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Abstract— This paper proposes a practical method to achieve
object persistence — that is, a memory of the objects that
have previously been discovered by a system, along with a
way to update this memory as objects move. Our approach
creates and maintains an object representation that includes 3D
location, pose, semantic label, and appearance from multiple
viewpoints. We employ a change-based attention operator which
allows for efficient re-recognition of moved objects without
wasted computation on stationary items. Our global model
incrementally learns object appearances and which allows for
increasingly successful persistence tracking as more time is
spent in the environment. OQur results demonstrate that the
system is able to successfully maintain its model as objects in
a cluttered kitchen area are moved during a series of days.

[. INTRODUCTION

Objects are the highlight of a home robot’s interactions
with the world. They are the items to be grasped, they ground
the meaning of terms in interaction with humans, and they
are necessary for nearly every meaningful task performed by
a home robot. However, most modern robots lack the ability
to detect, track, and reason about the large number of objects
that are likely to occur in modern homes. This is due in part
to the challenges in describing and re-detecting objects once
they have been demonstrated to a system. But, perhaps more
fundamentally, it is because only a few systems have been
proposed for chronicling the information provided by the
user and from an object recognition module.

Consider a human’s view of the objects in their home.
Although we are highly competent at instantaneously rec-
ognizing all objects we actually look at, we often know
where many things are without even looking, because we
have previously performed successful detection, and we are
confident that nothing has changed. This paper considers a
similar paradigm for a mobile robot attempting to keep track
of a large number of objects in a home. We call this approach
semantic object persistence — where meaningful labels are
attached to items in the world and where the location of
those objects changes over time.

We describe an object persistence system that is interested
only in the changes that it detects in the environment. These
changes become seeds to query the users about for labels:
“What is the name of this object that has moved?” Once
labels have been given, the system continues to explain the
subsequent changes and updates its persistent object model.
This is beneficial for a number of reasons. First, it drastically
reduces the computation required to continuously track the
position of a large number of objects, which is a primary
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practical limiting factor that currently restricts the number
of objects simultaneously available to a system. Second, the
fact that we explicitly expect objects to move and that our
system deals with this robustly is promising as an add-on
to methods such as SLAM which make the “static world”
assumption. Our system is able to generate a list of changed
objects that can be ignored by such an approach.

Beyond change detection, a key portion of our method is
the verification and update of the semantic object labels when
changes occur in the environment. Consider an example
scenario where the robot is taught about a set of objects
by the user and leaves the room until the next day (n.b.
throughout the paper we explain visits to the same scene
as days to give the reader the intuition but our approach
can handle any frequency of repeated visits to a place).
The objects in a scene will often have moved when a robot
returns. The task is to correctly update the robot’s belief of
the object locations and labels at the end of each day after
detecting changes, performing recognition and explaining
changes that might include an object moving to a new
location, an object being removed from the scene, or a new
object being added to the scene.

Our system depends on the reliable 3D data that is now
available to many home robots, such as from an RGB-depth
sensor like the Microsoft Kinect. This 3D data allows for
highly accurate change detection, which correctly guides our
approach only to update the state of objects that have moved.
Also, appearance signatures derived from high resolution
3D sensory data are highly repeatable and this allows for
successful tracking of the semantic labels of regions as
objects are shifted, rotated, added and removed from a scene.

The following section describes related work in the field.
Section III continues by describing the technical details
of our approach for object persistence. We then present
qualitative and empirical evaluation of the system to demon-
strate its performance in realistic scenes, and finally present
conclusions.

II. RELATED WORK

Many previous authors have proposed robotic systems
capable of discovering and reasoning about semantic objects,
especially within home environments. Perhaps the most
similar work to ours is in unsupervised object discovery.
Herbst et al. [1] have used 3D data from a Kinect-like sensor
to attempt to locate objects that have moved between frames.
[2] performs a similar task based on laser-rangefinder data.
Unlike our method, these objects are not assigned labels by
the user, and the authors do not form a reliable multi-view
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object model as is done in our work. However, we have been
inspired by each approach.

Several methods for object search have explored the use-
fulness of global models or priors on object locations. Kollar
et al. [3] build a probabilistic model of object locations using
captions on Flicker photos. Given the pre-built map of the
building and locations for a subset of objects they compute
the optimal path to explore the space for query object. Meger
et al. [4] described a method that used image-based visual
saliency to propose promising regions, previously learned
object models to label those regions, and a SLAM framework
to track detections over time. However, neither of these ap-
proaches describe how to update object models once they are
acquired, which is a key component to avoid the computation
needed to continuously re-recognize all objects. This concept
is similar to so-called “lifelong mapping”, which was first
fully defined in [5]. Finally, an approach for representing
and updating semantic information about an environment is
given by Hawes et al. [6]. This work considers larger scale
spatial information and focuses on selection of behaviours
rather than focusing on updating a perceptual model, but we
are inspired by several of their concepts.

