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In this paper we develop a probabilistic method to infer the visual-task of a viewer given measured eye
movement trajectories. This method is based on the theory of hidden Markov models (HMM) that
employs a first order Markov process to predict the coordinates of fixations given the task. The prediction
confidence level of each task-dependent model is used in a Bayesian inference formulation, whereby the
task with the maximum a posteriori (MAP) probability is selected. We applied this technique to a chal-
lenging dataset consisting of eye movement trajectories obtained from subjects viewing monochrome
images of real scenes tasked with answering questions regarding the scenes. The results show that the
HMM approach, combined with a clustering technique, can be a reliable way to infer visual-task from

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that low-level visual features, such as color and
intensity contrasts, influence eye movements Findlay (1981),
Zelinsky et al. (1997). However, it is also observed that the task
being performed by the viewer can also influence the pattern of
eye movements. For example, someone that is viewing a web page
on a computer monitor could be engaged in, among others, the
tasks of reading text, searching for a specific object, counting
objects, or recognizing faces. Each of these tasks would produce a
different pattern of eye movements.The influence of task on eye
movements was vividly demonstrated in the celebrated study of
Yarbus (1967) who recorded the eye movements of a subject while
viewing a painting. The subject was asked different questions
regarding the painting, such as to determine the wealth of the fam-
ily depicted in the painting’. As shown in Fig. 1, different trajecto-
ries emerged depending on the specific question that the viewer
was answering.

Several other studies have also reproduced the original finding
of Yarbus using new equipment and stimuli, and with larger num-
bers of subjects. For instance, in Tatler et al. (2010) the results
obtained by Yarbus were confirmed in an experiment that studied
the effect of instructions in viewing a portrait of Yarbus. While the
effect of visual-task on eye movement pattern has been thoroughly
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investigated, there has been little done for the inverse process - to
infer the visual-task from the eye movements. Knowledge of the
visual-task being carried out by a viewer has many potential uses.
For example, one can envisage an ‘intelligent display’ which mod-
ifies what is being displayed in a way which facilitates the task. An
intelligent web page could detect if a viewer is reading text and
highlight or magnify the text, or if it detected the viewer was
engaged in a counting or search behavior, it could highlight the tar-
get object. The goal of the work described in this paper is to
develop such an inverse Yarbus process, whereby the visual-task is
inferred given measurements of the eye movements of the viewer.

There is some doubt as to whether development of such an
inverse Yarbus process is possible at all. In a study by Greene,
Liu, and Wolfe (2012), Greene, Liu, and Wolfe (2011) two attempts
were made to produce the inverse Yarbus problem. The first
approach attempted to train humans to solve the inverse Yarbus
problem, while the second tried to train a machine learning system
to solve the problem. To obtain data for training and testing they
recorded eye movements of several subjects, each performing a
specific visual task on an image, and extracted a feature vector
from the eye movement records. The feature vector used was a
set of seven summary statistics of eye movements, which are often
used in scanpath analysis (Castelhano & Henderson, 2008; Mika
et al., 1999). This feature vector included, among others, the num-
ber of fixations, the mean fixation duration, the mean saccade
amplitude and the portion of the image covered by fixations. The
machine learning approaches used three different classifiers based
on linear discriminant analysis (Mika et al., 1999), correlational
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Fig. 1. Eye trajectories measured by Yarbus by viewers carrying out different tasks. (a) No specific task. (b) Estimate the wealth of the family. (c) Give the ages of the people in
the painting. (d) Summarize what the family had been doing before the arrival of the “unexpected visitor”. (e) Remember the clothes worn by the people. (f) Remember the
position of the people and objects in the room. (g) Estimate how long the “unexpected visitor” had been away from the family. Image adapted from Yarbus (1967) with

permission from Springer Publishing Company.

methods Haxby et al. (2001) and support vector machines (Hearst
et al., 1998). The results showed that both humans and the
machine classifiers can only infer the task at a chance level. Based
on these results (Greene, Liu, and Wolfe (2011)) concluded that:
“The famous Yarbus figure may be compelling but, sadly, its message
appears to be misleading. Neither humans nor machines can use scan-
paths to identify the task of the viewer.”. A similar result was
obtained in Kanan et al. (2014), where a radial-basis kernel func-
tion support vector machine (C-SVN) (Gunn, 1998) was used to
classify the eye trajectories represented by their summary statis-
tics. In their results (Kanan et al., 2014) could only achieve an accu-
racy of 26.3% (95% Cl=21.4-31.1%, p=0.61) which is not
significantly better than the chance level.

Summary statistics of eye movements are not sufficient to iden-
tify the visual task that was performed by the subject. Castelhano,
Mack, and Henderson (2009) looked at the influence of task on a
group of summary statistics (including the ones used in Greene’s
experiment) for the two tasks of memorization and visual search.
After considering various features of eye trajectories, they came
to the conclusion that the visual-task does not influence the fea-
tures obtained from individual fixations. A similar result was
obtained in Mika et al. (1999), where they also used the same fea-
tures as in Greene, Liu, and Wolfe (2012). However, even though it
is evident that summary statistics are not well suited for imple-
menting an inverse Yarbus process, it may still be the case that
other, more informative, features could do the job. For instance,
it is shown in Borji and Itti (2014) that using the spatial informa-
tion along with the summary statistics of the eye movements
can marginally improve the results. In their experiment, Borji
and Itti (2014) replicated Greene’s experiment and showed that
by adding the spatial information to the aggregate eye movement
features a slightly, but significantly (34.12% correct versus 25%
chance level; binomial test, p = 1.07 x 10™*), better accuracy can
be obtained in decoding the observers’ task.

