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Figure 1: Modern Hall – Global illumination, glossy indirect shading and a side view of non-uniform visibility-aware place-
ment (108 probes). Shading (17.2ms) is 20% faster and has 50% less error than [McGuire et al. 2017], at equal probe count.

ABSTRACT
Light field probes extend standard precomputed light probes to re-
duce light leaks and enable efficient filtered world-space ray tracing
queries. When probes are placed uniformly in the scene volume,
they permit an efficient querying algorithm. Manually increasing
the grid resolution, however, is the only way to eliminate geometric
feature undersampling, increasing the memory and computation
cost of the approach. We present an automatic non-uniform probe
placement method to correctly sample visibility information and
eliminate superfluous probes. We organize non-uniform probes in
an efficient structure for fast run-time ray tracing. Our probe place-
ment relies on 3D scene skeletons and a gradient descent-based
refinement to achieve full geometric coverage and reduce grazing
angle sampling biases. Our adaptive probe ray tracer caches visibil-
ity information in a sparse voxel octree, augmenting probes with
metadata used to apply a hierarchical-Z acceleration when march-
ing rays in distant probes. We benchmark our approach on a variety
of scenes and consistently demonstrate better performance, and
fewer probes, in equal-quality comparisons to the state-of-the-art.
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1 INTRODUCTION
Interactive global illumination remains a longstanding problem in
computer graphics. Modern video game solutions trade between
the types of supported shading effects, memory costs and run-time
constraints. Most industrial rendering engines rely on some form
of light probe data to accelerate run-time global illumination.

Light field probes resolvemany of the limitations of existing probe
solutions, reducing light leaking artifacts and enabling efficient
filtered world-space ray-tracing [McGuire et al. 2017]. Here, probes
are placed using a regular 3D grid to allow for a straightforward
and fast run-time probe sampling algorithm. Despite this, regular
grid placement suffers from two important limitations. First, they
do not adapt to variations in scene geometry or lighting complexity,
where higher sampling density may be needed to capture important
light field signal variations. Secondly, in virtual environments that
combine large open regions (e.g., outdoor) with finer-scale entities
(e.g., buildings and rooms with clutter geometry), uniform probe
placement fails: placing probes so as to guarantee proper geometric
coverage will result in oversampling, undersampling, and wasted
probes that either fall inside objects or that duplicate information
stored in other probes.

We present a non-uniform probe placement method that samples
geometric and lighting features at appropriate spatial resolutions.
We additionally propose an efficient run-time ray querying algo-
rithm that operates with non-uniform probes. Figure 1 shows a
preview of our results. Concretely, our contributions are as follows:

• automatic non-uniform placement that minimizes the num-
ber of probes needed to capture visible scene geometry,

• fast GPU ray queries using a novel caching structure, and
• a distance data augmentation for hierarchical ray traversal.

2 RELATEDWORK
Work on interactive global illumination spans nearly two decades.
We discuss the prior art most relevant to our method. One key
differentiating factor to consider when discussing our goals in
the context of prior art is that we not only store (ir)radiance in
our probes, but also geometric information like visible surface
normals and radial distances. These signals, and the manner in
which they need to be sampled for accurate ray-queries at runtime,
differ from traditional (ir)radiance-only probe data. Here, we require
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full geometric visibility coverage (i.e., the ensemble of our probes
should sample every scene point at least once).

Light Probes. Greger et al.’s [1998] seminal irradiance volumes
work cached (discretized) spherical irradiance distributions in a
spatial grid, allowing diffuse dynamic objects to be lit by their sur-
rounding environment at interactive rates. While self-occlusion
and lighting from dynamic objects back onto the scene were not
accounted for, this representation is powerful and variants extend
the form, format, and use of these spatial-angular irradiance dis-
tributions [Tatarchuk 2005]. Among these, spherical harmonics
(SH) prove to be an efficient representation for the angular distri-
butions [Ramamoorthi and Hanrahan 2001], paving the way for
precomputed radiance transfer (PRT) methods that allow for a cer-
tain degree of (low-frequency) self-occlusion [Sloan et al. 2002].
Jendersie et al. [2016] use a dynamically relit hierarchical surfel
scene representation to support dynamic object relighting. How-
ever, scaling dynamic solutions to complex scenes remains an open
problem. Silvennoinen and Lehtinen [2017] combine ideas from
light probes and PRT, factorizing the light transport matrix into
global and local reflection components, then placing sparse radiance
probes to reconstruct smooth indirect lighting.