Our work builds appearance models based on features
derived from sensed 3D geometry. Many features of this type
have been proposed. The most successful among early at-
tempts is spin images [7] which computes a shape descriptor
using the relative orientation of the normals. More recently,
Viewpoint Feature Histograms (VFH) [8], Fast Point Feature
Histograms (FPFH) [9] and Normal Aligned Radial Features
[10] have all been proposed and evaluated on high quality
data from textured stereo or Kinect-like devices. We note
that excellent matching performance has been demonstrated
by VFH, in particular when an object is viewed from the
same vantage point at both training and test time (e.g. the
results of the Recognition Infrastructure (Reln) [11] by Muja
et al) This has motivated our selection of the VFH feature
for our work.

III. OBJECT PERSISTENCE METHOD

At a high level, our system is composed of:
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A diagram of the interactions between components in our object persistence method.

1) A geometric registration system that determines how
the current sensor position differs from the position at
which the scene was originally perceived

2) Geometric change detection that leverages the registra-
tion information to find objects that have likely moved
during the period between observations

3) A multi-view 3D object modeling approach that can
be incrementall updated as new views of an object are
located and which can assign semantic labels to each
observed item in the world

4) A high-level object persistence reasoning module that
combines the outputs of the previous three components
to maintain a complete scene representation and add
user information using queries when this is needed.

As depicted in Figure 1 system components 1) and 2) act
as an attention operator for our system, focusing later compu-
tation and allowing the system to quickly ignore large parts
of the world which are unchanged, which greatly improves
efficiency. The system analyzes the changed regions with
module 3) based on 3D histogram descriptors and an efficient
nearest-neighbours classifier. When a new object is located,
the user is queried for its name. When a change is recognized
as being an object that was previously known, the model for
that object is updated. All of the previously seen objects that
are unchanged can simply persist in the model, allowing for
their use in tasks without additional perception effort. Finally,
in some cases an object has simply been removed from the
scene, so the corresponding object model is removed from
the representation.

The remainder of this section will provide additional
details about each component of the method.

A. Registration and Change Detection

Our system collects 3D point clouds each time it visits a
scene. In order to reduce complexity and focus the attention
of the remainder of the processing, we efficiently detect only
those parts of the environment that have changed since the
last visit. The first step in identifying changes is to register
the current observed geometry to that which was observed
previously. This step necessarily involves solving for the



transformation between the sensor positions in each case.
We note that this registration information is often available
to a robot system, such as from its SLAM module, or based
on visual structure-from-motion (SfM) information. In our
experimental evaluation, we have not depended on any such
system. Rather, we perform point-to-point Iterative Closest
Points (ICP) [12] directly on the sensed 3D point clouds in
order to determine the sensor motion that has occurred.
Upon obtaining registered sensor information, we search
for regions of the world that have changed since they were
last viewed. To avoid errors due to sensor discretization, we
down-sample the 3D data from each view into a voxel-grid
data structure. The difference between occupied voxels gives
the regions of space which are occupied on one day and
not the other. We then cluster these changes into discrete
groups using the Euclidean Clustering algorithm described
in [13]. This approach allows for further filtering of the data
by discarding small clusters, but more importantly, it allows
the remainder of the algorithm to focus attention only on the
changed regions. The next sections will describe how object
models are formed from the changed regions, and how these
models are used to achieve an object persistence system.

B. Multi-view 3D Object Models

Our system attempts to maintain a list of labeled objects
that are present in an environment. A human user names each
object once and then the system must recognize that object
as it moves into new locations and is seen from different
vantage points. We describe objects based on their geometric
appearance. In particular, we form VFH descriptors [8] for
each view of each object. Computing VFH requires a region-
of-interest operator, and for this we use the results of the
change detection previously described. Each view v; of each
object is then represented as a 308 dimensional feature
vector f; = f(v;) which describes the 3D appearance.
Object recognition occurs by matching the features extracted
from changed regions in new views (f, = f(v,)) to the
entire set of vectors previously extracted within the set
of known persistent objects. The nearest neighbour search,
argmin;d(fi, f;) is performed efficiently using the Floating
Point Approximate Nearest Neighbours (FLANN) package
provided by Muja et al. [14]. With this approach we can
practically compare changed regions to many views of many
known object models in real time.

There are several outcomes from the nearest neighbour
matching. First, the changed region might unambiguosly
match to one of the persistent object features that have
already been learned by the system. In this case, the recog-
nition system returns a confident detection result for later
processing by the top-level persistence component. Another
common case is that the changed region matches with a large
distance to a number of learned features. We apply a thresh-
old to the nearest neighbour distance and the recognition
module returns the result that the changed region is likely
from a semantic category that has previously not been seen
by the system. This region can be passed to the user in a
query to obtain a new label.

