case for Viewpoint Planning: Curious George looks at a bicycle
and segments it from the background using its visual attention system.

scenario where robot has identified a proto-object in its view. The bicycle is correctly seg-

mented based on depth and visual saliency features, in real-time, and this candidate object

is passed to our system for evaluation. The viewpoint planning method described above is

integrated with this pre-existing feature of the robot. We have previously applied a planning

algorithm which weighs between multiple objectives such as map building, coverage of the

environment and certainty of object labels, and the adaptive recognition method described

here is an additional component that we plan to integrate into Curious George’s planning

suite in the future.

6.4 Chapter Summary
This chapter has outlined an active multi-view framework that can be used by an embodied

visual searcher to infer the identity of a target object being considered. We have demon-

strated the dependence of state-of-the-art object recognizers on the viewpoint from which

an object is seen. This relationship is always likely to be present given the wide variety

of appearance amongst category members across viewpoints. We have learned viewpoint-

detection models for a number of detectors, and demonstrated that the sequential Bayesian
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estimation approach is capable of leveraging these models to provide improved recognition

performance when compared to planning strategies that do not adapt to current models. Our

method has been evaluated on a simulator based on a dataset of challenging images and its

applicability has been illustrated for a physical embodied platform: Curious George.

There are several natural extensions to the current work. In this paper we have evaluated

three object detection algorithms, but have chosen the one which performed best overall to

use in the majority of experiments. Instead, a visual search planner could be given the

opportunity to integrate information from all detectors, or better yet, the visual searcher

could choose which method to run at each viewpoint, prioritizing computation towards

detection results that are likely to be informative. Also, we have focused our analysis to the

visual search problem involving only a single target object. In a home environment, a robot

is faced with a large number of potential targets, and it may also be tasked with exploring

new regions to discover new objects. In this case, a visual search platform must choose

between numerous potential objects as well as between the viewpoints for each object. This

is a challenging problem, but solving it will produce an active visual search robot capable of

determining the semantic categories of objects within a home and subsequently performing

useful tasks for the human inhabitants.
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Chapter 7

Object Parts and Occlusion Modeling

7.1 Introduction
This chapter describes a method for 3D object localization applied to indoor kitchen en-

vironments. Our approach focuses on one of the most challenging issues facing object

recognition in the real world: visual occlusion caused by clutter. Typical kitchens are often

cluttered to the point where even humans struggle to find what they are looking for (e.g.,

the lost keys scenario). The performance of current automated recognizers is often quite

poor in such environments, with only fully visible objects being recognized at a high confi-

dence level. Occlusions hide a portion of an object’s appearance so that the corresponding

features are unlikely to support a successful detection. Several image space recognizers

explicitly handle occlusions (e.g., [GFM11]) and others achieve inherent robustness, such

as methods based on local feature patches, for example. However, even these approaches

tend to be increasingly less confident as the level of occlusion increases, as they lack an

external cue to measure occlusion and the image space appearance eventually resembles a

typical background patch.

Here we describe a multi-view recognition system specifically designed to locate ob-

jects in cluttered indoor environments using the sensor sequence available from a moving

intelligent system. We note that occlusions can be less problematic for a moving camera

system, because we are more likely to obtain at least one clear view. However, typical infor-

mation fusion approaches (e.g., Equation (5.8), our probabilistic model) attempt to explain

an object’s appearance in all views. So, heavy clutter will still lead to lower scores, espe-
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Figure 7.1: Sample Results from Parts-Model: Our method’s results for two real home
scenes (left and mid) and a synthetic lab scene (right). 3D wire-frames indicate mugs (red)
and bowls (green). Thresholded at 90% precision. All figures are best viewed in colour.

cially when the occlusion occurs in several images. To overcome this, we use sensed 3D

geometry, along with the fact that we perform recognition in three dimensions, to explicitly

compute the expected visibility of objects and to discount the information from occluded

viewpoints. This is effective when at least one image has a clear view of the object, but

we go further by applying learned partial-object appearance templates (e.g., a left-half mug

detector) and reasoning about occlusions at this partial-object level. This improves our

per-view occlusion handling even further and allows recognition of quite heavily occluded

instances. Figure 7.1 demonstrates the ability of our method to locate such objects in 3D.

7.1.1 Relation to Generic Multiple Viewpoint Object Model

The model described in this chapter is an instance of the generic multiple viewpoint 3D

object model. The object state is a full 3D location and scale, but here we neglect object

orientations because each of the object categories considered is nearly symmetric, which

leads to uninformative viewpoint-appearance distributions. We focus on occluded objects

and therefore augment the appearance likelihood with additional partial-object models. 3D

objects are matched to whole-object and partial-object detections. An occlusion mask de-

rived from the current 3D object state plus range information measured by a laser allows
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our model to down-weight the contributions of occluded portions of an object.

For continuity, we briefly describe the relation of components in this chapter to the

generic model components described in Section 7:

1. State space: category label, 3D position and 3D scale for each object in the scene.

2. Evidence: visual images and point clouds from a number of viewpoints, as contained

within the UBC VRS dataset, which is used for evaluation here.

3. Object Prior: category-specific size prior on each of the height and radius of the

mostly cylindrical indoor objects.

4. Appearance Likelihood: whole and partial object detectors learned independently

using the DPM method [FGMR10]. Greedy data association of 3D objects to full and

partial detections. Weighing of contributions of each type based on estimated amount

of occlusion.

5. Geometry Likelihood: scan-matching term to measure the agreement of object sur-

faces and sensed ranges.

6. Learning Method: the training procedure of the DPM classifier, repeated one addi-

tional time for each partial template.

7. Inference Method: Monte-Carlo search with refinement using local gradient informa-

tion.

7.1.2 Statement of Collaboration

This chapter represents nearly the same material that the author published as [MWSL11].

The co-authors of [MWSL11] include Christian Wojek and Bernt Schiele, who worked with

the author of this thesis during a research stay with the Computer Vision and Multi-modal

Computing group at the Max-Planck Institute, in Saarbrücken, Germany. The author of this

thesis was responsible for the overall concept, implementation, evaluation and analysis of

the method under supervision and with advice from the co-authors. In particular, our ap-

proach was inspired by the previous work of Dr. Wojek [WWRS11] for detecting occluded
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pedestrians in street scenes. We extended his previous mixture-of-experts model by inte-

grating sensed 3D information, developed a novel efficient inference approach and applied

the technique for recognizing objects in cluttered kitchens.

7.1.3 Outline

We will continue by describing a 3D object model that has been designed to be robust to

occluded object instances in Section 7.2. Learned visual appearance templates for portions

of an object allow for strong discrimination even under occlusion. We then describe an

efficient inference procedure based on data-driven sampling with geometric refinement in

Section 7.3. Finally, in Section 7.4 we demonstrate our 3D object detection technique on

the UBC VRS dataset that has been described previously, as well as on data from the Mi-

crosoft Kinect collected in real home environments. Results show that our method improves

robustness to occlusion when compared to a state-of-the-art visual category detector.

7.2 Object Parts and Occlusions for 3D Object Modeling
Consider the problem of recognizing an object that is partially occluded in an image. The

visible portions are likely to match learned appearance models for the object, but hidden

portions will not. This is a primary cause of poor recognition performance for modern

approaches. The (hypothetical) ideal system would consider only the visible object infor-

mation, correctly ignoring all occluded regions. In purely 2D recognition, this requires

inferring the presence and nature of occlusion, which is a significant challenge since the

number of possible occlusion masks is large. We simplify the problem, considering only

half-object occlusions, leaving four partial detectors: top, bottom, left, and right. Note that,

while our partial-object templates may still not perfectly match the object’s visibility, they

will often match more closely than a full-object object template. We train a partial-object

detector tailored exactly to each chosen case. In addition, we reason about objects in 3D

and incorporate sensed geometry, as from an RGB-depth camera, along with visual im-

agery. This allows explicit occlusion masks to be constructed for each object hypothesis.

The masks specify how much to trust each partial template, based on their overlap with vis-

ible object regions. This comes close to the intuition – only the visible evidence contributes

to our object reasoning.

This occlusion reasoning has been implemented within the framework of our multiple
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Figure 7.2: Part-detector Results and Model Overview: (a) Real results from partial detec-
tors (shown in white) often respond when full-object models (shown as red boxes) do not,
due to occlusion. (b) An object is projected and associated with partial detections where
available.

viewpoint 3D object model. Figure 7.2(b) illustrates how partial-object detectors fit within

our system’s view of a scene. Each candidate 3D object location projects into all views

and is associated to image space detections produced by visual category recognizers for

the object’s complete appearance as well as for a subset of the possible occlusions. Fully

visible objects are likely to align well with strong detections in each image for both the

entire object as well as its parts. However, occlusion can cause weak detection results. The

sensed depth information allows us to estimate the occlusion of each part of the object in

each view. The occlusion estimate is incorporated into the scene score, allowing our system

to ignore meaningless appearance information from occluded regions and more faithfully

representing the underlying geometry.

This section explains a model to compute the likelihood of any proposed 3D object, but

does not consider how these objects should be proposed. That is left for following section,

which outlines our sampling-based inference procedure.

7.2.1 Top-level Object Likelihood

We follow the generic road-map for describing 3D objects based on observed evidence,

which has been previously described in Chapter 5. We briefly reviewed terms and equations
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here for consistency. Objects, Oi, are here represented as category label, 3D position and

scale. We do not perform joint reasoning about groups of objects here, until a final non-

maxima suppression step, so we will often refer to a single object with small-script o.

Orientation is neglected here because we will deal with symmetric indoor objects such as

bowls. Sensory observations include images, It , and point clouds, Ct , as well as mapping

or registration information, W
V Tt , from an external module such as structure-from-motion.

The observed data from each view is Zt = {It ,Ct ,
W
V Tt} and all observations since the start

of time are Zt = {Z1,Z2, ...Zt}.
We express the likelihood of an object given the available data using the naive Bayes

assumption and by factoring it into independent generative models for each observation

type as was previously described for Equation (5.11):

p(o|Zt) ∝ p(o)p(Zt |o) ≈ p(o)∏
t

p(Zt |o) (7.1)

= p(o)∏
t

p(It ,Ct ,
W
V Tt |o) (7.2)

= p(o)︸︷︷︸
ob ject prior

∏
t

p(It |o,Ct ,
W
V Tt)︸ ︷︷ ︸

appearance

p(Ct |o,WV Tt)︸ ︷︷ ︸
geometry

p(WV Tt |o)︸ ︷︷ ︸
registration

. (7.3)

The size prior for each object category is written p(o). Here, we model this as a normal

distribution on both the height and radius of the object, which is appropriate given the

cylindrical nature of the objects studied here. Other shape priors can easily be substituted.

We will continue by describing the specific geometry and appearance likelihood terms that

are used within this chapter in detail.

7.2.2 Geometry Model

The geometry model relates sensed depth data given to an inferred object location. As

shown in Figure 7.3(a), inferred 3D object regions are placed in the same coordinate frame

as measured 3D data. This allows us to process both forms of 3D data and to derive infor-

mation that feeds our probabilistic models. For each pixel in the depth image within the

projected object region, we note three types of outcome:

1. The measured depth is near to the inferred depth: they agree
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Figure 7.3: 3D Geometry Example: Point clouds and inferred 3D objects, as shown in (a),
allow computation of occlusion masks for each object in each image, as in (b). Regions
shown in red are deemed to be occluded by our automated reasoning approach.

2. The measured depth is greater than the inferred depth, which indicates the inferred

object region is unoccupied: they conflict

3. The measured depth is less than the inferred depth: the object is occluded

The geometry term in Equation (7.3) is constructed from pixels that fall into the first

and second outcome only, as occluded regions cannot tell us anything about the object’s

geometry. We employ a mixture of two Gaussians to model the expected error in the depth

sensor and the rare occurrence of outliers far from the expected value. We compute the

product of this model over all pixels expected to fall on the object. This model is common

in geometric inference, and has been used previously in robotic mapping, for example in

[TML+03].