We too target sparse (and adaptive) spatial placement of angular
probes, although we rely on light field probe distributions which
account for scene geometry [McGuire et al. 2017]. McGuire et al.’s
method uses inter-probe marching to enable efficient shader-level
filtered ray tracing and irradiance queries. At runtime, shading
can be computed using both Monte Carlo sampling-based methods
and visibility-aware irradiance probe queries that are robust to
light leaking artifacts. The efficiency of their tracing and querying
algorithms rely fundamentally on a regular grid probe placement.

Regular grid probe placement poses several problems. At low-
resolution, sampling complex scene geometries can be difficult,
and increasing grid resolution does not necessarily solve the prob-
lem. Furthermore, using a conservatively high resolution can be
doubly wasteful: since typical interactive graphics and gaming en-
vironments combine large expanses with densely-populated build-
ing/room geometry, regular grid probe placement can simultane-
ously oversample open areas, undersample regions with denser
fine-scale geometry, and inevitably places probes inside objects
(partially or fully). This wastes memory and also leads to recon-
struction artifacts at runtime.

We propose a non-uniform light field probe placement algorithm
that guarantees geometric coverage, and we design new tracing and
visibility-aware irradiance querying algorithms to support this non-
uniformity.We show that, for equal quality, ourmethod consistently
requires both fewer probes and achieves faster run-time shading.

Non-Uniform Probe Placement. Non-uniform probe placement
methods vary on the data they store at probe locations, and how
they use it for shading at runtime. Most methods either rely on
distance-, visibility- and/or user-controlled heuristics, or on lifting
and merging schemes that operate from a pre-initialized probe set.

Greger et al. [1998] use a bi-level regular grid, placing irradiance
probes on a coarse grid before subdividing cells that contain ge-
ometry. This approach suffers from the same sampling issues as
regular grids, including light leaking and darkening. Robustness
to the darkening artifacts, caused by probes placed inside objects,

can be improved by casting rays during probe placement [Gilabert
and Stefanov 2012], and a hierarchical regular grid (with > 2 levels)
can also be employed [Stefanov 2016]. Still, the regular structure of
probe positions provides no assurance that geometric features are
sufficiently sampled. Our method resolves mutual visibility, placing
probes adaptively along the geometric skeleton of a scene’s volume.

Cupisz [2012] uses a Delaunay tetrahedralization of scene vol-
umes to place and interpolate non-uniform irradiance probes. In
our initial experiments, the tetrahedron barycentric coordinate
nearest probe search is too costly to perform (e.g., per ray) at run-
time, but a simpler Voronoi-based representation with augmented
neighborhood information proved useful.

Tatarchuk [2005] adaptively sample irradiance volume probes
starting from a dense uniform sampling, pruning and injecting
probes based on a numerical estimate of the spatial gradient of
irradiance. Bowald [2016] extends this idea with a binary bit mask
that accounts for mutual probe visibility during the gradient com-
putation.

Chajdas et al. [2011] place environment map probes according
to local variations in incident lighting intensity, color and direc-
tionality. This method begins with a dense uniform grid sampling,
pruning using a similarity metric based on a discretized irradiance
gradient field. While this typically results in better coverage than
naïve uniform placement, there is no guarantee regarding scene
geometry coverage, and the gradient field tends to degenerate by
driving probes towards light sources. To improve geometric cover-
age, Silvennoinen and Timonen [2015] also begin with a uniform
grid of probes, then retain a subset of these probes based on visi-
ble surface determination and distance-to-surface metrics. We also
rely on probe-surface visibility, using a visibility atlas to more ro-
bustly treat complex indoor scene environments. Silvennoinen and
Lehtinen [2017] apply a greedy placement strategy: after voxeliz-
ing the scene, probes are placed only in voxels that occupy open
space. A heuristic based on visibility and probe influence radii is
used to merge this initial dense probe set into a sparser one. While
this serves to avoid placing probes inside objects (something our
placement algorithm also achieves), the heuristic tends to favor
placing probes close to geometry. Such placement is undesirable
for our ray tracing needs, since angular distortion of the geometric
information stored in the probes would lead to instabilities in the
tracing algorithm.

3 ADAPTIVE PROBE PLACEMENT
We present an automatic method to place the fewest number of light
field probes needed to adequately sample the geometric details of a
scene. Our approach comprises two stages: first, we compute the
geometric skeleton of a scene, using an intermediate medial axis or
signed distance representation (Section 3.1); secondly, after placing
candidate probes using the skeleton, we optimize their placement
using visibility- and sampling-based metrics designed to improve
the robustness of runtime (ir)radiance queries and ray-tracing using
the geometric probe data (Sections 3.2 and 3.3).