Our object model also allows each object’s appearance to
be expanded over time. This is an important feature because
the system often observes different viewpoints of an object
at each time, and the features extracted from each of these
viewpoints may not be identical (i.e. in the case of non-
symmetric objects). By merging the feature vectors observed
over time, the system continues to increase its confidence
in the representation of each object, which can provide
improvements in accuracy as time progresses.

C. Top-Level Object Persistence Model

The previous sections describe a method to locate inter-
esting regions and to match these regions to known named
objects that are being tracked within the persistence system.
However, there are a number of outcomes from each of these
modules, and we combine their outputs with a final top-level
reasoning procedure in order to maintain the system’s state
of the objects over time. When our system enters a new
environment, it is unaware of the presence of any objects. It
initially scans the world and simply memorizes the current
3D geometry. Object discovery for our system begins when
objects begin to move. This triggers the change detection
system, and initially each changed object is marked as new
since the database of known objects is empty. The detection
of new objects results in the human user being queried for a
label: “What is this object?”. The user may choose to ignore
the object, in which case no model is learned, or a name
may be entered: “This is a dragon”. Once an initial set of
objects is known by the system, further visits to the same
scene will continue to result in newly moved objects, and
there are now several outcomes possible:

1) The location where an object previously existed is now
unoccupied.

2) A previously unoccupied region now contains a known
object.

3) A location which previously contained one object
now has slightly different geometry sensed, and this
matches well to a different object.

4) Any type of change is detected where the new local
signature cannot be found in the existing database.

Our top-level reasoning system assigns the following out-
comes to the cases above: 1) Indicates that a known object
was removed from the space. Notice that, in this case, a part
of the scene background that was unobserved before now
be uncovered. Presently, this can lead to a small number
of unnecessary queries to the user for object labels, but we
leave sophisticated processing of this case for future work.
Cases 2) and 3) indicate that one or more known objects have
been moved, in which case the object persistence database
is updated, and the new location for each object is now
utilized for tasks. The feature vector extracted from the new
view is merged with the previous appearance model as has
been described above. Case 4) indicates that a previously
un-modeled object has appeared in the scene. The reasoning
system prompts the user for a label and adds this information
to the persistence database.
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(b) Detected changes between second and third day

Fig. 2. The results of our point cloud registration and differencing module
allow the system to focus attention on moved objects.

This completes the description of our system’s compo-
nents. We will continue by describing a set of experiments
that have been conducted to evaluate the ability of our
approach to maintain object persistency as the environment
changes over time.

IV. EVALUATION

We have evaluated each component of our system on a
variety of environments that contain a number of moving
objects. The Microsoft Kinect sensor was used to collect a
variety of views of each scene on each day and our system
was run, querying the user as needed and updating its model
when moved objects were detected. This section will describe
the performance of each of the model components, and
provide numerical analysis comparing the object locations
hypothesized by our method at each time against object
locations annotated by a human supervisor.

A. Evaluation of the Attention Operator

We begin by examining the results of our registration and
change detection module: the attention operator. In each of
the environments considered, our ICP registration approach
was able to solve for the transformation between viewpoints
with sufficient accuracy for the point clouds to be placed in
a common coordinate frame. Figure 2 provides an example
result of the differencing operator that was subsequently
applied. Highlighted changes can be seen to correspond
both to the objects that have moved, regions of the point
cloud that do not overlap between the views, and small

elements of sensor noise. Our algorithm filters the small
regions by enforcing a minimum object size. We found that
the change detection module was able to correctly locate
object regions in areas of moderate to heavy clutter, but
in extreme clutter (many objects piled upon eachother),
change regions began to differ from the ideal segmentation
of objects. We leave dealing with this situations for future
work, and plan to investigate global segmentation and object
matching approaches similar to [1] in the future to address
this problem.

B. Evaluation of Object Recognition and Persistency

(c) Second day hypotheses

Fig. 3. Qualitative object persistence results over a period of three days
for a five object environment. Best viewed in colour and the scheme used
is blue for new objects, green for correct re-detections and red for detection
errors.

We have tested the core recognition and persistency com-
ponents of our system by repeating the process of repeatedly
visiting an environment where objects are moving, querying
the user for initial labels and updating the models as changes
occur. We report on these results both qualitatively and
quantitatively in the remainder of this section.