To motivate our method for implementing the inverse Yarbus
process, it is worthwhile to first examine the forward Yarbus pro-
cess, in which the task is given as the input and the measured
task-dependent eye trajectory is the output. The first question to
ask regarding the forward Yarbus process is what, if anything,
determines the gaze direction while viewing a scene. The funda-
mental premise in this regard is that gaze follows the allocation
of selective visual attention. Then, the assumption is that viewer

task modulates, in some fashion, the allocation of attention, which
is then reflected in the overt gaze shifts. Let us first review the
approaches that have been developed for modeling visual atten-
tion, and then consider how task modulates attention.

1.1. Attention modeling

In every second a vast quantity of visual information enters our
eyes, only a fraction of which can be processed by the limited neu-
ronal hardware available to our visual system. However, the
human brain has the ability to process the visual information in
real time thanks to the mechanisms of visual attention. Visual
attention is the process that is responsible for selecting a subset
of information to be processed in the higher levels of the visual
system (Desimone & Duncan, 1995). This selection process can
be interpreted as the directing of a focus of attention (FOA) to a
circumscribed region in the visual field (Niebur & Koch, 1998,
chap. 9).

An influential concept in attention modeling is that of salience, a
term which can be loosely defined as the prominence or conspicu-
ity of region or object in a scene. Salient regions are, in this view,
attractive to attention, and attention will therefore be preferen-
tially directed to these regions. Gaze shifts would then be expected
to follow the attention shifts to these salient points. The extent to
which a salience-based model of attention predicts the direction of
gaze is often used as a measure of performance for that model.

The earliest saliency-based attention models were bottom-up
models, which defined salience solely on features derived from
the visual input. These models were typically task-independent.
In the case of bottom-up attention models, the allocation of atten-
tion is based on the characteristics of the visual stimuli, and does
not employ any top-down guidance or task information to shift
attention. One of the most advanced saliency models is the one
proposed by Itti and Koch (2001). In this model the FOA is guided
by a map that conveys the saliency of each location in the field of
view. The saliency map is built by linearly combining the feature
maps, which are the outputs from different filters tuned to simple
visual attributes, such as color, intensity and orientation (see
Fig. 2a).

Although image salience models have been extensively
researched and are quite well-developed, empirical evaluation of
such models show that they are poor at accounting for actual
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Fig. 2. (a) General architecture of bottom-up attention model by Itti and Koch (2001). The saliency map is built by linearly combining the feature maps which are the outputs
from different filters tuned to simple visual attributes, such as color, intensity and orientation. (b) Influence of top-down, task-dependent priors on bottom-up attention
models. The influence can be modeled as a weight vector modulating the linear combination of the feature maps (Itti & Koch, 2001).

attention allocations when a visual-task is involved (Einhduser,
Rutishauser, & Koch, 2008). In a study by Judd, Durand, and
Torralba (2012) a database of 11,700 eye trajectories obtained from
39 subjects viewing a dataset of 300 natural images was created.
The study compared the performance of 10 different salience-
based models of visual attention in predicting the eye trajectories
of the database. The results of this study indicate that early bot-
tom-up attention models and their variations, such as the saliency
model of Itti and Koch (2001), perform only slightly above the
chance level when it comes to predicting fixations on natural
images. The study also showed that although more recent models,
such as the information-theoretic model of Bruce and Tsotsos
(2009) and the context-based models of Torralba et al. (2006)
and Goferman, Zelnik-Manor, and Tal (2012), perform better than
the early models, their performance in predicting the location of
fixations is still less than that obtained simply by using the fixa-
tions of a single human viewer. This conclusion was based on an
evaluation of the accuracy of a fixation map from one human
observer in predicting the fixation map of the other 38 observers.
The accuracy was averaged over all images in the database and
indicated how well the fixation map of a single human can predict
an average fixation map of humans. This indicates the importance
of incorporating actual eye movement patterns into attention
models.

Much of the shortfall in performance of the approaches consid-
ered in the Judd, Durand, and Torralba (2012) study can be
ascribed to the lack of task-dependence in the models. Attention
is not just a passive enhancement of the visual stimuli, rather, it
actively selects certain parts of a scene based on the needs of the
ongoing visual task. This has led to the development of top-down
models, which modulate the bottom-up features based on high
level reasoning, volition and viewer task (Connor, Egeth, & Yantis,
2004). In a recent study by Borji and Itti (2013) 65 state-of-the-art
models of attention were studied and categorized as either bot-
tom-up or top-down. In each category the models were qualita-
tively compared over 13 experimental criteria. One of these
criteria was the accuracy with which a model predicts real-world
eye movement patterns as quantified by a spatial correlation coef-
ficient. In order to evaluate the statistical relationship of the sal-
iency models with the eye movement datasets, the recorded eye
trajectories can be combined to form a ground-truth saliency map
that takes on a form similar to that of the saliency map produced
by saliency-based attention models. This map, along with other
features that are studied in Borji and Itti (2013), are often used
in studies of attention to objectively evaluate the models.

Fig. 2b shows an illustration of the interaction between top-
down and bottom-up models as proposed by Itti and Koch
(2001) and Rutishauser and Koch (2007). In this model different
tasks enforce different weight vectors in the linear combination
phase. Ehinger et al. (2009) achieved a 94% agreement with human
eye movements in a visual search task by combining saliency maps
with scene context and target features. Torralba et al. (2006) also
used contextual information for facilitating object search in natural
scenes. The contextual guidance model of attention uses the bot-
tom-up saliency map, scene context, and top-down mechanisms
at an early stage of visual processing and combines them into a
unified attention map. Kanan et al. (2009) used the knowledge
about how and where objects tend to appear in a scene in order
to derive an appearance-based saliency model.