3.1 Visibility-aware Probe Placement
The straight skeleton is a representation of a polygonal scene that
resembles a piecewise linear approximation of the medial axis. We
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Figure 2: Left to right: we construct an SDF of the Cornell
Box, apply voxel culling/clustering to obtain an approxi-
mate skeleton, then cluster skeleton elements before plac-
ing probes on the clusters’ centroids.

arrive at a scene’s straight skeleton by sweeping polygonal edges
inwards towards each other, forming skeleton elements as the set
of non-adjacent swept polygonal edge intersections.

A 3D straight skeleton comprises points, line segments and
planes, and its applications vary from vertex placement in graph
drawing algorithms [Bagheri and Razzazi 2012] to automated engi-
neering and architectural design [Kelly et al. 2017].

We can exploit an important property of a straight skeleton: each
of its elements defines a region of constant scene geometry visibility
information. As such, placing probes along every straight skele-
ton element is an automatic way to guarantee full scene visibility.
Moreover, doing so in a bijective fashion guarantees full visibility
with a minimal number of probes.

Despite this seemingly straightforward solution, straight skele-
tons are difficult to compute in practice: for scenes with general
3D assets, 3D straight skeleton computation can be numerically
unstable, with many edge cases and robustness issues. Fortunately,
by relaxing the requirement of a perfect straight skeleton, we can
apply fast approximate skeleton construction algorithms that meet
our practical needs and are suitable for use with real-world digital
assets. We present two such approaches: signed distance function-
based and medial axis-based representations.

Signed Distance Function Skeletonization. The signed distance
function (SDF) of a scenemaps 3D points to distances: every point in
space is mapped to the shortest distance (from the point) to a point
on the surface of the scene. The distance is signed, with positive
values for points outside the scene volume and negative values
for points inside. Algorithms for constructing SDFs from general
meshes are well understood, and we adopt the openly-available
OpenVDB library to compute scene SDFs. After building a discrete
SDF, we exclude voxels outside the scene and those with small
distance values (i.e., regions close to scene surfaces). The remaining
voxels are clustered to form an approximate skeleton topology for
the scene (Figure 2). The average position of each cluster is used as
an initial candidate for individual probe placement.

Ball Shrinking Skeletonization. We use ball shrinking to compute
the scene’s medial axis [Ma et al. 2012]. It operates on a point-
based scene input, first placing spheres of (sufficiently large, user-
prescribed) radii r tangent to each point p (centered at p − r−→np ) and
progressively shrinking them until a maximal inscription criterion
is met. The centers of the resulting sphere-set are then taken as
the medial axis vertices (and probe locations). We initialize the
point-based input with the vertices of a sufficiently fine tessellation

Figure 3: Left to right: decreasing probe density by preclus-
tering vertices during medial axis construction.

of the scene, and control probe density by pre-clustering vertices
according to position-orientation similarity (Figure 3).

3.2 Position Optimization Metrics
After skeleton-based probe placement, we can apply an optional
optimization pass to refine probe locations. We define several opti-
mization metrics below, and optimize the probe placement accord-
ing to these objectives using gradient descent (Section 3.3).

Visibility. We define an objective to measure how much of the
scene surfaces are visible from a set of probes. To do so, we map
binary surface visibility (from each probe’s octahedral directional
map) to the scene’s texture atlas, parameterized by texels (i, j) (see
Figure 4). This binary measure is maximized when the union of
per-probe visibility atlases ∪kV k

i, j fully cover the scene.

Probe View Distortion. In addition to optimizing visibility, it is
also important to consider the projected solid angle distortion at
each probe imposed by octahedral directional maps. Specifically,
if a probe’s view of a surface points occurs at grazing angles, ray-
tracing to these points using the probe may suffer from numerical
imprecision. To account for this, we preferentially weight surface
points (visible from a probe) according to a term proportional to
their subtended solid angle Ωk = −ω ·

−→n p(ω), where ω is the
view direction for a texel in the octahedral map of the k th probe,
and −→n p(ω) is the normal of surface point visible to the probe at
direction ω.

Distance to Surface. Optimizing for visibility and relative view
orientation can lead to local maxima, where probes settle into re-
gions very close to object surfaces. To address this, we can promote
global scene coverage by maximizing the sum of distances to all

Figure 4: Left to right: texture atlas for the Cornell box; radi-
ance texture for a single probe;mapping of the points visible
from this probe, onto the atlas.
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Figure 5: Global visibility atlas. Left: all probes accumu-
lated, one corner on the bottom right is not visible to any
probes; Middle: all except current testing probe, the surface
in the red square is not covered; Right: all probes accumu-
lated after 100 iterations of Gibbs sampling, full coverage is
achieved

visible surfaces of the k th probe, dk =
∑
ω |p −p(ω)|, where p is the

probe location we will optimize (in Section 3.3).