Figure 7.3(b) shows pixels marked with the third outcome above: occluded. The ratio

of occluded pixels within the region considered by each partial-object appearance template

forms a visibility score v used for the appearance model, as will be described in the next

section.

7.2.3 Appearance Model

The likelihood of the image appearance given an object is evaluated through a version

of the data association framework described in Section 5.3.2. To specifically target oc-
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cluded instances, here we augment the usual learned model for the entire object with

a number of sub-parts. We scan the image captured at time, t with each partial object

model, where the type of part is indexed by p. This yields many hypothesized detections,

Dp(It) = {dpt
1 , ...,dpt

j , ...}, in each image, where j indexes a specific detection. As described

for the generic multiple viewpoint model, the 3D object, o, is projected into each image and

assigned to nearby detections using a data association function. Greedy Matching (Algo-

rithm 1) is carried out once for each partial model, p.

We have modified the association function to consider occlusion mask data. Only vis-

ible object portions are considered for association. As previously described, up to one

detection of each part-type is associated with each object, o, in each image. We express this

associated detection using function notation: A(o,WV Tt ,Dp(It)) = dpt . This detection will

contribute to the probabilistic model.

To express the likelihood of all associated partial detectors given an object, we employ

a mixture of visibility-weighted experts model similar to that proposed in [WWRS11]. We

project the 3D object, o, into the image using a projection matrix Pt that is derived from

registration information, W
V Tt , and the known camera calibration. Each associated detection

(expert) is weighted by the visibility of the corresponding object region. As with all of

our multiple viewpoint 3D object models, we also enforce soft geometric consistency by

penalizing error in alignment between the object and an associated detection. The full

likelihood is written symbolically as

p(It |o,Ct ,
W
V Tt) =

1
∑p vptδ (vpt > θ) ∑

p
vpt

δ (vpt > θ)Ψs(dpt)Ψg(Pt ·o,dpt). (7.4)

Recall that visibility, vpt , is derived from the sensed depth within the region explained by

the object (or object part) when the object and 3D data are rendered from the viewpoint of

the camera at time t. δ is an indicator function to completely discount contributions of parts

that are more occluded than a hand-chosen threshold, θ . We assume that when almost none

of the image evidence represents the object, there is no meaning to the detector’s score.

Ψs is a potential function related to the detector’s score. We have implemented Ψs here

with a linear mapping of detector score to the range [−1,1] based on scores on a set of

validation data. Platt Scaling, as in [NMC05], is an alternative that provides a meaningful

probabilistic interpretation. We previously attempted to remap our scores in this way, but it
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gave no benefit in our experimental results. Ψg measures the geometric agreement between

a projected object and its associated detection. This potential is implemented as a three-

dimensional Gaussian distribution on scale-normalized error in object center (both x and y

position) as well as error in scale in image space.

7.3 3D Object Inference
The previous section described a 3D object likelihood model to relate the presence and spa-

tial properties of an object to the observed data. However, for every test environment, we

must infer the objects that maximize this likelihood. As previously described in Section 5.5,

exact inference has a high computational cost and scales poorly as many images are avail-

able. Instead, we employ data-driven sampling of likely regions, followed by refinement of

each sample and non-maxima suppression. This allows only the most promising regions to

be considered and saves considerable computation. The remainder of this section describes

our inference procedure in detail.

Data-Driven Sampling
While it is expensive to search for the global maximum that simultaneously explains all

observed data, we can efficiently compute the local maxima relative to each view by con-

sidering the terms in the product of Equation (7.3) one at a time. First, we draw a detection

with probability proportional to the confidence score and constrain the 3D object center to

align with the center of the detector’s bounding box. This constrains the sampling-space

to the ray in 3D over all (infinite) positive depth values. We must also choose a depth and

a scale for each proposed 3D sample. We sample a depth from a distribution formed by

constructing a histogram over the sensed range values within the detector’s bounding box.

Scales are drawn from the prior on the object’s size. This one sample is saved for further

processing and the process begins again by selecting a new detection.

Position Refinement
After the sampling stage, a set of 3D regions is available, and it is possible to score each

region directly with Equation (7.3). However, unless a large number of samples is used,

we have observed that the results are quite poor both in terms of 3D localization accuracy

and in the likelihood score of each object. Due to the data-driven sampling being driven

only by the evidence in a single view, a wide variety of poor locations can be chosen.

Therefore, we refine each sample’s location and scale to locally maximize the likelihood
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of corresponding appearance data in all views. Given a fixed data association, we derive

the gradient of the geometry likelihood functions for all assigned detection evidence with

non-zero weights from occlusion reasoning. We update the object information iteratively

based on this gradient, until a local minimum is reached.

We found that refined object positions could also help to improve the initial data associ-

ation. Therefore, we implemented another level of iterative refinement based on coordinate

descent. First, the 6 degree-of-freedom (3D position and scale) object pose is optimized

given a fixed data association as we have described. Second, the data association is re-

computed for the new object location. The intuitive and observable effect of alternating

these steps is that, optimizing the hypothesized object’s pose using several images is likely

to position it near to the true 3D location, which may lead to correct association with previ-

ously unassigned detections in other views. Projection is non-linear and greedy data asso-

ciation is a discrete process which makes our optimization space discontinuous. Therefore,

we can make no guarantee on the convergence of the optimization, but we have found that

the procedure works well in our empirical evaluation.

Non-Maxima Suppression
As with many detectors, our 3D object inference procedure tends to find many slightly

shifted versions of each true object with high likelihood scores. We suppress detections

which are not local maxima based on their overlap in 3D. Note that our approach can toler-

ate very cluttered scenes where two objects occupy nearly the same region in image space.

As long as these objects have different depths, we will be able to maintain both hypotheses

(there is no overlap in 3D). This is in contrast to many detectors that apply image space

non-maxima suppression which performs poorly when two objects of the same category

are nearby in the image.

This completes the discussion of our occlusion-aware object inference method. Algo-

rithm 3 provides an overview of the procedure. The next section will continue by describing

a practical implementation of the method and present results.

7.4 Experimental Setup
We have implemented a complete 3D object detection system, instantiating each of the

model components described above in a robust fashion in order to evaluate their perfor-

mance in realistic, cluttered indoor scenes. We evaluate our approach both on the UBC
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Algorithm 3: Occlusion-aware 3D Object Inference Algorithm
input : Sensory data, It and Ct , from each of n robot positions

Registration information, W
V Tt , for each position

Whole and partial detections, Dp(It), in each image
output: A set of 3D objects, X
X ← /0;
/* sample and refine m objects */
for i← 1 to m do

Sample an object, Oi, from detection and depth ;
while not converged do

for t← 1 to n do
for p ∈ {full, left, right, top, bottom} do

Assign dpt
i to Pt ·Oi using GreedyMatching, Algorithm 1;

while not converged do
Oi← Oi−∇∑p ∑t Ψg(Pt ·Oi,d

pt
i );

Compute object likelihood with Equation (7.1);
insert Oi into X ;

return Non-Maxima-Suppression(X);

VRS test set as well as on several scenes in a real home captured with the Microsoft Kinect

sensor. The DPM recognizer is used to detect the bowls and mugs within these scenes

and our multiple viewpoint model uses registration information to fuse information across

viewpoints of each scene. This section will describe the practical details of the evaluation

including the learned visual recognizers used as input, the test data, and the structure-from-

motion algorithms employed.

7.4.1 Visual Detectors

We learn detectors for each of four half-sized templates: top, bottom, left, and right. Each

partial-object detector is trained independently, as this allows the hard negatives for each

template to be included, maximizing resulting detection performance. We employ the De-

formable Parts Model of Felzenszwalb et al. [FGMR10] both for appearance learning and

also for test-time detection in images. Both full object models and partial templates are

learned from the same training data, specifically the UBC VRS training images. This re-

quires modifying the positive annotations to include our four half-object partial models.
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Figure 7.4: Performance Evaluation for Whole Object and Part Detectors: Results for cate-
gories: (a) mug and (b) bowl.

Figure 7.4 shows the performance of our full template and partial object recognizers

over a set of validation images containing annotated examples of each category. The clear

trend is that the complete template achieves the best performance overall, which is intuitive

because it considers the largest image region and can therefore most strongly discrimi-

nate objects from background. We note that the performance of a partial detector does not

change at all if an instance is occluded in regions ignored by the template (i.e., a left detec-

tor is unaffected by occlusion on the right), while the full model is always affected. This

can be leveraged during 3D inference.

7.4.2 Evaluation Scenarios

We evaluate our method on two scenarios involving indoor clutter and occlusion. First, we

locate objects in the UBC VRS test set. We evaluate the performance of our method using

the recognition scenario that has been defined for our dataset and that utilizes robot simu-

lation software to approximate the visual experience of a robot moving through a variety

of scenes. The UBC VRS simulator’s view selection strategy was asked to choose sequen-

tial images, which best replicate the path traveled by the robot during data collection. We

have performed quantitative analysis of our approach on this task by performing precision

and recall analysis with the average precision statistic (details found in Section 2.6) for a

number of variants of our approach as well for the DPM method as a comparative baseline.

Since our approach localizes objects in 3D, we projected its object hypotheses into image

122



space and compared these against the same labeled bounding boxes that are used to evaluate

DPM.

Our second method for evaluation involves a small amount of novel data collected for

this chapter with the Microsoft Kinect sensor in a real home. Here, the sensor was hand-

held and we performed marker-less position registration, as will be described below. We

present our results from this portion of the data qualitatively, as insufficient annotations

have been collected so-far to achieve meaningful quantitative comparison. The goal is to

demonstrate our method’s strong performance on realistic scenarios.

7.4.3 Structure From Motion

Our experiments include two separate structure-from-motion techniques. The images in

the UBC VRS are registered using a target made of ARTag fiducial markers [Fia05]. For

a complete description of the registration process see Section 4.2.2. Our Microsoft Kinect

data contains unstructured, real home scenarios and no calibration target has been used.

Here, we have employed an off-the-shelf technique named “RGBDSLAM - 6DOF SLAM

for Kinect-style cameras”1. Like many structure-from-motion solutions for hand-held cam-

eras, Speeded-Up Robust Feature (SURF) [BTV] points are tracked between frames, and

a set of geometrically consistent inliers is found with Randomized Sampling and Consen-

sus (RANSAC) [FB81]. Long-range performance and loop-closure is achieved by refining

poses globally using the technique described by [GKS+10]. Registration is not sub-pixel

accurate in this scenario, which demonstrates robustness to errors in our geometry model.

7.5 Experimental Evaluation
This section presents results from the evaluation described above. We will first describe

the qualitative performance of our system on the hand-held Kinect data and we will then

discuss quantitative results on the UBC VRS test set.

7.5.1 Qualitative Results

Figure 7.5 shows a number of example results from our method. In many scenes, our

technique can leverage the reliable information available from visible parts of objects, and

confidently locate their position in 3D, even in clutter. However, our system returns false
1http://openslam.org/rgbdslam.html

123



Figure 7.5: Qualitative Parts-Model Results: Sample results of our 3D object detection
method, thresholded at 90% precision. The top-left image is from the Kinect sensor, the
remainder are robot-collected.

positives on objects whose visual appearance and structure are similar to the searched cat-

egory. The bottom-right image in Figure 7.5 shows a soap dispenser and the top of a bottle

which are both labeled “mug”. Additional geometric constraints may be able to filter these

objects as being in unlikely positions (not resting on table).

7.5.2 Comparison to Image Space Recognition

Figure 7.6(top) shows the results of our 3D object recognition approach, a variant without

partial detectors, and the purely image space DPM model [FGMR10]. In all cases, eval-

uation is on the test set of the UBC VRS dataset. For the 3D detection methods, object

volumes are projected to form bounding boxes for scoring. In some cases, our complete

model detects 40% more of the annotated objects, for the same miss rate, than the DPM de-

tector. The effect of partial detections is shown by the improvement of the complete model

over the variant using only full appearance templates. Further inspection reveals that partial

detections improve performance primarily on occluded objects.
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Figure 7.6: Result Comparison with State-of-the-art 2D Recognizer: (Top) The perfor-
mance of our method evaluated over 5 viewpoints vs. the state-of-the-art DPM model by
[FGMR10]. (Bottom) Full model performance vs. number of viewpoints. Columns: (a)
mugs, (b) bowls. The summary statistic is Average Precision.