Although salience-based top-down models address the problem
of task independence of the bottom-up models, they are based on
assumptions that can degrade their performance. The development
of salience-based attention models generally proceeded under a
picture-viewing paradigm, wherein a static 2-dimensional image
or photograph was viewed. In addition, such models were typically
created to handle simple situations where viewers performed
search or detection tasks where the targets can be defined by sim-
ple conjunctions of high contrast visual features. Tatler et al. (2011)
showed that gaze allocation models that are based on salience are
limited in accounting for many aspects of free viewing of complex
scenes and often fail when applied in the context of natural (as
opposed to artificially constrained search) task performance. They
argued for moving away from models based on the picture-viewing
paradigm and focusing on the principles governing gaze allocation
in a broader range of experimental contexts.

1.2. Linking attention and gaze direction

An important aspect of the (forward) Yarbus process is that
attention allocation (suitably modulated by task) determines the
direction of gaze. The most straightforward implementation of this
is to direct the gaze to the most salient scene point. There is com-
pelling evidence that the mammalian visual-motor system
employs such a targeting scheme (Henderson, 1992; Clark
(1999)) at least in simple constrained situations. One of the argu-
ments for the use of salience maps in modeling natural visual
behavior is that spatial deviations of low-level features from the
local surround are cognitively relevant. However, while the con-
trast of low-level features in fixated locations are shown to be sta-
tistically higher than control locations in an image, this correlation
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is relatively weak in more complex situations (Mannan, Ruddock, &
Wooding, 1997; Parkhurst, Law, & Niebur, 2002; Reinagel & Zador,
1999). This lack of explanatory power for image salience in the
context of active tasks is evident in studies of natural tasks such
as hitting a ball (Ballard & Hayhoe, 2009; Land & McLeod, 2000),
tea making (Land, Mennie, & Rusted, 1999) and sandwich making
(Hayhoe et al., 2003). In these tasks saccades are often directed
to the expected points of contact, which can exhibit low salience.
Due to this lack of explanatory power of image salience models,
another class of task-dependent visual attention models is emerg-
ing which emphasizes cognitive relevance hypotheses in predict-
ing fixation locations. In cognitive relevance models an object-
based representation of the scene is used to select fixation loca-
tions based on the needs of the cognitive system in relation to
the current task, and saccade targets are ranked based on the cog-
nitive relevance of the objects to the task (Nuthmann & Henderson,
2010). In some hybrid models, the cognitive relevance and image
salience are combined to include both low-level, image-based
and medium-level, proto-object-based representations of the
attentional map into a coherent architecture based on real cogni-
tive behavior of the visual system in the presence of visual task
(Wischnewski et al., 2010; Wischnewski et al. (2009)).

Tatler et al. (2011) highlighted another deficiency of simplistic
salience models, which is that the decision about where to fixate
in these approaches is commonly made by a winner-takes-all pro-
cess that selects the most conspicuous location on a salience map.
This selection criterion, however, fails to account for the decrease
in acuity with eccentricity. Moreover, in order to allow attention
to move on from the most salient location in the map, these models
assume a process known as inhibition of return (IOR) to inhibit the
focus of attention from returning to the recently attended loca-
tions. Although IOR is supported by many classical psychophysical
studies (Klein, 1980, 2000; Klein & Maclnnes, 1999; Posner &
Cohen, 1984), recent empirical evidence in viewing photographic
images argues against such an effect (Smith & Henderson, 2009;
Tatler & Vincent, 2008). Tatler et al. (2011) wrote of the importance
of temporal information about the eye movements, which is usu-
ally neglected in the simple salience-based models. The primary
goal of salience models is to spatially model fixations, and the tem-
poral aspects of viewing behavior is usually ignored. Evidence from
studies of gaze during the performance of natural tasks emphasizes
the need to consider fixation duration as well as fixation location
(Droll et al., 2005; Hayhoe, Bensinger, & Ballard, 1998; Land,
Mennie, & Rusted, 1999).

Another limitation of current salience models lies in their pos-
tulating that saccades are precisely directed to the target locations
for processing (Tatler et al., 2011). While this appears to be a plau-
sible assumption in simple viewing tasks, in the context of natural
tasks this assumption is generally invalid. For instance, Johansson
et al. (2001) showed that, for a task of moving an object past an
obstacle, foveating the target within 3 degrees of visual angle
was sufficient. Similarly, in a tea making task (Johansson et al.,
2001) corrective saccades of amplitude less than 2.5 degrees were
infrequent, suggesting that, in natural behavior, fixations land
close to the targets only in the case of attention demanding targets
but typically do not precisely follow the focus of attention. It has
long been known that short latency saccades, in which target-
directed eye movements are made quickly in response to the onset
of a target, frequently miss the target, instead being directed to the
center-of-mass of the visual grouping of the target object and its
surround (Coéffé & O’regan, 1987).

The final aspect of the (forward) Yarbus process to be consid-
ered is the link between the gaze direction and the visual-task.
While certain statistical features of eye movements remain
unchanged across different tasks, the COG tends to be directed to
targets that are relevant to the task at hand. This effect can be seen

in the eye trajectories of Yarbus, in which the viewers fixated on
the targets that were informative for the task. For instance, in
the task of age estimation, faces were more likely to get fixated,
while for the task of wealth estimation inanimate objects in the
room became of more interest to the viewer. Many other studies
of eye movements during natural behaviors have likewise indi-
cated that there is a link between the gaze location and informative
locations and the immediate task goals (Epelboim et al., 1995;
Hayhoe et al., 2003; Land & Furneaux, 1997; Land, Mennie, &
Rusted, 1999; Patla & Vickers, 1997; Pelz & Canosa, 2001). In the
visual attention model of Schneider (1995), target selection was
partially governed by the action being performed. This selection
for action was highlighted by the fact that the gaze targets were
concentrated in the task-relevant areas in an image while a
visual-task was being performed (Hayhoe et al.,, 2003; Land,
Mennie, & Rusted, 1999), whereas before beginning the task, eye
fixations were scattered over the image (Hayhoe et al., 2003;
Rothkopf, Ballard, & Hayhoe, 2007).