3.3 Gradient Descent Optimization
We define the fitness of a probe set proposal P = (p1,p2, ...,pn ) as

R(P) =
∑
i, j πi, j , (1)

where πi, j is the fitness associated to the (i, j)th texel in the our
global fitness atlas, which comprises a weighted combination of
the individual fitness metrics (described in Section 3.2) as

πi, j =
∑n
k=1

(
w1 Ωk +w2 dk

)
V k
i, j , (2)

where weightsw1 andw2 scale the relative importance of the ori-
entation and distance metrics, and we have n probes.

When evaluating Equation 1 during optimization (and the in-
dividual terms in Equation 2), we subsample view directions ω at
each probe (instead of every octahedral direction). We update our
probe set proposal by incrementally updating individual probe lo-
cations, in sequence. When updating probe k’s location pk to p′k ,
yielding a new proposal P ′ = (p1, . . . ,p′k , . . . ,pn ), we compute a
gradient-based update as

p′k = pk + γ ∇kR, (3)

where γ is a step size (see below), and ∇kR ≈ (∂
/
∂pk )R is an ap-

proximated gradient of the fitness with respect to the candidate
probe’s current position pk . Observing that traditional finite dif-
ferences performs poorly, we based this approximated gradient on
sampling eight directions on the corners of a cube with the current
probe at the center. We compute the sum of the visibility atlas as
a new reward for each support probe, and then move the probe
position in the direction of the support probe that gives us largest
reward improvement.

Setting the initial step size to the support probe grid diagonal
is reasonable but, after many iterative optimization updates, oscil-
latory behavior can emerge, with some probes moving back and
forth between two positions. Furthermore, performing probe up-
dates sequentially and locally (i.e., without global knowledge of
other probe updates) will not guarantee convergence to a global
maximum. We apply two strategies during optimization to improve
exploration: Gibbs sampling and stochastic direction sampling.
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Figure 6: Stochastic direction sampling. Left to right: we
construct a stochastic probe update direction by sampling
points xξ ,i (i ∈ [1, 4]) proportional to a linear model of ex-
pected fitness along the x-adjacent support probe grid, then
repeating for y-points yξ , j (j ∈ [1, 2]) and z-point zξ ,1.

Gibbs Sampling. Instead of accepting each new proposal probe
set P ′, we perform an unbiased stochastic update. We accept a new
proposal if ξ < R(P ′)

/
R(P), where ξ on [0, 1] is a uniform canon-

ical random number. If each P ′ only updates a single probe and
each ξ is drawn independent and identically distributed (i.i.d.), this
stochastic process is guaranteed to generate samples proportional
to the steady-state fixed-point R distribution.

Stochastic Direction Sampling. Instead of computing the position
update vector ∇kR using the fixed support probe grid locations
psk , we perform a stochastic direction sampling to reduce coherent
structure in the exploration. Our stochastic direction sampling
proceeds incrementally along each canonical axis and assumes that
the distribution of R along any axis follows a (locally) linear model.

Starting with the x-axis, we pair the four x-adjacent support
probes on the corners of the support cube. We fit four linear models
f (x) = ax + b to the four fitness pairs [R(P ′s ),R(P ′s+1)] (for s ∈

{1, 3, 5, 7}) obtained by substituting pk in P with psk in P ′s . After
solving for a and b, we can draw a sample for the x-component of
∇kR proportional to each of the f (x), using the inversion method:
the CDF of f is F (x) = (a/2)x2 + bx and its inverse is F−1 =

(−b±
√
b2 − 2ax)/a. Thus, evaluating F−1(ξi ) at four i.i.d. canonical

random numbers ξi yields a sample point along each of the four
x-adjacent support probe edges (left of Figure 6).

We repeat this process along they-axis next, now considering the
two y-adjacent support probes on the corners of the (x-presampled)
support square, to sample two y points. Finally, we repeat along the
z-axis, considering the only remaining z-adjacent support probes
on the endpoints of the (xy-presampled) support line.

This process yields a randomized gradient-step direction ∇kR
that can be substituted into the standard gradient descent process
but that additionally considers the local variation of R around pk .
We also adjust our Gibbs sampling procedure to simply consider this
stochastic direction-sampled proposal instead of the one we would
have picked using the fixed support grid. Stochastic direction sam-
pling improves global scene visibility coverage. Our supplemental
video illustrates its subtle yet important effect on probe placement.