7.5.3 Altering the Number of Viewpoints

Figure 7.6(bottom) shows the results of our method as the number of views considered is

increased from two to six. The method must generally observe four or more views of the

scene before it outperforms the image space detector, although all multi-view models per-

form better at high precision. Visual inspection shows that the issue is poor 3D location

of objects when only two or three views are available. We note that the baseline available

to our system in this case can be as small as five degrees, the spacing between consecutive

frames in some scenes of the UBC VRS data. When 3D locations are poorly estimated,

objects project to incorrect image space locations, degrading performance. We have run a

similar two-view experiment with a setting for the UBC VRS simulator’s view selection

criteria that yields maximally separated views of the scene, rather than nearby sequential
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views. Our method’s performance in this trial was 0.75 AP for mugs and 0.72 AP for

bowls, which improves upon the DPM score, and rivals the four-view approach run on con-

secutive frames. This result indicates that achieving a significant baseline is an important

consideration for a system designer, or for an active viewpoint planning strategy, as we have

previously described.

7.6 Chapter Summary
We have developed a method that relates occluded 3D objects to incoming image and ge-

ometry data from many views. Our approach performs explicit occlusion reasoning and

leverages learned partial-object appearance models. Results demonstrate the potential for

robust object detection in home scenarios, where intelligent systems will soon be deployed.

Our approach is integrated with a structure-from-motion system, and in combination the

techniques form a semantic mapping system suitable for object-centric tasks such as scene

description to disabled users or mobile manipulation.

Our motivation to select four half-object partial templates in this chapter was that it

provided a simple starting point for our analysis of the use of detailed information for the

3D object recognition task. We do not claim that these detector shapes are in any way

optimal, and the next chapter will continue our exploration by forming models with many

more parts, and by enforcing 3D continuity for those parts by deriving them from labeled

3D models of objects.
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Chapter 8

Detailed Object Parts for 3D Scene
Understanding

8.1 Introduction
This chapter describes a system to locate automobiles in images that are captured while

driving through a crowded parking lot. Strong performance on this task would enable ap-

plications such as anti-collision systems, however the visual task is challenging and has

required a number of extensions to our previous methods. Some portions of parking lots

exhibit even denser clutter than the kitchens we have previously considered. This has moti-

vated us to continue the study of parts modeling that was introduced in the previous chapter

in order to make best use of the, potentially small, portion of each vehicle that is visible

through the clutter. As is depicted in Figure 8.1, we consider a larger number of parts per

object, model those parts as first-class 3D entities to allow parts to remain consistent over

viewpoints and choose semantically meaningful parts such as the wheels and doors of the

automobiles. We utilize multiple (up to 4) image space recognizers, some of which are

targeted specifically at understanding consistent 3D parts across viewpoints, in place of the

half-object DPM models that were used in the previous chapter.

In parking lots, automobiles are arranged in lines, one behind the other. This dense

stacking makes separation of multiple nearby object hypotheses problematic, even in 3D.

In this chapter we consider a more principled method for reasoning about the dependence

between objects than in our previous methods. Specifically, we have extended our proba-
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Figure 8.1: 3D Parts Model Overview: A schematic overview of the components that make
up the scene understanding model described by this chapter.

bilistic inference approach with the ability to reason jointly about all of the objects – a task

known as scene understanding. In this framework, 3D and 2D overlap can be enforced by

considering cross-terms in the object likelihood during inference rather than leaving this

step until post-processing. The cost of joint modeling is a higher-dimensional state space.

We have utilized the Markov chain Monte Carlo (MCMC) [MU49] method to recover likely

configurations of objects within this space.

A primary goal of the work in this chapter is to show that modeling meaningful object

parts such as the wheels, doors and windows of automobiles improves the recognition of

objects within densely packed scenes with significant occlusion, such as parking lots. Our

results show some instances where occluded objects can be understood from only a single

image or a short sequence based on few visible parts. This demonstrates that the inference

method correctly relates object parts to the 3D world.
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8.1.1 Relation to Generic Multiple Viewpoint Object Model

The method discussed in this chapter relaxes several assumptions made in previous chapters

and represents the most complete instantiation of the generic multiple viewpoint 3D object

model that we will attempt within this thesis. Using the common terminology outlined in

Chapter 5, our model has the following properties:

1. State space: a fixed number of objects with category label, location, scale and orien-

tation. Objects have 3D parts, but these are fixed to the object’s frame, thus they do

not increase the effective state space.

2. Evidence: images and point clouds collected by a car driving through a crowded city.

3. Object Prior: category-specific object scale, mutual exclusion constraints between

objects in 3D and ground plane layout.

4. Appearance Likelihood: a relation between 3D objects and four types of image space

appearance models, some including object pose estimates and detailed part informa-

tion. Impact weighted based on occlusion.

5. Geometry Likelihood: an occlusion-aware scan-matching term that compares the ob-

ject’s surface to sensed ranges.

6. Learning Method: individual learning procedures for a variety of visual detector

types.

7. Inference Method: MCMC in the space of a fixed number of 3D objects.

8.1.2 Statement of Collaboration

The method described in this chapter has been created recently by the author of this the-

sis, with supervision and assistance from Michael Stark, from the Stanford University, and

Bernt Schiele, from the Max-Planck Institute. The model was inspired by a joint insight of

all collaborators: that the part-aware recognizer developed recently by Dr. Stark, [SGS10]

had a strong potential to be used in 3D multiple viewpoint object modeling. While the

project was a collaboration with Dr. Stark, who was also directly contributing new compo-

nents, the author of this thesis had primary responsibility for: design of the occlusion-aware
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3D parts models, adaptation of the basic inference tools to multiple viewpoint 3D recog-

nition, implementation of the mixture-of-experts probability model, implementation of the

data association method, interface with the Ford Campus dataset [PME11], executing ex-

periments and analyzing performance of the technique. We made use of several software

tools and libraries that were developed at the Max-Planck Institute, Computer Vision and

Multi-modal Computing group by Dr. Stark, Christian Wojek, and Mykhaylo Andriluka.

The material presented in this chapter has not yet been published in a refereed venue in

this format, although several tools developed during this work have been used to support

[SKP+12]. The material described in this chapter will be submitted in the near future.

8.1.3 Outline

The remainder of this chapter will present the details of our approach and discuss its results.

We will begin by describing how the generic probabilistic object model from Equation

(5.11) is modified to allow reasoning about objects with 3D parts and multiple types of

detection evidence. We will then describe our use of an MCMC-based inference technique

to recognize objects using the model. Finally, we will describe experiments that validate

our approach on data collected by a vehicle moving through real parking lots and street

scenes in a busy city.

8.2 A Scene Model with Detailed Object Parts
Our goal is to recover the hidden state describing the set of objects present in a scene, X =

{O1, ...,Oi, ...}. Each object is described by a category label, Oc
i , and an oriented bounding

volume spatial representation. That includes centre position, Ocent
i =

[
Ox

i ,O
y
i ,O

z
i

]T , scale

(composed of length, width and height), OS
i =
[
Ol

i,O
w
i ,O

h
i
]T and a 1D orientation composed

only of azimuth, Oori
i =

[
Oyaw

i

]T . We neglect full 3D orientation estimation since cars nearly

always rest flat on the ground and are rarely on their sides or vertical.

In addition, we model spatial information for a set of thirteen 3D parts that make up

each object. Each part corresponds to a semantically meaningful sub-component of an au-

tomobile (e.g., doors, windows, bumpers, wheels). The top-left of Figure 8.1 illustrates

our part layout. Each of these parts has unique location and scale, measured relative to the

entire object’s shape. We do not allow each part location to move independently. Rather,

we fix the parts spatially within the object’s outline based on the mean values for the object
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category automobile, which we computed using a number of accurate Computer Aided De-

sign (CAD) descriptions labeled with part information. Fixing the part information makes

our model less adaptable to variation between object instances, but it also greatly reduces

the size of the state space. 3D part information still has great utility in our model. Rather

than the image space partial templates that were describe previously in Chapter 7, defining

object parts in 3D allows projection into each of the multiple available images. In this way,

part information can provide valuable constraints on the likely position of the entire 3D

object, as we will discuss below.

The evidence observed by the platform’s sensors over a trajectory, Zt , is a sequence

of images, It , and point clouds, Ct , similar to those that we have described previously. In

the autonomous urban driving setting that we consider here, high data-rate laser scanners

such as the Velodyne HDL [Vel07] are commonly used. We assume that the sensors are

calibrated with respect to the vehicle’s frame, which is done highly accurately for the ex-

perimental data that we will consider later.

The relationship between observations and hidden states is expressed using Equation

(5.11), which we repeat here for clarity:

p(X|E) ≈ p(X)︸ ︷︷ ︸
ob ject prior

∏
t

p(It |Ct ,
W
V Tt ,X)︸ ︷︷ ︸

appearance

p(Ct |WV Tt ,X)︸ ︷︷ ︸
geometry

p(WV Tt |X)︸ ︷︷ ︸
registration

. (8.1)

Each term is described below, except the registration component, which we omit as

we have done throughout this thesis. Autonomous driving vehicles typically posses so-

phisticated inertial measurement units and we have used data of this type to perform our

experiments. A major difference between Equation (8.1) and our previous formulations is

that it expresses a distribution over a set of objects, rather than a single object, o, as we had

done previously. This has implications for each term in our likelihood, as they can account

for dependences between objects and for our inference approach, since it must reason about

a state space with a larger number of dimensions. We will continue by describing each

component of the model.

131



8.3 Scene Prior
For the first time in this thesis, we attempt to express the constraints that exist across an

entire set of objects as an informative prior within the scene inference process. While this

prior could be learned from training data, no appropriately labeled training information was

available for the parking lot scenes that we study. Recall that our method would need all of

the 3D automobiles in a scene to be labeled accurately in a consistent 3D coordinate frame.

Our prior, p(X), is formed as the product of three intuitive probabilistic constraints. Our

first constraint encodes the domain knowledge that all cars rest upon the ground, which we

assume to be roughly planar in the area around our data collection vehicle. Second, we

model a physical mutual exclusion constraint, enforcing that no two cars may occupy the

same volume in 3D. Finally, we model the expected length, width and height of automo-

biles. We will continue by describing how each of these intuitive constraints is formulated

in our probabilistic model.

8.3.1 Ground Plane Constraint

An intelligent automobile is typically aware of the location and orientation of the ground

beneath its wheels (e.g., through system calibration). Further, we assume the environment

surrounding the vehicle is nearly planar, so that extending the plane local to the data col-

lection vehicle is a good approximation for the ground throughout the scene. As depicted

by Figure 8.2, we compute the error between the height of the bottom of each inferred ve-

hicle and the estimated surface of the ground. The liklelihood of the object’s position is

computed as a zero-mean Gaussian on this error. Objects perfectly resting on the ground

plane have zero distance and are most likely. Floating or subterranean objects are penalized

equally. Each object contributes a single ground-plane term to the overall scene prior.

8.3.2 3D Object Overlap Constraint

Prominent vehicles with strong appearance signatures can lead to multiple strong image

space detections. Without regularization, our model can explain this data with multiple

3D objects in nearly the same position, one for each detection. In order to prevent this,

we compute 3D overlap between all pairs of hypothesized objects. A one-minus sigmoid

penalty function, as shown in Figure 8.2(b), for each pair contributes a likelihood of near 1

for objects without overlap and near 0 for completely overlapping objects. The scene prior
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(a) (b)

Figure 8.2: Geometric Constraint Illustrations: (a) The ground plane object prior is illus-
trated. The blue car represents our data collection vehicle, which rests on a plane defined
perpendicular to its up direction. Hypothesized automobiles, Oi, are most likely when they
rest on this plane with ∆ground = 0. (b) The sigmoid likelihood function used to penalize
overlapping objects.

contains n(n− 1)/2 pairwise overlap terms when reasoning about a scene that contains n

objects.