To better demonstrate the gaze deployment under the influence
of task, Rothkopf, Ballard, and Hayhoe (2007) carried out a series of
experiments conducted in a virtual environment, where subjects
executed the two tasks of “approaching” and “avoiding” objects
while navigating along a walkway. In these experiments they
showed that the distribution of fixations on an object changes
according to the task and suggested that human gaze is directed
toward regions in a scene determined primarily by the task
requirements.

Besides the distribution of gaze locations, visual-task influences
other metrics of eye movements. Tatler, Baddeley, and Vincent
(2006) showed that visual task also affects the temporal statistics
of eye movements in viewing natural images. Castelhano, Mack,
and Henderson (2009) looked at eye movements during memoriza-
tion and search tasks and showed that the task influences a number
of eye movement measures, including the number of fixations and
gaze duration on specific objects, while leaving unchanged other
parameters, such as the average saccade amplitude and individual
fixation durations. They also showed that the task biases the selec-
tion of scene regions and temporal measures on those regions. In
Johansson et al. (2001) a temporal coupling between vision and
action was demonstrated. In their experiment they detected the
onset of gaze shifts towards the next target relative to the hand
movements as the subject maneuvered an object past an obstacle.
The gaze shift was shown to be linked with the execution of the
task, as the gaze moved to the next target as soon as the object
cleared the obstacle. Temporal coupling between action and vision
was also demonstrated for the tasks of driving (Land & Lee, 1994;
Land & Tatler, 2001), tea making (Hayhoe et al., 2003), sandwich
making (Land, Mennie, & Rusted, 1999), music sight reading
(Furneaux & Land, 1999), walking (Patla & Vickers, 2003) and read-
ing aloud (Buswell, 1920). In Land and McLeod (2000) the eye
movements of cricket players were studied and it was shown that
different skill levels of the players in performing the task generally
result in different latencies in directing the gaze towards predicted
locations of the incoming ball. This temporal coupling between
action and vision shows that models of visual-motor system func-
tion must consider task influence on the temporal characteristics
of eye movement as well as on the spatial characteristics.

The task also affects the pattern, or sequencing, of eye move-
ments. In the aforementioned study of Land and McLeod (2000)
it was shown that while watching a cricket game the gaze is direc-
ted according to the ongoing events in the game. In another exper-
iment, the eye movements of subjects were recorded while
watching a person stack a set of blocks Flanagan and Johansson
(2003). In this block-sorting task, the viewers’ gaze was shown to
be anticipating the expected points of interaction. In another
block-copying experiment (Ballard, Hayhoe, & Pelz, 1995) the eye
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movements showed similar patterns through the progression of
the task that could be interpreted in terms of momentary informa-
tion processing needs. Clark and O'Regan (1998) studied the spatial
characteristics of eye movements for the task of reading and
showed that when reading a text, the center of gaze (COG) lands
on the locations that minimize the ambiguity of the word arising
from the incomplete recognition of the letters. In a seminal study,
Treisman and Gelade (1980) developed the feature integration the-
ory that modeled the attentional deployment in the task of visual
search. In Wolfe, Cave, and Franzel (1989) an improved model
called Guided Search was suggested that studied how our brain
directs attention through a scene during a search task. Hayhoe
and Ballard (2005) reviewed the goal-directed behavior of the
visual-motor system, and provided a comprehensive set of refer-
ences to studies of task influence on eye movements.

It can be seen from the material presented in this section that
visual task does influence the spatial and temporal patterns of
eye movements. It is therefore conceivable that it should be possi-
ble to invert this process. At a more general level, eye movement
patterns can serve as a window into the brain, and be used to infer
the mental states of observers. This has been studied by many
researchers. Bulling et al. (2009), Bulling et al. (2011) successfully
used eye movement analysis for recognizing the physical activity
of subjects while copying a text, reading a printed paper, taking
hand-written notes, watching a video, browsing the web or being
idle. It would be of obvious utility to know the mental state of peo-
ple engaged in safety-critical attention-demanding activities such
as driving a car or flying a plane. Detection of tiredness or distrac-
tion of the operator could be used to trigger alarms or machine
backup systems (Di Stasi et al., 2012). As an example of how this
could be done, in Di Stasi et al. (2010) the maximum eye velocity
during saccadic movements was shown to be inversely propor-
tional to the mental workload of subjects in a simulated driving
task. In a study by Benson et al. (2012) eye movement analysis
was used to detect schizophrenia. In Schleicher et al. (2008) blink
duration, delay of lid reopening, blink interval, and standardized
lid closure speed were identified as indicators of mental fatigue.
These studies share a common conclusion, which is that it is pos-
sible to predict an observer’s cognitive state by analyzing his eye
movement behavior. Continuing along this line of thinking, we
consider the visual-task being carried out as an aspect of the cog-
nitive state and therefore aim to predict or infer the task by analyz-
ing the observer’s eye movement behavior.