4 SHADINGWITH NON-UNIFORM PROBES
We first explored a Voronoi-based approach to select non-uniform
probes for shading, inspired by Cupisz [2012]. Our implementation
was no faster than the original algorithm [McGuire et al. 2017]. We
instead propose a sparse voxel octree-based (SVO) approach.
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Figure 7: Top view of influence regions. The top left pillar of
the temple is covered by an orange probe and a white probe.

4.1 Baking Probes to Sparse Voxel Octrees
SVO representations are widely used to accelerate (potentially fil-
tered) geometric queries. We encode probe indices into an SVO in
order to efficiently determine the subset of probes best suited for
shading, given any world-space position in the scene. Unlike tradi-
tional SVOs [Crassin and Green 2012], we only populate leaf nodes
(with probe indices) and leave interior nodes empty, for two reasons:
first, any failed ray intersection due to a backface hit will need to
recursively query the tree at the backface hit position to re-select a
new probe (and, so, only baking probes at geometric boundaries
is insufficient); second, dynamically-added geometry can appear
anywhere in the scene, not just close to existing surfaces.

We associate each probe with a region of influence according to
its visible geometry [Sébastien and Zanuttini 2012]: the influence
distance for each face of a probe’s bounding cube is set as the
median of the probe’s sampled radial distances (Figure 7).

As our placement strategy ensures full visibility coverage, every
voxel is visible to at least one probe (hence, every voxel will be
assigned at least one probe). Influence volumes for each probe often
overlap; we conservatively store up to four probes in each voxel.

When selecting a probe for shading from a voxel, we can reuse
the placement metric terms in Equation 2. For probe placement we
needed to avoid placing probes inside objects, and so we favored
larger probe-to-surface distances; for shading, however, we know
that probes are not inside objects and so we simply weigh the four
stored probes according to their projected solid angle-weighted
visibility: (Ωk

/
dk )V

k
i, j for k ∈ [1, 4] and where (i, j) are evaluated

according to the runtime ray query. Since we consider mutual
visibility during probe selection, the graph of probes a ray can visit
before terminating at a valid intersection does not have any cycles:
each ray-trace is guaranteed to complete (or return no intersection)
without looping over the same probe more than once.

4.2 Hi-Z Ray Tracing in Probe Textures
McGuire et al. [2017] use a bi-scale ray marching algorithm: a
query ray is first marched using a lower-resolution MIP of the
radial distance probe data, only continuing on to a full-resolution
march if the low-res march returned a hit.

We extend this approach to fully hierarchical traversal, inspired
by recent hierarchical-Z ray tracing work [Uludag 2014]: since
octahedral maps are piecewise linear, we can perform hi-Z probe ray
marching along individual piecewise linear ray segments (projected
onto the octahedral map).

We need to take care when constructing the MIP-hierarchy:
directly mipmapping the octahedral textures yields incorrect dis-
tortion. We instead build probe cubemap mipmaps and separately
resample each mip-level into an octahedral map.

Our hierarchical-Z ray marching approach uses fewer steps on
average compared to bi-scale marching [McGuire et al. 2017], re-
sulting in at least a 30% performance improvement (in equal-quality
comparisons; see Section 5). We conservatively avoid the coarsest
levels of the hierarchy to avoid numerical edge cases.

5 IMPLEMENTATION DETAILS AND RESULTS
We evaluate our method on scenes of varying geometric and radio-
metric complexity. We compare quality, performance and memory
requirements of our placement and tracing against the method of
McGuire et al. [2017]. We implemented our algorithm in the same
G3D software engine [McGuire and Mara 2017] as McGuire et al.
[2017], benchmarking on a 3.6 GHz Intel Xeon E5-1650 v4 CPU PC
with 64GB of RAM and an NVIDIA GeForce GTX 1060 GPU. In all
cases, direct illumination is computed using shadow mapping in a
deferred renderer, and our light field probes are used to compute
glossy indirect illumination. We focus on glossy indirect, since dif-
fuse indirect varies more smoothly. The direct lighting radiance
stored in probes is computed using the same direct illumination
renderer. Multiple bounces of indirect lighting can be computed
by iteratively re-injecting indirect illumination radiance into the
probes. We always employ a probe resolution of 512 × 512.

We build the SVO from static scene geometry prior to baking
probe indices (Section 4), and so visibility information is bounded
by the static scene bounds. This serves the additional benefit of
bounding probe influence to the scene boundaries.We populate SVO
leaves with probe indices using a compute shader pass (Section 4.1),
with one thread per node: each thread first culls probes that are
not visible from current voxel, before sorting the remaining probes
based on their projected solid-angle weighted visibility.