8.3.3 3D Size Prior

The likelihood of the length, width, and height of each hypothesized automobile is com-

puted based on a distribution derived from a large set of CAD data for automobiles. Our 3D

size prior is a product of three Gaussian distributions, one for each size dimension. Each

object contributes one such term to the overall scene prior.

8.4 Appearance Likelihood
We extend the tracking-by-detection model, which relates 3D objects in the world to the

visual appearance of images through the proxy of detections from an object recognizer. In

order to reason about object pose and parts layout, our model includes up to four image

space object recognizers including: 1) the DPM [FGMR10] approach that we have used

in previous chapters; 2) a viewpoint-aware extension of DPM that we will call DPM-bank,

inspired by the work of [BS11] who used such recognizers previously on the experimen-

tal dataset we consider; 3) the object-part constellation model of [SGS10] (see Chapter 2

for a detailed description); and finally 4) the output of each individual part detector from
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[SGS10], treated as an independent recognizer (i.e., discarding dependence between parts).

Each of the four recognizer-types produces detection evidence for every image, but each

contains a unique set of additional spatial information. All recognizers but the basic DPM

model predict the pose of the object in image space. Part information is present in the results

of both the constellations and independent part detectors. We have extended both the data

association and mixture-of-experts likelihood portions of our generic multiple viewpoint

3D object model in order to accommodate these properties.

As mentioned, we extend the visibility-weighed mixture-of-experts likelihood. This

model explains the appearance of an image, It , taken at time, t, based on the hypothesized

3D objects. Each object can be represented in image space by projection through the matrix

Pt , which combines registration information, W
V Tt , and the known camera calibration (not

expressed symbolically here). Instead of raw image pixels, we reason about detections from

several detector types, p. Each object, Oi, is associated with up to one detection of each

type in each image. We express each associated detection as dpt
i ∈Dp(It), and all detections

that are associated to a particular object in and image as A(Oi,D∗(It),WV Tt) = {d1t
i , ...,dmt

i }.
While expanding our appearance likelihood, we assume data association has already been

determined. The next section will give details on the association procedure and we will

discuss how association and likelihood computation are interleaved during discussion of

our inference method. Here we combine terms contributing to the visibility weight of each

object part and express them as wpt
i . This term is the product of vpt

i , the ratio of visible pixels

of each object part as derived from the sensed point cloud Ct , and an indicator function that

allows us to ignore heavily occluded parts, δ (vpt
i > θ). The overall probabilistic relation is

expressed as

p(It |O,Ct ,
W
V Tt) ≈ ∏

i
p(d1t

i , ...,dmt
i |Oi,Ct ,

W
V Tt) (8.2)

= ∏
i

1

∑p wpt
i

∑
p

wpt
i Ψsp(d

pt
i )Ψgp(Pt ·Oi,d

pt
i ). (8.3)

Equation (8.2) expresses the approximation that the image space detections are inde-

pendent of one another and conditionally independent of all unassigned objects, given Oi,

the one to which they are assigned. While we know that nearby objects have an impact on

each other’s appearance (e.g., they may mutually occlude or cast shadows), this reasoning is
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neglected at this level, to maintain a tractable liklelihood function. Note that other portions

of our model (i.e., the object prior), do describe interactions between different objects.

Equation (8.3) describes the mixture-of-experts model that combines information from

all detector types to produce a score for each object. Recall that Ψsp is a potential function

over object scores and Ψgp is a potential on the geometric agreement in image space be-

tween the detection and the projected object. δ (vpt) is used to completely discount objects

and parts near to full occlusion. Ψgp takes the same form as we have described previously.

That is, we compute the scale-normalized center agreement as well as the agreement in

scale and produce a likelihood with a zero-mean Gaussians on each term. The object that

best describes a detection is the one which precisely agrees with its bounding box when

projected into the image. Deviations are penalized with lower likelihood scores. When

an object cannot be associated to a particular detector type, the corresponding terms in the

mixture are replaced by a penalty related to the likelihood of a recognizer not responding

at all when an object is present. This data-driven quantity is estimated during validation of

the model and is different for each evidence type.

In Equation (7.4), we previously used a similar formulation to reason over whole-object

detections and four half-object types, so p took five unique values. Here, we have simply

expanded the set of detector-types. In our complete model, p takes up to sixteen values:

one each for the three whole-object detectors and one each for the thirteen part detectors.

A notable difference in Equation 8.3 from the previous formulation is that both potential

functions, Ψ, are indexed by the detector type, p. Unlike the previous chapter, where we

applied the same model for each object part, the four distinct types of recognizer used in

this chapter have a wide range of response characteristics. It was important to model this

property within our formulation.

We will continue by describing the procedural data association method that is required

to determine which detection evidence should be used to compute the likelihood for each

object.

8.4.1 Data Association Method

The tracking-by-detection method requires detections from image space object recogniz-

ers of various types to be related to projected 3D objects with the association function,

A(Oi,Dp(It),WV Tt)t = dpt
i . In this chapter, we attempt to relate objects to the outputs of
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several object recognizers. Each object possesses both an orientation and parts and these

elements must be considered in the data association function. As before, we assume one-to-

one matching between objects and detections from each recognizer (i.e., that no detection

is explained by more than one object and that no object explains more than one detection of

each type). This one-to-one constraint is also applied between 3D object parts and image

space part detections.

We consider orientation when associating to recognizers that predict viewpoint. This

means, for example, that if the 3D object is oriented such that the robot should see a side-

view in image It , our data association procedure will not associate detections that are labeled

as front or rear views. The registration information in our system allows the world-space

object orientation to be related to each view as a viewing azimuth in the same coordinate

system as the recognizers. Knowledge of the discretization of each individual recognizer

allows the formation of equally spaced bins in orientation space around the predicted view-

point. We only associate detections that agree with our hypothesis, within a threshold on

the number of these angle bins.

Association of image space part detections to the parts of our 3D object hypotheses

is performed in a similar fashion. One difference in implementation is that the part infor-

mation is expressed relative to the entire object’s location and scale, rather than directly

in the global frame. So, the projection of parts to form a bounding box in each image is

a two-stage process: 1) we map a part to the global frame by composing the rigid-body

transformation of the part with the entire object’s transformation; and 2) we project that

global-frame information into the image and form a bounding box. Each part has a specific

label (e.g., right-front wheel), and matching is only done between image space detections

and 3D parts of the same label. Note that each part also possesses an orientation, and that

our part detector estimates orientation. We apply the same orientation constraint to parts as

to whole objects: the detection and hypothesis must agree within a threshold in order to be

associated.

The object recognizers that we consider often produce many near-duplicate responses

in image space for each true 3D object (see [HCD12] for a recent empirical study of this

effect). We have found that when observing multiple mutually-occluding objects, such as

a line of parked cars, it is important for the scene understanding system to choose only

one out of the potentially many nested detections around each object. Therefore, when

assigning a detection and removing it from further consideration, we disallow subsequent
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assignment of all other detections that completely cover or are completely covered by the

assigned detection. This ensures that each detection in the set of finally associated detec-

tions contributes at least some small number of new pixels to the portion of the image that

is explained.

We have implemented a data association procedure that satisfies all of the above con-

straints and assumptions. A modified version of the Greedy Matching (Algorithm 1) is

executed once per whole-object detector type and once for each part type. The result of

the modified matching process is a mapping between objects and associated detections.

This mapping is used to compute a mixture-of-experts appearance likelihood, as we have

described.

8.5 Geometry Likelihood
The geometry likelihood term captures the agreement between the point cloud information

collected by the vehicle’s laser range finder and the hypothesized surfaces of 3D objects.

Each proposed object suggests a depth along each ray within its extents. We efficiently

compute the depth values at each 3D corner and linearly interpolate over the object’s faces

as rarely as possible (i.e., only in locations where a sensed distance is available). This effi-

cient approximation makes a small error due to the interpolation occurring in (x,y,depth)

space which is non-linear. However, since the objects are typically far from the camera and

the error in depth sensing is fairly large, the magnitude of the projective effect is negligible.

The point cloud measured by the laser range finder suggests depths for a sparse set of

pixels. The laser has a much coarser sampling resolution than our images and this resolution

varies with distance. So, the number of sensed depth values per object can range between

ten and several hundred. In a similar fashion to the previous chapter, each depth value

is considered as one of three discrete outcomes: 1) near, 2) unoccupied or conflicting,

3) occluded. A zero-mean Gaussian is applied to the depth differences (i.e., difference

between the laser-sensed depth and the hypothesized object surface), only for un-occluded

regions. As before, where the object is occluded, the depth errors are not counted within the

geometry score. The final value is normalized for the number of visible points observed. We

have previously attempted an alternative solution based on a median filter over sub-regions,

as this is more robust to non-uniform sampling. In practice that technique did not improve

performance. The geometry likelihood term in our overall probability model, p(Ct |WV Tt ,X)
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is the product of the likelihoods for each object, which again makes the approximation that

the local point cloud evidence related to one object is conditionally independent of all other

objects, for reasons of tractability.

We note that although we utilize a relatively detailed visual appearance model in this

chapter, capturing the layout and appearance of 13 object parts, our geometric object model

is quite simplistic. In part, this choice has been made following our guiding motivations to

primarily pursue visual models (see Chapter 1). However, when a point cloud is available,

we do aim to make best use of this geometric information. Our simple 3D bounding volume

model of automobile geometry could be replaced by a more detailed geometric model, such

as a triangle mesh that captures the layout of wheels, doors and windows. It is unlikely that

a single model would generalize over the variety of shapes present across the automobile

category, including cars, trucks and vans among others. A potential approach would be to

fit an instance-specific shape template, such as the best-fitting CAD model from a learned

database of samples, to each hypothesized object. This would potentially improve the ori-

entation estimation of our approach at the cost of introducing another level of complexity

and is left for future study.

8.6 MCMC-based Scene Inference
Our goal is to locate the set of cars that are likely to occur in each considered parking lot

scene. This requires maximizing the likelihood that we expressed in the previous section,

but direct optimization cannot be achieved due to the numerous dimensions and the variety

of information sources that are considered. It is not even clear how to sample from our

target probability, p(X|E), directly. However, we can compute the likelihood of a sampled

set of objects, p(X (i)|E), with minimal effort. This allows us to utilize Markov chain Monte

Carlo [MU49] sampling along with a simple auxiliary proposal function to produce a set of

samples {X (i)} that approximates our desired distribution. This can be used to estimate the

maximum.

We construct our Markov chain using the Metropolis Hastings [MRR+53, Has70] algo-

rithm. This involves iteratively drawing samples from a proposal function that is based on

the previous state, q(X (i+1)|X (i)). The acceptance ratio for each sample is
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α(X (i),X (i+1)) = min (1,
p(X (i+1))q(X (i+1)|X (i))

p(X (i))q(X (i)|X (i+1))
). (8.4)

With probability α , the new sample is accepted and it is added to the chain. Otherwise,

the sample is rejected, and X (i) must be used to draw a new proposal. In general, MCMC

methods converge to the target distribution if the transition between states is aperiodic and

irreducible [AdFDJ03]. For Metropolis-Hastings, these conditions are satisfied as long as

the support of q includes the support of p [Tie94]. The chain is also typically biased by its

starting state and so we must discard some number of initial samples in order to achieve a

fair sampling.

We currently describe fixed-dimensional sampling, which means the number of objects

must be set beforehand, or that numerous instances of inference are needed, one for each

possible number of objects. See the discussion of future work for description of a method

that simultaneously estimates the number of objects present.

The quality of the MCMC estimate and the number of samples required are highly de-

pendent upon the choice of a proposal function and proposals that approximate the target

distribution well through use of domain knowledge can often be more efficient than naive

samplers. We alternate several proposals that leverage our 3D understanding of the recogni-

tion process and our detection evidence. As described by [AdFDJ03], such cycle proposals

cause the chain to converge to p as long as each component individually meets the con-

vergence criterion. The next section describes our data-driven mixture proposal. We will

then describe how the results of the Markov chain are used to produce final estimates of the

objects in a scene.