The inversion process should use features of the eye movement
trajectories that are more informative than summary statistics, and
should be able to model covert attention allocation rather than just
the position of the eyes (or overt attention). The inversion tech-
nique should be applicable to complex natural scenes and abstract
tasks such as those in the original Yarbus experiment. To this end,
we propose to use Hidden-Markov-Models (HMMs) to relax the
inherent assumptions in the simplistic salience models and use
real-world eye movements to train task-dependent models that
can infer the visual-task on natural images. In the following sec-
tions of the paper we will show how HMMs accomplish this by
modeling the fixation distributions with a Gaussian distribution
function that allows for fixations well away from the target
(assumed to be associated with the covert attentional locus). More-
over, by analyzing the eye trajectories as time-series we give the
temporal features of eye movements the same importance as the
spatial features. The modeling of the cognitive relevance of the
low-level features is facilitated by the HMM approach, as the
Gaussian distributions are allowed to move away from salient
objects to more cognitively relevant targets in an image. The
Gaussian distributions also account for overshooting and under-
shooting of targets when directing the gaze. Consequently, the
assumption of precise targeting inherent in the salience models

is relaxed in the HMMs by using the observation distributions over
the targets. Moreover, using HMMs to model the transition of the
attentional focus from one location to another overcomes the
inherent shortcomings of the target selection processes used in
the salience models. In an HMM-based model the target selection
is governed by a statistical process that is trained on natural eye
trajectories measured during task execution, which replaces pro-
cesses such as winner-takes-all and inhibition of return that are
associated with target selection in salience-based models.

1.3. Attention tracking using Hidden Markov models

In the previous section we observed that classical models of
attention are limited in terms of accounting for real-world eye
movements of observers while viewing natural images. This can
be seen in the benchmark presented in Judd, Durand, and
Torralba (2012), which compared the performances of salience
models in predicting eye fixations made on natural images. One
of the most striking experiments done in this study was to com-
pare the performance of the best salience model and a model based
on real eye trajectories. It was shown that even the best model per-
forms worse than the fixation map of just one human observer in
terms of prediction rate of the eye trajectories. Thus, we base the
development of our attention model on actual task-dependent
eye trajectories recorded while viewing natural images. To do so,
we use Hidden Markov models (HMMs) as a tool for time-series
analysis of the eye trajectories to encode the dynamics of natural
eye movements into task-dependent models. One of the benefits
of our HMM model is its trainability on natural eye movements
to capture their spatial and temporal patterns rather than purely
depending on analyzing the patterns of image features in fixated
regions, as done in the salience models.

Hidden Markov models (HMMs) are a group of generative mod-
els that are used in supervised and semi-supervised learning
(Rabiner, 1990). Similar to the first-order, finite-state, discrete-
time Markov chain (DTMC), HMMs govern the transition between
the states by a first-order Markov process.

A typical DTMC can be defined by a set of parameters,
v = {A, IT}, where:

e A = {ay} is the state transition probability distribution

@ =P(qeq =sjlq =s),  1<ij<N (1)

e [1 = {m;} is the initial state distribution
e 7; is the probability of starting a sequence at state i

i =P(q, =si), 1<ig<N (2)
e g, €Sand 1 <t<Tis the state at time ¢

e S={51,53,...,5y} is the state space

e N is the number of states in the model

In a more general view, both HMMs and DTMCs are classes of
finite state machines (FSMs) (Bengio & Frasconi, 1995) that at each
time step generates an observation sample vector Or (te[1,T))
according to the state currently being visited. Therefore, in each
traverse of these FSMs we will obtain an observation sequence O,
where:

e 0 is a sequence of T observations (61,52, e 57)

e O, (t € [1,T]) is an observation sample vector consisted of M fea-
ture values (0¢1,0¢2,...,0¢m)

e M is the number of feature values in each observation.

In a DTMC, each state can only generate a specific set of obser-
vation vectors, meaning that there is no overlap between the
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observation vectors of different states. Fig. 3a shows a DTMC with
two states (i.e., N = 2). At time step t = 0, the process starts by
entering one of the states s; or s, with the probability of 7; and
T, respectively. In the following time steps, the process chooses
the next state according to the transition probabilities a;. At each
time step an observation is generated according to the current
state, which reveals the current state of the DTMC.

Fig. 3b shows a sample state sequence of the process,
{q, : 1 <t <3}, where g, € {s1,s,} is the state that the sequence
is visiting at time t. The overall observation sequence is in the form
{d : 1 <t < 3}, which is equivalent to a unique state sequence due
to the non-overlapping characteristic of the observation space
between the states.

The Markov process of an HMM is also defined by the parame-
ters of the underlying DTMC. The only difference between the
DTMC and the HMM is that in HMMs the observations are gener-
ated according to a state-specific density function, B, called the
observation pdf. In contrast to the observations of a DTMC, in an
HMM the observation pdf of different states can overlap and might
generate the same observation as the output. Therefore, in HMMs
we cannot directly map an observation to a unique state, which
makes the states hidden to the observer.

A typical discrete-time, continuous HMM, /, can be defined by a
set of parameters, 2 = {A, B, IT}, where B = {bj(af)} is the observa-
tion probability density function in the state j and

bj(0r) = P(Olq, = ),

Fig. 4a shows an HMM with two states, similar to the DTMC
shown in Fig. 3a. In this example, each observation (i.e., O;) is a
2D vector generated according to the state-specific, 2D Gaussian
distribution functions.

Fig. 4b shows a sample outcome of the HMM of Fig. 4a. The out-
come of the process is an observation sequence {0, : 1 <t < 3},
where O, is the observation at time t.