5.1 Quality Comparisons
We compare non-uniform vs. uniform probe placement under equal-
quality and equal probe count scenarios. We compute error in the
glossy indirect component (the effect by far most affected by probe
placement). We compute ground truth with a Monte Carlo path
tracer, measuring image mean squared error (MSE). We generally
demonstrate the highest quality one could hope to attain with
uniform grids, using impractically high grid resolutions.

Equal Quality – Varying Probe Placement. Figure 8 illustrates a
variant of the Cornell Box: both boxes and the roomwalls are glossy.
The first row visualizes probe placement: non-uniform placement
uses seven probes (one probe is hidden by the tall box) generated
using our SDF placement (Section 3.1). Even in this relatively simple
scene, regular grid placement suffers from reflection artifacts (e.g.,
on the tall box, illustrated in the second row). Non-uniform place-
ment generates artifact-free reflections at twice the performance.
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Non-uniform placement: 7 probes

Rendering time: 6.1ms
MSE 2.7 × 10−2

Regular grids: 2 × 2 × 2 = 8 probes

Rendering time: 11.3ms
MSE 2.8 × 10−2

Figure 8: Comparison of non-uniform and regular grid in
final rendering results (first row) and filtered glossy compo-
nents (second row) of the Cornell box.

Figure 10 illustrates results in the Iconic Temple, a scene with
spatially-varying geometric complexity. This scene further illus-
trates the need (and utility) of non-uniform probe placement. For
example, a hand-optimized 4× 2× 4 regular grid still results in eight
probes occluded under the stairs and in objects. Each cylindrical
pillar requires at least three probes to obtain full visibility coverage,
and our placement automatically arrived at such a solution using
SDF placement (see Figure 7). Comparing the indirect glossy ren-
dering component, our non-uniform placement correctly captures
glossy reflections of, e.g., pillars off walls and walls off the floor
(despite using half the number of probes compared to a 4 × 2 × 4
regular grid). In all cases, our probes are rendered faster than their
(roughly) equal-error uniform grid counterparts.

We observe similar results in a modification of the Crytek Sponza
scene used by McGuire et al. [2017]. We place 54 to 84 non-uniform
probes using the medial axis approach (Section 3.1). Figure 11 com-
pare our results with 54 and 64 probes to three regular grid reso-
lution settings, illustrating probe placement (top row), rendered
results (middle row) and rendering error map (bottom row). Once
again, the regular structure of the grid precludes adequate sampling
of fine- and coarse-scale visibility relationship around the statue
and behind the curtains. To achieve full coverage and good render-
ing result with no apparent artifacts, an 8 × 4 × 4 regular grid is
needed (i.e., compare columns 1 and 2 of Figure 11).

Once again, our approach generates lower error results with fewer
probes, all with faster rendering performance.

Equal Probe Count. Figures 10 and 11 columns 3 and 4 also il-
lustrate equal probe count comparisons in the Iconic Temple and
modified Crytec Sponza scenes.

Figure 9: Non-uniform probe placement improves view vari-
ation, e.g., when sampling the statue geometry. Uniform
probes duplicate the same view towards the statue.

In the Iconic Temple, it is challenging to limit the number of
grid-based probes to match our non-uniform placement while still
achieving good coverage, especially with the irregularity introduced
by, e.g., the stairs. Indeed, even our best hand-tuned uniform grid
places four probes under the stairs (making them useless), and every
(reasonable) uniform placement we tried fails to reach full surface
visibility coverage along the center corridor, leading to shading
artifacts due to undersampling.

In the modified Crytech Sponza scene, uniform grid placement
cannot generate equal quality renderings at equal probe count (see,
e.g., 6×3×3 vs. our 54-probe placement). At least four vertical layers
are needed to fully cover the scene geometry with uniform grids.
In addition to undersampling artifacts on the statue, we observe
artifacts due to thickness and grazing angles undersampling in
the 6 × 3 × 3 result. Our non-uniform placement alleviates these
problems, reducing the uniform structure in the final probe set
(Section 3). Despite using only one vertical layer of probes in the
corridor, our placement still samples a sufficiently diverse set of
views towards the statue and area light (see Figure 9).

5.2 Performance
Table 1 summarizes our performance benchmarks for rendering
indirect glossy illumination. Every scene is rendered at a resolution
of 1900× 1080, and to normalize across the number of glossy pixels,
we render all surfaces as glossy for the purpose of benchmarking.

Table 1: Performance comparison (measured in millisec-
onds) of different placement methods.