8.6.1 Bootstrapping

Our state space has many continuous dimensions but our likelihood is only meaningful in

the small neighborhoods where objects are sufficiently near to detection evidence for some

data association to occur. In sampling terminology, our likelihood is highly peaked. So,

careful selection of starting states for the chain is important to achieve meaningful results –

a process known as bootstrapping. We initiate a fixed number of objects in 3D by projecting

rays through 2D detection evidence (see Figure 8.3). The bootstrapping procedure iterates

the following steps:
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Figure 8.3: Sampling-along-ray Illustration: After selecting a 2D detection region, samples
are proposed based on depth values drawn from a distribution capturing the point cloud data
and/or the expected object’s scale.

• Select a view uniformly at random.

• Select a detection within the view randomly, weighted by detection score.

• Cast a ray through the detection (deterministic vector math).

• Select a depth value randomly, based on a Gaussian distribution formed by the depth

values within the bounding box and/or the expected object’s scale.

• Add an object to the state space with initial centre and scale as determined by the

constructed ray and sampled depth (deterministic vector math).

• Select an orientation for the object uniformly at random.

A fixed number of objects are initialized in this way, and the result is the first sample

from the chain, X (1). Our procedure continues by computing the likelihood using Equation

(8.1). This includes computing data-association, evaluating the object overlap priors, and

performing depth interpolation, among other tasks. We continue by describing the diffusion

and re-sampling proposals that allow the chain to explore new states.

8.6.2 Diffusion Moves

During the normal operation of the chain (i.e., after it is initialized), new states are consid-

ered primarily by altering one of the estimated quantities by a small amount. This process,
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known as diffusion, is implemented within our system by iterating the following steps:

• Select an existing object Oi uniformly at random.

• Select a dimension uniformly at random from centre, scale and orientation.

• Select a new value for that dimension randomly, based on a Gaussian distribution

centered on the current value.

• Re-associate all objects to the detection evidence to account for inter-object interac-

tions which may have shifted due to the changed values (deterministic procedure).

8.6.3 Re-sampling Moves

In principle, only diffusion moves are required to sample the entire space of scenes within

our model. However, we have observed that, in practice, a chain based solely on this pro-

posal requires many samples to move away from the starting position. To address this

situation, we have added a re-sampling move that makes much larger steps in the continu-

ous object state space. We select one of the existing objects for removal and randomly draw

an object to replace it based on projection through the detection evidence. This procedure

allows large moves to new regions. The details involve:

• Iterating over existing objects. At each re-sample step removing the next object in

line and freeing its associated evidence.

• Performing the same steps described for bootstrapping in Section 8.6.1 to instantiate

a single new 3D object from the free evidence.

This procedure is equivalent to a paired delete and add move. It keeps dimensionality

constant, but moves a potentially large distance through the state space by selecting a new

seed from the set of 2D detection evidence.

Our chain samples the space by alternating the diffusion and re-sampling moves. Many

iterations of diffusion are performed in a row and we rarely re-sample. At each step, we

compute p, q and the Metropolis Hastings acceptance ratio to decide if the new sample

should be accepted or rejected. After many iterations, our chain will have explored the state

space and its samples will approximate p(X|E). We will conclude the description of our

inference method by describing several methods for deriving an estimate of the objects in

the scene from a set of MCMC samples.
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8.6.4 Producing an Object Configuration

Our overall goal is to infer the most likely set of objects in an environment. This could

be achieved by taking the MCMC sample with the highest likelihood score. However, the

evaluation that we will conduct is based on precision-recall computation that requires con-

fidence scores for every individual object. We must choose how to assign these confidence

values. One option is to assign the likelihood of the entire scene sample to each individual

object. Some other external re-scoring approach may also be considered. For example,

a state-of-the-art approach in 3D scene understanding for pedestrians within street scenes

[WWRS11] describes a procedure for transferring the confidence estimates from MCMC

back to original bounding boxes from the image space recognizer, as this removed any

localization errors introduced by the projection process.

We have attempted several variants both for the technique used to extract objects and

also for the method used to score the resulting objects. We have found that, in practice, using

p(X|E) to score all objects equally does not provide strong performance on our evaluation

metrics. The localization performance of the 3D objects for that method is strong, but

when incorrect objects are given the same score as correct objects, the evaluation procedure

discounts the positive performance. Our results are best when we utilize the 3D information

from the MCMC sampling, but assign each object an individual score that is derived only

from terms in the likelihood specifically produced by the object itself. That is, we do not

include cross-terms from the prior. Putting this procedure in context, it means that the

scene understanding portion of our technique is useful to ensure that we estimate correct

object locations and to remove completely incorrect objects. However, since the evaluation

is tailored to object recognition, the optimal object scoring is one that focuses only on

evidence local to a single object.

We have now described a scene likelihood formulation that relates many objects in a

scene to many types of visual and 3D evidence. The MCMC sampling technique allows us

to locate sets of objects that are likely given this model. In combination, these components

form a complete object recognition approach. We will now continue by describing our

evaluation scenario and the results of our method.

This concludes the discussion of our inference procedure for the detailed-parts model.

Algorithm 4 provides an overview of the approach, linking the individual components that

we have described above. The next section will discuss the evaluation of our approach on
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Algorithm 4: Detailed Parts Inference Algorithm
input : Sensory data, It and Ct , from each of n robot positions

Registration information, W
V Tt , for each position

Detections, Dp(It), from each detector type in each image
output: A set of 3D objects, X
/* sample a random first scene (Section 8.6.1) */

X (0)← Bootstrap(Dp(It),Ct ,
W
V Tt);

i← 0;
/* draw n samples from Markov Chain */
while i < n do

/* propose with diffusion, Section (8.6.2) */
/* or re-sampling, Section (8.6.3) */

X (i+1)← dataDrivenProposal(X (i));
Compute p(X (i+1)) using GreedyMatching (Algorithm 1) and Equation (8.1);
if X (i+1) satisfies Metropolis-Hastings criterion, Equation (8.4) then

/* add X (i+1) to chain, increment i */
i← i+1;

else
/* reject X (i+1), do not increment i */

/* choose sample maximizing Equation (8.1) */

i∗← argmaxi(p(X (i)|E));
/* produce final answer, Section 8.6.4 */

return finalize(X (i∗));

realistic urban driving data.

8.7 Experimental Setup
We have evaluated our scene understanding approach on a sub-set of the the Ford Cam-

pus Vision and Lidar dataset [PME11]. This dataset was collected by mounting a sensor

suite on-board an automobile traveling through a busy urban setting in Dearborn, Michi-

gan. Images were collected with an omni-directional camera. They have been rectified to

remove distortions from the spherical lens, and the camera has been accurately calibrated.

A Velodyne HDL [Vel07] captured detailed point clouds at each location. Registration in-

formation was obtained using a high quality inertial measurement unit (IMU), which yields
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registration between images that is accurate to the pixel level for short trajectory sequences.

Overall, there are roughly fifty thousand rectified images (each spherical omni-directional

frame is split into 5 square sub-images) and ten thousand laser scans contained in the Ford

Campus data.

The data collection vehicle’s trajectory covers several kilometers. GPS information

allows this trajectory to be defined roughly in a geo-referenced coordinate system, but for

our purposes a world coordinate frame is defined to be co-incident with the vehicles base

frame at the start of the trajectory. Accurate IMU information allows all sensor positions to

be referenced back to this world frame. We also define all of the 3D information that we

model and infer based on this frame.

The subject matter captured in the Ford Campus data includes numerous parking lots

and densely occupied street-parking regions as well as long stretches of travel on open road

where cars occur less frequently. This entire trajectory is far too large to be processed

as a single entity, in particular since any single car is only visible for several neighboring

frames. The authors of the Semantic Structure from Motion (SSFM) technique, Bao et

al. [BS11], who previously studied the problem of recognizing cars in the Ford Campus

data, have selected several of the most interesting sub-sequences of data, which capture

the most crowded parking scenes. They have annotated the automobiles present in these

sub-sequences and defined a protocol for testing automated perception results against these

annotations. We refer to this as the Test Pairs evaluation protocol and will continue by

describing the visual task that they have outlined in the following section.

8.7.1 Test Pairs Evaluation of Bao et al.

The authors of [BS11] have selected nine scenes. Each scene is defined to be the environ-

ment visible from a sequence of nine sequential vehicle positions. The timing of image

capture in the Ford Campus data is roughly fifteen frames per second so each scene cor-

responds to roughly 0.6 s. Although the vehicle’s speed is not constant, the maximum

baseline between camera positions for the same scene is on the order of 3 m. Four scenes

are designated for training and five are provided for testing. All of the results we describe

below correspond to data only from the test scenes. From the test scenes, 354 image pairs

have been selected via quasi-random sampling from all scene images, with the constraint

that there must be a large overlap between the two images within a pair (satisfied for two
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views from the same camera at nearby times or views from neighboring cameras at the

same time). This pair list, along with the provided 2D annotations, defines the evaluation

protocol that the authors of [BS11] suggest. The 3D scene inference algorithm is meant to

consider each pair independently, compare its hypotheses with the annotations and report

results. That is, even though 2 unique pairs are drawn from the same scene, information

should not be re-used but instead the process should restart from scratch for each pair. To

conform with the standards of the research community, we have executed our tests exactly

in this fashion.

Figures 8.4 and 8.5 provide a sampling of the images that define the Test Pairs. Not

all images are shown from each scene due to space constraints. Note that many cars are

occluded in each scene. Also, the scale of automobiles in the images is typically quite

small. Overall, the visual task of recognizing cars in these test images is difficult relative

to other benchmark tasks, such as recognition in the UBC VRS data, the PASCAL VOC

challenge and other standard contests.

We have obtained the publicly available object annotations created by [BS11]. These

include 2D bounding boxes for the visible cars in each image. We have augmented the au-

thor’s evaluations by annotating many of the smaller and more highly occluded cars which

were omitted from their data, as well as by correcting some of the existing annotations

to make them pixel-tight to the object content. Additionally, we have used the annota-

tion software suite developed for the UBC VRS dataset (see Section 4.2.3) to label each

2D annotation with occlusion information and also to create 3D object annotations in the

coordinate frame of each scene.

8.7.2 Detector Models and Training

The four types of image space object recognizers were trained in an appropriate fashion for

recognizing cars within the Ford Campus data. All of the visual appearance models that we

consider are data-driven and must be presented with a number of labeled examples during

their training phase. The DPM appearance model was learned using the car training set of

the PASCAL VOC 2009 contest data that is publicly accessible. Note that this is a standard

data source, and the DPM model is a top performing method, as we have previously men-

tioned. This makes the DPM input a notable base-line for comparison of performance on

the 2D object localization task.
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Figure 8.4: SSFM Dataset Training Examples: Camera views 1, 2 and 3 from left to right
and scenes 5, 6, 7, and 8 from top to bottom.

The viewpoint-aware DPM-bank refers to a model where numerous different DPM

models are trained, each only based on positive examples from a specific viewpoint. The

so-called bank of detectors are all run on each image, and the highest scoring viewpoint

model at each location is returned. Training DPM-bank requires both bounding box anno-

tations as well as viewpoint labels. This information is provided by the Multi-View Object

Categories database of Savarese et al. [SFF07], which is used for our experiments in Chap-

ter 6. The objects in this dataset are given one of eight different viewpoint labels. Hence,

the DPM-bank provides viewpoint estimates at a resolution of 45◦.
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Figure 8.5: SSFM Test Examples: Camera views 1, 2 and 3 from left to right and scenes 1,
2, 3, 4, and 9 from top to bottom.
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Viewpoint-aware part-constellations based on [SGS10] have been trained from CAD

data with part labels. As part of the training process, the inherently 3D CAD information is

rendered into one of 36 horizontal orientations as well as a number of different elevations.