As mentioned in Section 1.1, classical attention models are
based on a spatial saliency map that defines the conspicuous loca-
tions, which are potential targets of the fixations. In addition to the
saliency maps, high-order processes are also observed to influence
the selection of targets in an eye movement trajectory and are used
as a source of information for attention allocation. Proximity prefer-
ence is a cognitive process that facilitates fixations near the cur-
rently fixated target and similarity preference is a cognitive
process that favors objects similar in appearance to the one that
is currently being fixated (Koch & Ullman, 1985). Inhibition of
return (IOR) (Klein, 2000) is a high-level process that discourages
fixation on the target that have been visited in the preceding per-
iod of time.

These higher-level processes affect the selection of the next tar-
get based on the recently fixated ones, which suggests a Markov
cognitive process as the target selection model of the visual motor
mechanism. The HMMs use Markov processes as their underlying

1<j<N,1<t<T (3)

(a) 9 0z (b)
ay; aj
51 Sz Tl-z_) 475, —> 475, —> 455,

ax i' l
T Qoﬁ T

Fig. 3. (a) A first-order, finite-state, discrete-time Markov chain (DTMC) with two
states (i.e., N = 2). The DTMC is defined by a state space S = {s; : 1 <i < N}, a state
transition matrix Ay.ny = {a; : 1 <i,j <N} and a set of initial state distribution
IT = {m; : 1 <i< N}. (b) A sample trajectory that is generated by the DTMC. In the
trajectory the states are overt and the observer can see which state is visited at each
time step.

(a) ay; a3 (b)
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Fig. 4. (a) AHMM with two states (i.e., N = 2) is shown in this figure. In addition to
the parameters of the underlying DTMC (i.e, A and II), an HMM has an extra
parameter called the observation pdf, B, which gives the probability distribution over
different observations in each state. (b) In the trajectories generated by HMMs, the
state sequence is hidden to the observer and at each time step, an observation is
generated according to a density function, B.

models for generating time-series observations similar to the eye
trajectories. This feature of HMMs allows us to incorporate these
higher-level processes into a coherent model for eye movement
analysis.

Markov processes have been considered in prior studies on eye
movement generation, and have been shown to generate similar
patterns to those produced by the mammalian visual-motor sys-
tem. Hacisalihzade, Stark, and Allen (1992) used Markov processes
to model visual fixations of observers. They showed that the eyes
visit the features of an object cyclically, following somewhat regu-
lar scanpaths' rather than crisscrossing it at random. Stark and Ellis
(1981) also proposed using Markov processes as a general model of
fixation placement during the task of reading. Pieters, Rosbergen,
and Wedel (1999) observed a similar pattern in the scanpaths of
the observers while looking at printed advertisements.

If we consider each target in an image as a state, the saliency
map and the Markov process define the probability of transitions
from one state to another in an eye trajectory. This interpretation
forms a finite-state, discrete-time Markov chain that gives us the
likelihood of an eye trajectory based on the loci of fixations. More-
over, if we posit a first-order Markov process as the underlying
process that governs the transitions between the targets (which
was shown to be a valid assumption for eye movements
(Hacisalihzade, Stark, & Allen, 1992)), we can train a first-order
DTMC for each task. This model was used by Elhelw et al. (2008),
where they successfully used a first-order DTMC to model eye
movement dynamics.

One of the main deficits of classical models is that they assume
that tracking the FOA is equivalent to tracking the COG. However,
as noted in the introduction, the COG does not necessarily follow
the FOA and in fact they can be quite some distance from each
other. Fig. 5a shows an eye trajectory recorded when a viewer
was asked to count the number of people in the image. While fix-
ations mainly land on the targets of interest (overt attention), the
person on the left does not get any fixation. The fact that the
answer given by the viewer to the question was correct suggests
that the COG does not necessarily follow the FOA and sometimes
our awareness of a target does not imply foveation on that target
(covert attention).

The disparity between the FOA and the COG can be attributed to
several other factors other than covert attention. Accidental atten-
tion-independent movement of eye, eye-tracking equipment bias,
undershooting or overshooting of the target (Becker, 1972), or
the phenomenon of center-of-gravity fixations (Zelinsky et al.,
1997; He & Kowler, 1989; Najemnik & Geisler, 2005) are some of
the most common sources of recurrent divergence between the
COG and the FOA.

1 Repetitive and idiosyncratic eye trajectories during a recognition task is called
scanpath (Noton & Stark, 1971).
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Fig. 5. (a) Eye trajectories recorded while executing the task of “counting the number of people in the image”. In the trajectories straight lines depict saccades between two
consecutive fixations (shown by dots). While the viewer gave the correct answer in the trial, one of the targets (the leftmost person in the image) is not fixated. The target that
did not get any fixations is assumed to have been attended covertly. (b) Overlay of the 2D observation Gaussian distributions on top of an image. The combination of the
Gaussian pdfs form the HMM that is trained for the task of counting faces on the image. The overall model can generate synthetic eye-trajectories based on the parameters of
the HMM. The transitions between the states are governed by the transition probabilities, and at each time step, the state’s observation pdf generates the 2D coordinates of
the next fixation. The trajectory shown in the image is the real eye movements of a viewer while performing the task. As we can see, all fixations are covered by the

observation pdfs, which makes the whole trajectory a plausible outcome of the HMM.

In terms of a DTMC-based model of attention, the coordinates of
the COGs recorded by the eye tracker comprise the observation
sequence, which is taken as equivalent to the attentional states.
Thus, in the DTMC approach covert attention, where the atten-
tional state is different than the gaze coordinates, cannot be mod-
eled by classical models of attention. However, in HMMs the states
are hidden and can be different than the overt observations. There-
fore, in our view, the HMMs can serve as a better alternative to the
DTMC s in modeling the overt and covert shifts of attention. When
entering a state of a HMM, a Gaussian distribution function gener-
ates an observation that is overt to the viewer (Rabiner, 1990).
Thus, in our proposed model the states represent the FOAs, and
the COGs form the observation sequences. In terms of the problem
at hand, the hidden states of the HMM correspond to the covert
attention loci and the observations of the HMM correspond to
the eye positions or overt attention loci.