Scene Probes Tracing Algo. Performance

Cornell Box

2 × 2 × 2 grid Original 11.3
2 × 2 × 2 grid Hi-Z 8.2
7 non-uniform Original 7.8
7 non-uniform Hi-Z 6.1

Iconic Temple
2 × 2 × 4 grid Original 32.5
4 × 2 × 4 grid Original 27.7
16 non-uniform Hi-Z 17.3

Modern Hall
4 × 4 × 8 grid Original 24.1
50 non-uniform Original 17.8
50 non-uniform Hi-Z 14.50

Crytek Sponza
8 × 4 × 4 grid Original 30.0
64 non-uniform Original 23.1
64 non-uniform Hi-Z 24.8

Crytek Sponza
6 × 3 × 3 grid Original 24.1
54 non-uniform Original 20.6
54 non-uniform Hi-Z 19.0
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Non-uniform: 16 probes

Rendering time: 17.3ms
MSE 2.78 × 10−3

Regular grids 4 × 2 × 4 = 32 probes

Rendering time: 27.7ms
MSE 2.70 × 10−3

Non-uniform: 79 probes

Rendering time: 29.7ms
MSE 2.51 × 10−3

Regular grid: 2 × 2 × 4 = 16 probes

Rendering time: 32.5ms
MSE 2.93 × 10−3

Regular grid: 4 × 4 × 4 = 64 probes

Rendering time: 31.3ms
MSE 2.50 × 10−3

Figure 10: Iconic Temple – equal quality (cols. 1 & 2), equal probe count (cols. 3 & 4), and equal performance (cols. 3 & 5). Top
to bottom: probe placement, glossy indirect rendering. At similar MSE, non-uniform placement uses fewer probes.

Non-uniform: 64 probes

Rendering time: 23.2ms

MSE 1.10 × 10−2

Regular grid: 8 × 4 × 4 = 128 probes

Rendering time: 30.0ms

MSE 1.05 × 10−2

Non-uniform: 54 probes

Rendering time: 20.6ms

MSE 1.27 × 10−2

Regular grid: 6 × 3 × 3 = 54 probes

Rendering time: 24.1ms

MSE 4.14 × 10−2

Regular grid: 3 × 3 × 3 = 27 probes

Rendering time: 20.0ms

MSE 2.41 × 10−2

Figure 11: Crytek Sponza – equal quality (cols. 1 & 2), equal probe count (cols. 1 & 4) and equal performance (cols. 3 & 5)
comparisons. Top to bottom: probe placement, glossy indirect component and glossy indirect error visualization. At similar
MSE, non-uniform placement uses fewer probes. For equal probe count and at equal performance, non-uniform placement
achieves lower MSE and fewer visual artifacts.

Non-uniform: 50 probes

Rendering time: 17.8ms
MSE 2.30 × 10−2

Regular grids 4 × 4 × 8 = 128 probes

Rendering time: 24.1ms
MSE 2.31 × 10−2

Non-uniform: 105 probes

Rendering time: 17.2ms
MSE 2.28 × 10−2

Regular grid: 3 × 5 × 7 = 105 probes

Rendering time: 20.7ms
MSE 3.62 × 10−2

Regular grid: 4 × 4 × 4 = 64 probes

Rendering time: 17.5ms
MSE 2.87 × 10−2

Figure 12: Modern Hall – equal quality (cols. 1 & 2), equal probe count (cols. 3 & 4) and equal performance (cols. 3 & 5) com-
parisons. Probes (top) & glossy indirect shading (bottom). At similar MSE, non-uniform placement uses fewer probes.
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We consistently outperform the approach ofMcGuire et al. [2017].
Our hierarchical-Z ray tracer accelerates the tracing process, result-
ing in render times roughly 30% to 53% faster than those of their
approach, at equal visual quality. Generally speaking, our method
maintains good performance even at extreme, dense non-uniform
probe counts. Since runtime probe selection accounts for visibility,
we avoid querying probes that are unlikely to contribute an inter-
section. Regular grids, on the other hand, do not generalize well
with increased visibility complexity (e.g., the decorations between
pillars in the iconic temple).

Apart from ray tracing, the most time-consuming component of
our runtime is the SVO traversal. A more efficient structure, such
as a BVH, may improve this cost.

Generating the skeleton (either from an SDF or a medial axis)
for one-time probe placement take ∼ 10 seconds per scene, and
depends on the resolution and complexity of the geometry. Baking
probe indices into the SVO takes ∼ 5 seconds at initialization. Total
probe placement and initialization time is roughly the same as
[McGuire et al. 2017], requiring about a minute depending on the
number of probes (and their resolution, which we keep fixed).