Qualitative Results

Figure 3 provides one example sequence of the inter-
actions that our system performs as it encounters a set
of changing objects in an environment. The first image
is captured after a set of objects have been placed into
a previously empty scene. The robot detects the changed
regions and notes that it has not previously built models
for these objects (added objects shown in blue). The user
is queried for labels and object models are added to the



(a) User labeled regions

prmome =

(b) First day hypotheses

(c) Second day hypotheses

Fig. 4. Qualitative object persistence results over a period of three days
for a seven object environment. Best viewed in colour and the scheme used
is blue for new objects, green for correct re-detections and red for detection
errors.

peristent database. The second image shows the state of
the world when the robot re-visits the scene the next day.
The toy cat and bunny have been moved to new positions
and another object is added. The system correctly tracks all
moved objects and queries the user for a new label for the
object now identified as “dragon”. The third image shows
the system’s state after another visit is made, and the object
layout is again changed. In this case several changes are
correctly tracked, and a bike helmet is identified as being
moved from the scene. Note that we have chosen this scene
to demonstrate the useful output provided when we achieve
perfect system performance, as no errors were made by
our system in identifying the objects and changes in this
particular scene.

Figure shows a second qualitative result that uses the same
colouring scheme for correct system decisions. However, in
this case we must note that in the second image both the
dragon and cat are assigned the label “cat” by our system.

This is an allowed outcome because the system can handle
multiple objects of the same type, but in this case it is in fact
an error. We will note in the empirical results and in a later
scene that our system does occassionally confuse objects, but
we are glad to report this has been rare in our tests.

Quantitative Results

We have also emperically evaluated the performance of
our system by comparing the system decisions made at
every time with human-labeled ground truth object layouts.
The scenario for numerical evaluation is identical to that
depicted in the previous qualitative results. That is, an empty
scene is observed, a set of objects are initially inserted and
the system must query the user for corresponding labels.
Then, the objects are moved in between visits made by the
robot. The system outputs its best current hypothesis about
the object locations at each time, and these hypotheses are
compared to ground truth labels created by a human annota-
tor (evaluation independent of any user-interface interaction
with the system itself). We use the Pascal Visual Object
Categories (VOC) [15] scoring criteria to evaluate correct
and missed detections, as this is the current standard in
the recognition community. Specifically, the intersection of
hypothesized object bounding box is divided by the union of
the boxes and this ratio must be greater than 0.5 for correct
detections. Tables I through IV display quantitative results
where the each cell indicates the number of captured views
of an object whose true label is shown in the row which
match most closely to the hypothesized label shown in the
column. Our scheme for making final decisions is to take a
majority vote over these matches. To ease analysis, correct
votes (i.e. those along the diagonal) are marked in green and
any incorrect vote is highlighted in red. For reference, we
note that Tables Il and IV are the numerical results that
correspond to the scene with seven objects shown in Figure
4. Images for the numerical results in Tables I and II have
not been shown, but the scene exhibits similar properties.

In each of the two environments used for scoring, our
system performs reasonably well on the first time that objects
are moved and then improves to nearly perfect performance
on the second round of object changes. We note that the
addition of new feature vectors for each correctly identified
object that occurs in between visits does lead to a more
complete representation of the 3D appearance of each object,
and therefore we expect performance to improve over time.
We do not claim that the system will continue to perform
perfectly for the remainder of time, but this result does
certainly indicate the approach is able to maintain a powerful
object representation in environments such as those shown
here.

V. CONCLUSIONS

This paper has presented a method for object persistence
— the task of representing all of the objects that have
previously been seen and described to the robot and of
updating this representation when changes occur. Our system
is based on 3D change detection and descriptive multi-
viewpoint feature vectors that allow precise re-recognition



TABLE I
RECOGNITION RESULTS ON THE FIRST DAY FOR SCENE 1

Cat Car Pot Dragon
Cat 7 0 0 0
Car 0 1 - 0
Pot 0 1 0
Dragon 0 0 6
TABLE II

RECOGNITION RESULTS ON THE SECOND DAY FOR SCENE 1

Cat Car Pot Dragon
Cat 7 0 0 0
Car 0 5Bl O
Pot 0 0 7 0
Dragon 0 0 - 0

once objects have been labeled. We allow for objects to
be moved within a scene, for new objects to be added and
for objects to be removed, gracefully updating the model in
each case. Our experiments demonstrate the feasibility of our
suggested approach on several somewhat cluttered home-like
environments. The system was able to maintain a consistent
representation of the locations of objects over the course of
several days where the objects were changed between each
day.

We believe object persistence, life-long mapping, unsuper-
vised object discovery and object-based mapping are all cru-
cial components for scaling up the semantic understanding of
current robots to entire home or hospital-sized environments.
It is prohibitively expensive to run object recognizers for
the wide variety of object categories of interest continuously
and over every portion of a robot’s sensory experience.
Therefore, it is critical to guide the robot’s attention and to
have an approach to re-use information whenever possible,
as our system exemplifies. However, we have not solved
all problems in perceptual memory. Our system relies on
a greedy clustering step of the changes detected. This is
effective even in somewhat cluttered areas, but breaks down
when many objects are moved together, especially when two
objects are always touching, such as a cup and saucer. We
plan to continue our work on region segmentation.
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