Fig. 5b shows an HMM that is trained on the eye trajectories
recorded while executing the task of counting people in the image.
Each 2D Gaussian probability density function (pdf) is depicted by
a heat map, where the heat represents probability values. Each
Gaussian pdf represents the distribution or probability of an atten-
tional state, and at each time step a COG coordinate pair is gener-
ated by drawing a random outcome from these pdfs. For instance,
directing the FOA (covert attention) to the face of the person on the
left can result in a fixation (overt attention) that is further away
from the physical boundaries of the face. The capability of Gaussian
HMMs in representing off-target fixations is illustrated in this
image by overlaying the trajectory of Fig. 5a on the image. While
the classical salience-base attention models fail to account for
off-target fixations, here we show that the Gaussian observation
function can properly model them.

The theory of HMMs has been used in different fields, such as
speech recognition (Rabiner, 1990), anomaly detection in video
surveillance (Nair et al., 2002) and hand writing recognition (Hu,
Brown, & Turin, 1996). HMMs have also been used in analysis of
eye movements. In Salvucci and Goldberg (2000) HMMs were used
to automatically label the recorded eye movements as either fixa-
tions or saccades. In another study (Salvucci & Anderson, 2001)
developed an HMM-based model for analysis of eye movements
during the task of equation solving. Simola, Salojdrvi, and Kojo
(2008) modeled three cognitive states of visual process during a

reading task by the hidden states of HMMs. Van Der Lans et al.
(2008) split a visual search task into two stages of localization
and identification and mapped each of these cognitive states into
one of the states of a two-state HMM.

Recently Haji-Abolhassani and Clark (2013) showed that HMMs
can also serve as a good model for the visual attention process.
They proposed an attention model that allowed for covert shifts
of attention as well as overt ones. They used their model in track-
ing attention during visual search tasks that were conducted on
synthetic images. However, in their model they assumed that the
targets can be defined in advance and built their model based on
the known location of targets. For instance, in the task of counting
faces in Fig. 5b, they assumed that the foci of attention will be on
the faces. This assumption is valid for simple tasks with objective
results (such as number of red objects and number of horizontal
bars), but in more abstract tasks, such as the one used in the
Yarbus (1967) and the Greene, Liu, and Wolfe (2012) experiments,
defining the potential targets of attention is not straightforward.
Another problematic aspect of the Haji-Abolhassani and Clark
model is that the number of states has to be defined before train-
ing. This is only possible in images with a predefined number of
targets (as in the synthetic images used in their experiments).
However, in natural scenes the targets can appear anywhere in
the image and typically no prior information about the location
of the targets is available to the model.

In this paper we present an HMM-based attention model that
can be applied on natural images. The approach begins by first
using the K-means clustering technique (Kaufman & Rousseeuw,
2009) to locate potential targets in an image and then using the
HMM-based method to decode the eye trajectories. The overall
method is then used to infer the visual-task in the same dataset
that was used in Greene, Liu, and Wolfe (2012).

2. An Inverse Yarbus process via Bayesian inference

HMMs are a class of semi-supervised learning methods. Being
generative models, they classify the test data in a probabilistic
manner that can be readily applied to the Bayesian inference
framework. One of the many advantages of Bayesian inference is
the ability to merge other sources of information in the a priori
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term and give an a posteriori probability distribution function over
the possible outcomes, whereby a higher level process can make an
inference and select a task as the result.

Suppose observations obtained from the eye tracker are in the
form of (0, 0), where 0 € O is the task label, selected from the set
of all task labels @, and O is the observation sequence of fixation
locations (61,52, A 67). Each 6i, itself, is a vector (x;,y;) contain-
ing the coordinates of a fixation at time i.

In order to infer the visual-task from an eye trajectory we need
to evaluate the posterior probability of different tasks, 6 € ©, given
an observation sequence, O. According to Bayes rule, this can be
calculated as:

0[0)P(6) _  P(O[0)P(0)
PO) X oyeoP(0I0)P(0')

P(0j0) = = (4)

In this equation P(0) is the prior probability of each task 6 € 6, and
P(010) is the task conditional distribution, which is also referred to
as the likelihood function. The prior distribution assigns a probabil-
ity distribution to the tasks based on our prior knowledge. This is
where we can apply other sources of information about the tasks
and improve the inference. The likelihood term of the equation
gives the probability of observing the sequence O while executing
the task 6. The likelihood term can be broken down to the condi-
tional probabilities:

P(0|0) = P(0;,0,,...,0r|0)
= P(0,|0)P(0,|01,0),...,P(0r|Oy,...,0r_1,0). (5)

In classical saliency-based attention models, the likelihood can
be quantified as proportional to the amplitude of the saliency
map on different targets in the image. Fig. 6 shows an example
of a saliency map obtained using the Saliency Toolbox Walther
and Koch (2006). Fig. 6a shows a synthetic image that comprises
a combination of “A” symbols and horizontal and vertical bars in
three different colors. The objects are placed at the vertices of a
5 x 6 grid, on a featureless black background. Fig. 6b shows the
bottom-up saliency map according to the attention model of
[tti and Koch (2001) shown in Fig. 2a. The feature maps are
obtained by applying color, intensity and orientation filters to
the input image and integrated into the saliency map by a linear
combination.

While bottom-up models combine the maps with constant
weights, top-down models (shown in the block diagram of
Fig. 2b) modulate the weights according to the task Itti and Koch
(2001). Fig. 6¢ shows the saliency map of the same image tuned
to the task of “searching for the characters”. As we can see, the
locations of the characters are more conspicuous (lighter) in the
top-down saliency map.