The constellation model learns the appearance of the entire object, as well as that of each

of its parts, in each of these viewpoints. Note that because the labeled parts are rendered

accurately as part of the training process, the learned part templates have highly constrained

physical meaning. That is, they represent a consistent 3D part of the object. The output of

the viewpoint-aware part-constellation is a bounding box with detection confidence and

viewpoint prediction at a resolution of 10◦ and a collection of 13 part hypotheses nested

inside the full object detection. For the constellation detector, each part shares the viewpoint

prediction of the whole detection, however the part locations vary based on image content.

Single part detectors are trained in a similar fashion to that we have just described for

the constellation models. CAD data is rendered into a number of viewpoints to form syn-

thetic images with labeled object parts. The difference from the previous approach is that,

instead of capturing the spatial distribution of the part within the object region, the job of the

constellation, the single part detectors treat each part independently. Viewpoint information

is still available. So, the response of each individual part detection is a bounding box for one

single part with a viewpoint prediction accurate to 10◦. One can imagine that the responses

of single parts often closely agree with the responses of the constellation model. This is

particularly true for objects that are completely visible and large, but noticeable differences

exist both for objects that at a small scale within images and also for occluded objects. For

small objects, the entire constellation is much more likely to respond, because it is able to

pool visual information from all available pixels, while each individual part may provide

too little information for the independent detector to be confident. However, for occluded

objects, the entire constellation faces a large amount of negative evidence, while the sin-

gle part detectors for the visible portions of the car (e.g., the one visible wheel), may still

respond strongly.

8.8 Experimental Results
We have executed our 3D scene understanding approach on the Test Pairs evaluation pro-

tocol. This section will analyze its results qualitatively, by providing sample images, and

quantitatively in both 2D and 3D.
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8.8.1 Qualitative Performance

Figure 8.6 demonstrates several typical results obtained by our scene understanding method

on the Ford Campus data. Our method is typically able to locate and label a number of

the foreground automobiles reliably. The results for smaller background objects are less

reliable, but there are many instances where small and occluded objects are still located

correctly by the method. The 3D localization accuracy can be judged in the figure by

comparing the blue hypothesized 3D volumes to the green annotated ground truth, as well

as to the point cloud displayed in the background.

Overall, it is visually clear that our system has a basic ability to make reasonable guesses

about object locations, but that there are numerous errors. Our method is often able to locate

a reasonable object centroid while the orientation has large error (e.g., Figure 8.6 second,

third and fourth rows). We have examined several such cases and found that these objects

are primarily explaining detections from the DPM recognizer that has no viewpoint infor-

mation. In these cases our method can only obtain viewpoint cues from its weak geometric

model. Our viewpoint-aware recognizers all achieve less recall than the basic DPM ap-

proach, which leaves our method with impoverished pose information for some objects.

An exception to this explanation is the nearest car in the third row. The car is large and

prominent and although our method correctly recovers the 3D position and associates to

detections from all four input-types, the hypothesized 3D orientation is far from correct.

In this case, a single uncommonly confident DPM-bank result with the incorrect viewpoint

is the cause for the error. A larger quantity of viewpoint-annotated training data may be

required to remove situations of this type.

Other failure-modes of our approach include incorrectly hypothesizing multiple nearby

3D objects for a single true car position, as seen in the fourth row of Figure 8.6. Although

our object prior and data association method both have components to discourage this type

of explanation, in some cases multiple detections in the image space detection evidence

strongly support such an object layout and our method is unable to recover. Finally, the

third row of Figure 8.6 provides an example of what is perhaps the most universal failure

in our approach – missing recall on automobiles that are far from the camera. These au-

tomobiles typically have lower scoring image space detections. At present, our detection

score potential, Ψsp, does not account for the fact that smaller objects are likely to have

lower scores, although this is certainly a trend that we could learn from the validation data.
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(a) (b) (c)

Figure 8.6: Qualitative Results for 3D Parts Model: In each scene, the results of our infer-
ence are thresholded to 80% precision. One image from the input pair is shown in (a). In
(b), inferred objects are projected into the image and overlaid in blue. The 3D scene com-
ponents, including the point cloud, inferred objects (blue) and ground truth objects (green),
are rendered from a top-down view in (c).
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We plan to pursue this avenue in future work. We will continue by analyzing the results

quantitatively.

8.8.2 2D Detection Evaluation

Next we compare the effectiveness of our method at detecting objects in 2D by projecting

our scored 3D objects into each image and conducting PR evaluation (see Section 2.6 for

details). Our goals were to compare the performance of the 3D scene understanding ap-

proach to a standard baseline to validate its competitiveness to the state-of-the-art. Figure

8.7 provides comparison between our method and the viewpoint-agnostic DPM baseline,

which is exactly the recognizer that placed first in the PASCAL VOC 2009 for the category

“car”. The trend is that our method achieves higher recall than the baseline in the high-

precision region. This means that it correctly reports a high confidence for more of the

objects. In terms of total recall, the 3D scene understanding approach recognizes slightly

fewer overall objects. As discussed during our qualitative analysis, these are mainly the

smallest objects in the test set with insufficient visual evidence. The DPM approach, which

takes its strongest cues from the object’s outline, is able to outperform our method for small

objects.

We have run the inference procedure with and without consideration of the point cloud

evidence during both our sampling and likelihood computation. The trend is that the point

cloud is generally helpful and that our method performs the best when it has access to

this sensed range information at all stages. The improvement in performance based on the

point cloud data and occlusion reasoning is not as large, relatively, as we saw for kitchen

scenes. While we are still investigating this factor, the lower resolution of the Velodyne

data is a potential explanation. It is informative to look at the results labeled “Image Only”,

as this represents the performance of our method with only a pair of visual images and

the corresponding detections results. The fact that our method still performs well in this

scenario means that it is able to recover 3D semantic information only from the registered

pair of images.

The four different plots in Figure 8.7 differ in the minimum scale of annotations that

were used for analysis. When all boxes are included (top-level graph), a method is re-

quired to correctly recall every annotation. The three remaining graphs represent results

with increasingly many of the smallest annotations discarded. The trend in the high pre-
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(a) (b)

(c) (d)

Figure 8.7: 3D Parts Model Results: Precision and recall curves for variants of our method
and DPM, a 2D detection baseline. Each graph represents evaluation with a different mini-
mum annotation size, measured in pixels of width, ranging from 0 in (a) to 100 in (d).

cision region is that our method’s improvement over the DPM baseline is most prominent

for large objects. This is likely due to the fact that we employ more detailed recognizers

whose performance gives the greatest contribution for these large objects. This analysis

also suggests that performing recognition on higher-resolution images, which are increas-

ingly available as optical hardware improves, would help our method to do well over larger

portions of these scenes.
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8.8.3 Pose Estimation

We also evaluate our method’s ability to correctly determine the azimuth angle of each

recognized vehicle. We compare annotated 3D regions which have had azimuth carefully

labeled by a human against each of our object hypotheses. As was discussed in Section

2.6, there is a necessary matching step in this evaluation, since our system estimates both

3D position and viewpoint. We must determine which inferred 3D region corresponds to

each 3D annotation. We first project both the ground truth and the inferred objects into 2D,

but record the view-specific orientation estimate for each bounding box. We then match

between annotations and hypotheses with the PASCAL VOC evaluation protocol. Finally,

for all true positive 2D object locations (those that match best with overlap over a threshold),

we compare the estimated azimuth to the annotated value.

We perform two types of evaluation of the pose estimation errors. First, we consider

a viewpoint classification task, where we bin angles into eight 45 degree bins and observe

how often our method labels the correct bin. Chance level for this task is an accuracy of

0.125 and optimal performance is 1.0. We visualize these results with confusion matrices.

Second, we measure the raw error, in degrees, between continuous annotated viewpoint and

the inferred value, where 0 error represents optimal performance. We display the results as a

histogram. Figure 8.8 illustrates the results of each of these evaluations, for four variants of

our approach where different combinations of the input detection evidence are considered.

Note that, due to the two-stage evaluation required, each approach is being evaluated on a

different number of true positive (TP) detections. This must be considered when comparing

relative performance of different methods. A better recognizer will recover a larger number

of true positives, but this set of objects may include more distant objects whose pose is

harder to recover.

In all cases, it is apparent that our approach favors the correct object pose, however

there is a wide range between methods. Adding detector types that include pose estimates

improves the ability of our 3D method to estimate pose. Notably, graphs (e) and (f) show

a strong improvement over (c) and (d), since there are both more true positives recovered

and the pose estimation accuracy is better. The only difference between these methods is

the use of the independent object part detectors. This indicates that the object parts make

a significant impact on our method’s ability to correctly localize the objects in 3D. Graphs

(g) and (h) show a variant of our method that is targeted directly at obtaining accurate pose
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estimation, at the price of recognizing fewer objects overall. We consider only the DPM-

bank detector, which is our strongest input pose estimator. Note the low number of true

positives but high pose classification accuracy of this approach.

8.9 Chapter Summary
We have described a detailed object-parts model and explained its use for the problem of

multiple viewpoint 3D scene understanding. Visual object recognizers trained for the task

of predicting both the parts layout as well as the object category and location within an im-

age are used as input to our procedure. Our state space instantiates 3D object parts that fit

within the entire object shape in 3D, and these are used to associate data between the model

and observations. An inference procedure based on MCMC searches over possible scene

layouts guided by our likelihood model. We have analyzed the performance of this tech-

nique on the Ford Campus dataset [PME11], SSFM Test Pairs task from [BS11]. Results

demonstrate that our method is capable of utilizing the parts information to make confident

and correct predictions for many objects and to predict the viewpoint of these objects in 3D.

The fixed number of objects in each scene assumed by our model is a major limitation

for use of this technique on real platform faced with a rapidly changing and unpredictable

visual experience. We have begun examining the use of a trans-dimensional sampling tech-

nique known as Reversible Jump MCMC, which has the promise to simultaneously infer the

number of objects in a scene and the layout of those objects. This work is in a preliminary

form as of the writing of this thesis and will be targeted for publication in the near future.

We have now concluded discussion of all technical contribution in this thesis. The final

chapter will provide an overall summary and discuss future directions at a broader scope.
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Figure 8.8: Evaluation of Viewpoint Prediction Accuracy: (left) Viewpoint confusion ma-
trices with discrete viewing angles labeled {l:left, lf:left-front, f:front, fr:front-right, r:right,
br:back-right, b:back and bl:back-left} and error histograms for four variants of our system.
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Chapter 9

Conclusions

9.1 Thesis Summary
This thesis has described several contributions to robotic object recognition. During the

course of this thesis, we developed a physical robot system for recognizing objects, over-

came many challenges related to directing the robot’s camera and integrated numerous plan-

ning and vision components. This led to the observation that the core task required for a

robot to recognize objects is reasoning about the 3D positions of objects based on multiple

images. We collected and released a dataset for repeatable evaluation of this task and began

to develop algorithms to solve a number of the sub-problems. Our methods include path

planners that account for the appearance of objects from various viewpoints and recognizers

that are robust to occlusion. We will briefly summarize our primary contributions in each

of these areas.

The Curious George intelligent system is capable of building a detailed semantic rep-

resentation of its environment, which was demonstrated by three first place finishes in the

Semantic Robot Vision Challenge over three years. The development of this robot platform

clearly highlighted some of the limitations of existing methods and motivated the remaining

work within the thesis.

The UBC VRS dataset and benchmark captures realistic sensory data collected by a

physical robot platform in challenging environments. The goal of the UBC VRS project was

to enable repeatable study of the multiple viewpoint robot recognition task for indoor scenes

in a fashion that has not previously been feasible by capturing the actual sensor experiences
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of a platform within realistic environments and preserving richer spatial information than

image-only datasets. As part of the UBC VRS project, we have developed and released

a software suite suitable for representing and simulating the object recognition problem

facing a mobile robot and have shown that our tools can be adapted to other datasets, such

as urban driving data.