Memory Footprint. Table 2 summarizes our memory usage statis-
tics. We separate the storage costs of the probe distance data, SVO,
and other probe data (radiance, irradiance), as the former are the
key differentiators between our method and McGuire et al. [2017].
We use the same texture formats as McGuire et al. [2017]. We store
probe positions in a 1D texture, adding a negligible cost (a few KB)
incorporated into the “other” category.

Generally speaking, our method uses more memory per probe
than the original algorithm: probe positions cannot be computed
implicitly from the grid, and the SVO incurs the majority of our
additional memory requirements. Depending on the resolution and
depth of the SVO, memory usage varies. We store SVO probe indices
in RGBA8 format and each voxel has at most four probe candidates.

We encode radial distances in a R16F format 512×512 texture. For
hierarchical-Z tracing, wemipmap distance probes in RG16F format,
storing minimum and maximum depth in the R and G channels.

6 CONCLUSION AND FUTUREWORK
We provide a new approach for non-uniform placement of radi-
ance probes, which identifies positions that maximize visibility and
suitability for use in light field ray tracing. Our approach can be
extended to open spaces with a bounding volume intersection. For
the run-time shading algorithm, we provide an efficient structure
to organize probes which is visibility-aware. We devise a new hier-
archical ray marching algorithm adapted to non-uniform probes
that outperforms the state-of-the-art.

Table 2: Memory usage (in MB) with same quality.

Scene # Probes Probe Data Other SVO Total

Cornell non-uni 7 9.33 12.25 15.41 36.99
grid 8 4.57 14.88 – 19.45

Temple non-uni 16 21.33 28 61.21 110.54
grid 24 13.71 59.52 – 73.23

Hall non-uni 50 66.70 87.60 195.25 349.55
grid 128 146.29 238.08 – 384.37

Sponza non-uni 54 72 94 243.23 409.23
grid 128 146.29 238.08 – 384.37

In all test scenes, our solution achieves higher rendering quality
with fewer probes (in comparison with the path traced references)
andmaintains better performance than regular grids. Our optimized
non-uniform probe positions capture much more precise indirect
glossy reflections in comparison to the same number of probes
organized in a regular grid.

Future Work. There are several avenues for future work. To bet-
ter identify effective positions for placement, we can analytically
compute probe-to-surface visibility by adopting irradiance isocoun-
tour gradients [Arvo 1995]. In order to evaluate the visibility of
each probe, we unwrap the geometry of a 3D scene into an atlas.
However, for large scale scenes with complex geometry, mapping
all surfaces into a single texture atlas leads to loss of detail. We
could search for a segmentation of the geometry that allows us to
map each part into a local atlas such that details are preserved and
all surfaces are fully represented at a common scale.

Runtime selection of the most promising probe for any given
ray is also an important direction for future work. During a ray
tracing process, there could be multiple probe selection queries,
depending on the complexity of the scene. Therefore we need a
strategy to be efficient and GPU friendly. In our current algorithm,
we use a sparse voxel tree which encodes light probe indices in
each voxel. However, the sparse voxel tree is stored in a RGBA
3D texture, and due to the sparsity of storage, a lot of space is left
empty. We can further optimize the memory usage of octree since
we only store on leaves. For runtime, traversing down a octree
involves reading the children index buffer and computing correct
nodes. This operation can be expensive for large scenes because the
depth of tree is greater if we keep the same resolution as our testing
scenes. We believe different representations of probe structures
can save memory, for example, bounding volume hierarchy (BVH)
could be used to approximate the range of each probe for selection.

Figure 13: Radiance
probe mipmap issues.

Finally, although we applied hi-Z
ray tracing, we do not apply the cone
tracing algorithm. In probe textures,
the octahedron mapped to a square
texture is sampled from six faces of
the cubemap [Engelhardt and Dachs-
bacher 2008]. Because we bake ra-
dial probe distances, which cannot
be used to pre-convolve visibility, we
constructed visibility from real depth
for each cube face. However, con-
structing mipmaps of radiance octa-
hedral textures for runtime sampling is not trivial, since we need
to stitch the seams of the octahedron together to have the correct
cone projected. As shown in Figure 13, rays (in yellow) are traced
in the probe texture and the hit texels that lie on the edges of the
octahedron. To correctly mipmap the texels on boundaries, we must
consider the texels that are reflective symmetric with respect to
the midline of the boundary, as shown in red and blue. Ultimately,
the cone constructed at the hit pixel requires a large radius in this
case, where we need to mipmap the value correctly based on which
edges are connected.
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