The algorithmic contributions of this thesis centre on a probabilistic model that relates

images from multiple views of a scene to the 3D objects that are present. First, this model

was used to develop an approach for entropy-guided motion planning that enables accurate

recognition of objects more quickly than by allowing the robot to move randomly. Sec-

ond, we developed an occlusion-aware 3D object model that leveraged rough, viewpoint-

agnostic partial object templates and explicit occlusion reasoning based on sensed 3D data.

We showed that this approach has the ability to robustly recognize mugs and bowls in

cluttered kitchen scenes. Third, we extended the previous approach by including detailed,

viewpoint-aware, semantically meaningful 3D object parts. This model was shown to be an

effective approach to scene understanding in urban scenes such as parking lots.

In general, the author has attempted to draw a clear connection between entities that

have often been treated independently, namely: semantic object labels; intermediate rep-

resentations such as visual features and object recognizers; the 3D world where our ob-

ject models and robot trajectories are grounded; and finally a robot’s control policies and

decision making process. Our results support the utility of 3D reasoning as part of the

recognition process. The trend is that multiple viewpoint approaches achieve significant

improvements in the high precision region. This is a useful trait in realistic applications,

since we often want to be quite certain of the presence of an object before attempting an

action, such as grasping. Our approaches typically achieve slightly lower recall than meth-

ods that operate in the space of single images, which needs addressing in future work. An

important product of this thesis is the software implementation of each of the methods de-

scribed. Much of that software has been made publicly available. Where not clearly stated

previously in the thesis, this code can be obtained from a permanent website hosted at

UBC1.
1http://www.cs.ubc.ca/labs/lci/meger-code/
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9.2 Open Problems
Object recognition requires reasoning about the complex nature of the real world, and cur-

rent techniques are far from perfect in any but the simplest environments. Solutions are

often stochastic and driven by data, so some amount of uncertainty is the norm. The tech-

niques presented in this thesis do not perform perfectly, even on the evaluation tasks that

we have defined and practical systems may still fall short of the needed performance for

success in the real world. This section will identify a number of the areas that offer the

most promise for improvements in the near future.

9.2.1 3D Appearance Models

The vast majority of physical objects that a robot seeks to recognize are non-planar, how-

ever this 3D shape information is still rarely considered in the learning or application of the

appearance models used to recognize objects within visual images. Recently, methods that

have a basic awareness of the shape of objects, such as their parts-layout or the viewing di-

rection of the training data have shown strong progress to improve recognition performance

(e.g., [SXBS10, SGS10, PSGS12]). However, these models all still fall well short of the

spatial and physical information that a human is able to infer while they recognize an item,

which includes: orientation and position of visible surfaces; environmental lighting proper-

ties such as reflections and cast shadows; moderately accurate scale; occlusion-boundaries

between items; material properties such as specularity; and the detailed physics and artic-

ulation of the target objects. These forms of information have all been studied, to various

extents, in relation to visual tasks including object recognition, but current models are typ-

ically only minimally influenced by the information.

The models developed in this thesis relate appearance patches in numerous images by

associating them to a common 3D object, reasoning about the spatial properties of this

object, and projecting these properties into each image. The location, scale, orientation

and even 3D parts that we model are drastically over-simplified versions of the true rich

3D structures that make up real objects. Our most complicated model was still only a 3D

box full of 3D boxes. Improved knowledge of each object’s spatial and physical properties

could significantly improve our predictions for apperance transfer. We chose simple models

in our work because the 2D visual appearance models that we relied upon only output

information at this level of detail (i.e., 2D bounding boxes, or at most 2D boxes full of
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2D part boxes). The extension of our work to include more detailed spatial models for

the 3D object properties in the future should allow for better recognition performance and

specifically more spatial resolution in our ability to localize objects in 3D. A key element

in these methods will have to be an increased ability to recover 3D properties from each

image patch, so that these spatial properties can be related to observed data.

9.2.2 Dynamic Objects

Throughout this thesis, we have assumed that objects in the world are stationary. This

assumption is often violated by instances of the object categories that are of interest to

an intelligent system. The problem of continuously locating an object through a dynamic

trajectory is referred to as target tracking. A number of the techniques proposed in this

thesis have application to the tracking problem. Several have already been considered by

other authors, such as the use of a 3D state space to apply meaningful matching constraints

across views for analysis of moving objects (e.g., [UFF06, ARS10]). Occlusion reasoning

for moving objects has been studied, for example by [WRSS10], although the occlusion

reasoning has typically been simpler than the analysis of sensed 3D range that we have

implemented.

The main technical challenge in applying our probabilistic inference to the tracking

problem is that the size of the state space grows with the trajectory length, and thus the

approaches would likely need to be applied within a filtering framework in order to maintain

tractable inference. However, we have shown that our cross-view constraints assist object

reasoning with as few as two images (i.e., the Test Pairs scenario), so our technique can

reasonably be used in this fashion. In the tracking scenario, the prior term that we place

on static object locations would becomes a motion model that favors certain likely motions,

such as those with continuous velocities in a reasonable range.

9.2.3 Registration and Mapping

The second major assumption of this thesis that could be relaxed in the future is that an ex-

ternal process is able to accurately register sensor positions into a global coordinate frame.

While mapping approaches are becoming increasingly powerful, there are still many vehi-

cles whose computational or sensory limitations make on-board accurate mapping impossi-

ble. Our methods currently would not be directly applicable to those situations. An obvious
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direction would be to replace the delta function form of registration likelihood that we have

used in this work and ask our methods to recover precise and detailed image registration

along with the object positions, as is done by [BS11].

Potentially a more interesting direction is to consider looser spatial constraints, such as

those that are introduced in topological mapping in robotic systems (e.g., [IDD99]). Rather

than knowing the exact camera and object positions, it may often be sufficient to know the

name of the place where the robot is located, the types of objects that are located there and

if the objects that were seen before have remained in place or have moved. A proof-of-

concept of such a navigation system was proposed by Vasudevan et al. [VGNS07]. The

use of an approach such as ours over a local set of frames within a room scene would be an

ideal input to higher-level place reasoning. In either case, the semantic mapping problem

will be an interesting avenue for research in the future, and many of the techniques in this

thesis will be appropriate components to such systems.

9.2.4 Segmentation

Our methods only describe a few specific objects in each scene, with the rest of the world

treated as an unstructured non-object background. Many techniques are available for form-

ing groups of the world with self-similar appearance, regardless of their object label: a

problem referred to as segmentation. The results of segmentation could be of great use to

our inference procedures. Object boundaries are likely to coincide with segment bound-

aries. Large uniform segments of the world are likely to be support surfaces and can be

eliminated from the object search process. Several authors have previously considered

segmentation as part of the object understanding process, such as [WRSS10]. However,

state-of-the-art segmentation methods often make errors and are not repeatable in realistic

images. Therefore, the best we can hope for is an additional probabilistic cue that could

be considered along with the output of object recognizers. The combination of recognizers

and segmentation is a promising direction for future work.

9.2.5 Online and Life-long Learning

All of the experiments that we have presented in this thesis shared a common overall proce-

dure. First, a human system designer instructed our system which object categories would

be the targets for recognition. Training data was provided to our system in some format.
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This data primarily took the form of labeled bounding boxes in images, except for the

SRVC contest experiments, where we used web data with weaker labels only on the entire

image. Appearance models were learned based on this training data. Afterwards, the robot

explored the world and the fixed appearance models were used to analyze the sensory data

obtained by our system and to locate objects in the world.

The procedure outlined above is somewhat limited. It does not provide a means for

an intelligent system to adapt to an environment that might change during the course of

its operation. New objects might be introduced, or the robot might move from one area

to another where the set of objects encountered is quite different. Our Curious George

platform encountered one instance of this circumstance when attending the SRVC contest in

Anchorage, Alaska where the target object Ulu was not previously in the robot’s vocabulary

of objects and the web training data that the robot attempted to use to learn its appearance

was very limited.

Lifelong learning is a different approach that may prove to be more flexible in such

circumstances. This refers to adapting the system’s existing models, adding new models

or discarding those that are no longer necessary to adapt to a changing environment. One

primary challenge in autonomous life-long learning is that it requires a system to go beyond

the static set of labeled data that it is given at the start of its existence. Semi-supervised

learning is one potential option. This involves using the small set of labeled images that are

initially given in training plus the large number of unlabeled images seen while exploring

the real world together in an on-going learning process.

Another option is to allow human-robot interaction during normal system operation.

For example, a robot could query the user for new labels when introspection reveals that

the robot is sufficiently uncertain or a user could audit the performance over a period and

provide corrective input. In each of these processes, cross-view, 3D, and affordance con-

straints can be used during the robot’s normal operation to allow it to adjust and augment

its models. For example, suppose a new type of car is introduced into the city where our

autonomous driving platform operates. These vehicles might not match well to the existing

appearance models available to our system, but the objects could be segmented from the

background environment, and would meet the same set of motion, size, and layout proper-

ties that the existing set of automobiles possess. These would be consistent for that object

across all views. Collection of new training data and learning of additional training models

could potentially be triggered once enough of these criteria are met with confidence. Our
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system is well-positioned for this task.

9.2.6 Place and Task Context

We have considered the tasks of locating and recognizing objects mostly independent of

the many other functions that a platform is likely to be performing. Practical robot systems

are usually not passively exploring, but rather they continuously perform tasks under the

direction of a human user. This could require objects to be manipulated, for the robot to

travel between a number of workspaces or for some joint task such as hand-off between the

robot and a person. In each of these contexts, a significant amount of additional information

is available to assist with the recognition process. Temporal continuity can be used to track

an object that is identified by the user with a label in one single image. This removes

the need to re-recognize in each subsequent frame, except to safe-guard against tracking

errors. Also, each location will have different usual sets of objects, and those objects will

have usual positions, which allows for much stronger priors than we have assumed in our

work. As methods such as ours are applied on practical systems that carry out tasks in real

environments, it will be important to utilize the context information that is available from

tasks and places.

9.3 Outlook and Final Remarks
For the approaches described in this thesis to be useful to the robot practitioners of the

future, additional advances will be needed at a number of steps. We must continue to work

on our vocabulary of discriminative features, so that all objects of interest can be reliably

described and detected within sensory data. The level of detail in our understanding of the

world should be increased, so that we reason not only about boxes and cuboids, but rather

about surfaces, linkages and materials. Integration between communities is needed, for

example, between the perceptual models that have lately been successful in the computer

vision community and the planning approaches that exist in the study of robotics. Humans

carry out a vast array of motions that allow us to interact with objects, to simultaneously

perceive those objects, and eventually to perform tasks effectively. Current techniques in

intelligent perception are, for the most part, unaware of the motion or action space of their

vehicle and planning approaches often make over-simplified assumptions about the outputs

of their perception. This thesis and its extensions will hopefully bring perception slightly
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closer to the space where robot task planning is already successful and to show the way for

these tasks to be more tightly coupled in the near future.
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[KC05] D Kulić and E A Croft. Safe planning for human-robot interaction. Journal
of Robotic Systems, 22(7):383–396, 2005. → pages 27

[LA06] Catherine Laporte and Tal Arbel. Efficient Discriminant Viewpoint Selection
for Active Bayesian Recognition. International Journal of Computer Vision,
68:1405–1573, 2006. → pages 21, 25, 98

[LBRF11] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A Large-Scale
Hierarchical Multi-View RGB-D Object Dataset. In Proceedings of the IEEE

170



International Conference on Robotics and Automation (ICRA), 2011. →
pages 13, 30

[LBRF12] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Detection-based
Object Labeling in 3D Scenes. In Proeedings of the IEEE International
Conference on on Robotics and Automation (ICRA), 2012. → pages 33

[LCCV07] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool. Dynamic 3D Scene
Analysis from a Moving Vehicle. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2007. → pages 31

[Lin90] Tony Lindeberg. Scale-Space for Discrete Signals. IEEE Transactions of
Pattern Analysis and Machine Intelligence (PAMI), 12(3):234–254, 1990. →
pages 14

[LLS08] B Leibe, A Leonardis, and B Schiele. Robust Object Detection with
Interleaved Categorization and Segmentation. International Journal of
Computer Vision Special Issue on Learning for Recognition and Recognition
for Learning, 77(1-3):259–289, 2008. → pages 16, 17

[LOL08] Wei-Lwun Lu, Kenji Okuma, and James J. Little. Tracking and Recognizing
Actions of Multiple Hockey Players using the Boosted Particle Filter. Image
and Vision Computing, 2008. → pages 32

[Low04] David G Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004. → pages 15, 99

[LSD12] Alex Levinshtein, Cristian Sminchisescu, and Sven Dickinson. Optimal
Image and Video Closure by Superpixel Grouping. International Journal of
Computer Vision, 100(1):99–119, May 2012. → pages 20

[LSP06] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing Natural Scene
Categories. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2169–2178, New York, June 2006. IEEE
Computer Society. → pages 50

[LSS08] Joerg Liebelt, Cordelia Schmid, and Klaus Schertler. Viewpoint-Independent
Object Class Detection using 3D Feature Maps. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2008. →
pages 20, 95

171



[MCUP02] Jiri Matas, Ondrej Chum, Martin Urban, and Tomas Pajdla. Robust Wide
Baseline Stereo from Maximally Stable Extremal Regions. In Proceedings of
the 13th British Machine Vision Conference (BMVC), pages 384–393,
September 2002. → pages 41

[ME85] H Moravec and A Elfes. High-resolution maps from wide-angle sonar. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 116–121, St. Louis, MO, USA, 1985. → pages 46

[MFL+07] David Meger, Per-Erik Forssén, Kevin Lai, Scott Helmer, Sancho McCann,
Tristram Southey, Matthew Baumann, James J. Little, David G. Lowe, and
Bruce Dow. Curious George: An Attentive Semantic Robot. In Proceedings
of IROS Workshop: From sensors to human spatial concepts, San Diego, CA,
USA, November 2007. IEEE. → pages iii, 10

[MFL+08] David Meger, Per-Erik Forssén, Kevin Lai, Scott Helmer, Sancho McCann,
Tristram Southey, Matthew Baumann, James J. Little, and David G. Lowe.
Curious George: An Attentive Semantic Robot. Robotics and Autonomous
Systems Journal Special Issue on From Sensors to Human Spatial Concepts,
56(6):503–511, November 2008. → pages iii, 11, 36, 107

[MFS+07] Gérard Medioni, Alexandre R J François, Matheen Siddiqui, Kwangsu Kim,
and Hosub Yoon. Robust real-time vision for a personal service robot.
Computer Vision and Image Understanding, 108(1-2):196–203, 2007. →
pages 23

[MGL10] David Meger, Ankur Gupta, and James J Little. Viewpoint Detection Models
for Sequential Embodied Object Category Recognition. In Proceedings of
the International Conference on Robotics and Automation (ICRA), 2010. →
pages iii, 11, 97

[Min09] Silvio Savarese Li Fei-Fei Min Sun Hao Su. A Multi-View Probabilistic
Model for 3D Object Classes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009. → pages 64

[ML09] Marius Muja and David G Lowe. Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration. In Proceedings of the International
Conference on Computer Vision Theory and Applications (VISAPP), 2009.
→ pages 16

[ML11] David Meger and James J Little. Mobile 3D Object Detection in Clutter. In
Proceedings of the IEEE/RSJ Conference on Robots and Intelligent Systems
(IROS), 2011. → pages iii, 11, 78

172



[ML12] David Meger and James J Little. The UBC Visual Robot Survey: A
Benchmark for Robot Category Recognition. In Proceedings of The
International Symposium on Experimental Robotics (ISER), Quebec City,
Canada, 2012. → pages iii, 11, 65

[MRR+53] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth,
Augusta H Teller, and Edward Teller. Equation of State Calculations by Fast
Computing Machines. The Journal of Chemical Physics, 21(6):1087–1092,
1953. → pages 138

[MS79] R B Marimont and M B Shapiro. Nearest Neighbour Searches and the Curse
of Dimensionality. IMA Journal of Applied Mathematics, 24(1):59–70, 1979.
→ pages 16

[MS04] Krystian Mikolajczyk and Cordelia Schmid. Scale and Affine Invariant
Interest Point Detectors. International Journal of Computer Vision (IJCV),
2004. → pages 15

[MTKW03] M Montemerlo, S Thrun, D Koller, and B Wegbreit. FastSLAM 2.0: An
Improved Particle Filtering Algorithm for Simultaneous Localization and
Mapping that Provably Converges. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI), pages
1151–1156, Acapulco, Mexico, 2003. IJCAI. → pages 46

[MTS+05] K Mikolajczyk, T Tuytelaars, C Schmid, A Zisserman, J Matas,
F Schaffalitzky, T Kadir, and L Van Gool. A Comparison of Affine Region
Detectors. International Journal of Computer Vision, 65:43–72, 2005. →
pages 15, 99

[MU49] Nicholas Metropolis and S Ulam. The Monte Carlo Method. Journal of the
American Statistical Association, 44(247):335–341, 1949. → pages 128, 138

[MWSL11] David Meger, Christian Wojek, Bernt Schiele, and James J Little. Explicit
Occlusion Reasoning for 3D Object Detection. In Proceedings of the 22nd
British Machine Vision Conference (BMVC), 2011. → pages iii, 11, 65, 78,
113

[MY09] J M Morel and G Yu. ASIFT, A New Framework for Fully Affine Invariant
Image Comparison. SIAM Journal on Imaging Sciences, 2(2):438–469,
2009. → pages 15

[NMC05] A Niculescu-Mizil and R Caruana. Obtaining Calibrated Probabilities from
Boosting. In Proceedings of the Conference on Uncertainty and Artificial
Intelligence, 2005. → pages 19, 118

173



[OPZ06] A Opelt, A Pinz, and A Zisserman. Incremental Learning of Object Detectors
Using a Visual Shape Alphabet. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2006. → pages 21

[OTD+04] K. Okuma, A. Taleghani, N. DeFreitas, James J. Little, and D. G. Lowe. A
Boosted Particle Flter: Multitarget Detection and Tracking. In Proceedings
of the European Conference on Computer Vision (ECCV), 2004. → pages 32

[Pal99] Stephen E Palmer. Vision Science: Photons to Phenomenology. MIT Press,
1999. → pages 49

[PG11] Devi Parikh and Kristen Grauman. Relative attributes. In Proceedings of the
International Conference on Computer Vision (ICCV), pages 503–510. Ieee,
November 2011. → pages 20

[PME11] Gaurav Pandey, James R McBride, and Ryan M Eustice. Ford Campus
Vision and Lidar Data Set. International Journal of Robotics Research,
30(13):1543–1552, November 2011. → pages 31, 77, 130, 143, 154

[PR09] Samuel Prentice and Nicholas Roy. The Belief Roadmap: Efficient Planning
in Belief Space by Factoring the Covariance. International Journal of
Robotics Research, 2009. → pages 25, 105

[PSGS12] Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. 3D2PM – 3D
Deformable Part Models. In Proceedings of the European Conference on
Computer Vision (ECCV), 2012. → pages 158

[PTPB12] Dejan Pangercic, Moritz Tenorth, Benjamin Pitzer, and Michael Beetz.
Semantic Object Maps for Robotic Housework - Representation, Acquisition
and Use. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012. → pages 24

[PTZ+10] Victor Adrian Prisacariu, Radu Timofte, Karel Zimmermann, Ian Reid, and
Luc Van Gool. Integrating Object Detection with 3D Tracking Towards a
Better Driver Assistance System. In Proceeings of the International
Conference on Pattern Recognition, pages 3344–3347. IEEE, August 2010.
→ pages 27

[QBG+09] Morgan Quigley, Siddharth Batra, Stephen Gould, Ellen Klingbeil, Quoc V
Le, Ashley Wellman, and Andrew Y Ng. High-Accuracy 3D Sensing for
Mobile Manipulation: Improving Object Detection and Door Opening. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2009. → pages 26

174



[RBHK09] B. Rasolzadeh, M. Bjorkman, K. Huebner, and D. Kragic. An Active Vision
System for Detecting, Fixating and Manipulating Objects in the Real World.
The International Journal of Robotics Research, 29(2-3):133–154, August
2009. → pages 24

[RD06] Ananth Ranganathan and Frank Dellaert. A Rao-Blackwellized Particle
Filter for Topological Mapping. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 810–817, Orlando,
USA, May 2006. → pages 26

[RD07] A Ranganathan and F Dellaert. Semantic Modeling of Places using Objects.
In Proceedings of Robotics: Science and Systems (RSS), 2007. → pages 37

[Ren00] Ronald Rensink. The Dynamic Representation of Scenes. Visual Cognition,
7(1/2/3):17–42, 2000. → pages 38

[RLXF11] Liefeng Bo Ren, Kevin Lai, Ren Xiaofeng, and Dieter Fox. Object
Recognition with Hierarchical Kernel Descriptors. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2011. → pages 26

[RTMF08] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T
Freeman. LabelMe: a Database and Web-based Tool for Image Annotation.
International Journal of Computer Vision, 77:157–173, 2008. → pages 30

[Rus09] R B Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments. PhD thesis, Technical University of Munich, 2009. →
pages 40

[SBFC03] Dirk Schulz, Wolfram Burgard, Dieter Fox, and Armin B. Cremers. People
Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data
Association Filters. The International Journal of Robotics Research,
22(2):99–116, February 2003. → pages 23

[SBV07] M Schlemmer, G Biegelbauer, and M Vincze. Rethinking Robot Vision -
Combining Shape and Appearance. International Journal of Advanced
Robotic Systems, 4:259–270, 2007. → pages 23

[SBWK10] Agnes Swadzba, Niklas Beuter, Sven Wachsmuth, and Franz Kummert.
Dynamic 3D Scene Analysis for Acquiring Articulated Scene Models. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 134–141. Ieee, May 2010. → pages 27

175



[SC00] B Schiele and J L Crowley. Recognition without Correspondence using
Multidimensional Receptive Field Histograms. International Journal of
Computer Vision (IJCV), 36(1):31–50, 2000. → pages 17

[SCN08] A Saxena, S H Chung, and A Y Ng. 3D Depth Reconstruction from a Single
Still Image. International Journal of Computer Vision, 76(1):53–69, 2008.
→ pages 20

[SD10] G Schindler and F Dellaert. Probabilistic Temporal Inference on
Reconstructed 3D Scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1410–1417. IEEE,
2010. → pages 22

[SDN09] Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng. Learning 3-D Object
Orientation from Images. In International Conference on Robotics and
Automation (ICRA), 2009. → pages 24

[SFF07] Silvio Savarese and Li Fei-Fei. 3D Generic Object Categorization,
Localization and Pose Estimation. In Proceedings of the International
Conference on Computer Vision (ICCV), Brazil, October 2007. → pages 29,
30, 100, 106, 146

[SGS10] Michael Stark, Michael Goesele, and Bernt Schiele. Back to the Future:
Learning Shape Models from 3D CAD Data. In British Machine Vision
Conference (BMVC), Aberystwyth, Wales, 2010. → pages 17, 19, 29, 129,
133, 134, 148, 158

[SJC00] M Seiz, P Jensfelt, and H I Christensen. Active Exploration for Feature
Based Global Localization. In Proceedings IEEE International Conference
on Intelligent Robots and Systems (IROS), Takamatshu, October 2000. →
pages 25

[SK00] Henry Schneiderman and Takeo Kanade. A statistical model for 3D object
detection applied to faces and cars. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2000. → pages 20

[SKP+12] M Stark, J Krause, B Pepik, D Meger, James J Little, B Schiele, and
D Koller. Fine-Grained Categorization for 3D Scene Understanding. In
Proceedings of the 23rd British Machine Vision Conference (BMVC), Surrey,
UK, 2012. → pages 130

[SL06] Tristram Southey and James J Little. Object Discovery through Motion,
Appearance and Shape. In AAAI Workshop on Cognitive Robotics, Technical
Report WS-06-03. AAAI Press, 2006. → pages 38

176
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