Since in the bottom-up models the allocation of attention is
merely based on the characteristics of the visual stimuli, the

fixation locations are independent of the ongoing task (i.e., P(0|0)
is assumed to be equal to P(0)) and the likelihood term becomes:

P(0|6) = P(0) = P(0y,0,,...,0r). (6)

In top-down models, saliency of the targets is modulated by the
task, which makes the likelihood term task-dependent. Moreover,
if we use a discrete-time Markov chain (DTMC) to model high-level
processes (Hacisalihzade, Stark, & Allen, 1992) such as inhibition of
return (Klein, 2000), proximity and similarity preference (Koch &
Ullman, 1985), the likelihood term of Eq. (5) reduces to:

P(0|6) = P(0,0,, ...,07/0)
= P(0;]0)P(0,|01,6), ...,P(Or|Or_1,0). (7)

In Eq. (7) each task, 0, is represented by the corresponding DTMC
that is trained on the eye movements of the viewers who performed
that task. The task-dependent DTMCs are represented by y = {A, IT},
a 2-state example of which is shown in Fig. 3a. Since in DTMCs each
sequence of fixations corresponds to a unique sequence of states
having the parameters of the DCMCs, calculating the likelihood
term is a matter of multiplying the state transitions that emerge
in the trajectory.

P(0]0) = P(6:1]0)P(02(0:.0). ..., P(Or|Or_1.0)

= P(q,10)P(q,191,9), - .., P(qr|qr_1,0)
= P(q1|0)P(ag,q,10), - . ., P(agyq, , 0). (8)

In the HMMs, however, the states are hidden and the likelihood
term cannot be evaluated directly. In the theory of HMMs there
are three fundamental problems: evaluation, decoding and training.
Assume we have an HMM / and a sequence of observation 0. Eval-
uation or scoring is the calculation of the probability of the observa-
tion sequence given the HMM, i.e., P(0|2). Decoding is the process of
finding the best state sequence that can give rise to the observation
sequence. Finally, training is the adjusting of model parameters to
maximize the probability of generating a given training observation
sequence. The algorithms that cope with evaluation, decoding and
training problems are called the forward, Viterbi and Baum-Welch
algorithms, respectively (see Rabiner (1990) for details).

In order to find the likelihood term of Eq. (7) we need to solve
the evaluation problem for 7, which is the HMM trained to the
task 6 using the Baum-Welch algorithm on the training database
of task-dependent eye trajectories. The method used in Rabiner
(1990) to calculate the term P(0|/,) is an iterative method based
on dynamic programming called forward algorithm. In this method
we define oy (i) = P(él 62, o (3[, q; =i|49) as the probability of
observations O; to O with state sequence terminating in state
q; = Si, given HMM 2. We can, then, estimate the probability

P(0|4) by iterating over the following steps until the termination
criterion is met:

Fig. 6. (a) Original Image. (b) Saliency map of the bottom-up attention model presented in Itti and Koch (2001). (c) Saliency map of the same image using a top-down

attention model (Itti & Koch, 2001).
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e Initialization: o (i) = m;b;(01),1 <i <N,
e Induction:

e () = [ZV o (D)ay]bj(0r1), 1 <t <T—-1 and 1<j<N,
o Termination: P(0|%y) = IV, otr (i).

With T observations and N states, we require approximately
N?T operations.

3. State positioning of HMMs using K-means clustering

So far we have explained how we can use the parameters of a
task-dependent HMM /, to infer the underlying task of an eye tra-
jectory O. However, the training to obtain the parameters of /, still
remains to be explained. In order to train task-dependent HMMs,
we first need to come up with a design for a generic HMM. We
can then use task-dependent eye trajectories to train the generic
HMM by using the Baum-Welch method to make task-specific
HMMs.

As we explained before, in HMMs the states are hidden and only
the observations are overt to the viewer. Therefore, in application
to the problem of attention tracking, we used the states to repre-
sent the FOA and used the coordinates of the COG as the observa-
tions. In our model, each state is composed of a 2D Gaussian
observation pdf that is centered on a target. Fig. 5b shows an exam-
ple of an HMM trained for the task of “counting the number of
faces in the image”. As we can see, targets learned for this task
roughly correspond to the faces in the image. The positioning of
the Gaussian pdfs in a synthetic image with discrete targets, such
as the one shown in Fig. Ga, is also straightforward as we can assign
a state to each of the targets in the image and remove the task-
irrelevant ones during the training.

However, positioning of the states’ observation pdfs is not
always trivial. When executing tasks, such as the ones used in
Greene, Liu, and Wolfe (2012) (e.g., “Memorizing the picture” or
“determining the wealth of the people in the picture”), on natural
images, predefining the attentional targets in the generic HMM
needs to be done manually and requires knowledge about the rel-
evance of the objects in the image to the task.

In order to automatically position the observation pdfs of the
generic HMM on task-relevant objects, we use a clustering tech-
nique to locate the “hot spots” that are informative for execution
of the task. To do so, we propose to use K-means clustering
(Kaufman & Rousseeuw, 2009) on the ensemble of the fixations
of the training set. Since the training set comprises all the fixations
of the subjects performing a specific task, the ensemble reveals the
potential attention demanding targets in the image for that task.

Fig. 7b and c shows the gaze opacity maps of a training set of
eye movements recorded while performing the task of “determin-
ing how well the people in the picture know each other (people)”
and “determining the wealth of the people in the picture (wealth)”
on the image of Fig. 7a. The gaze opacity map is obtained by apply-
ing a mask overlaying the image. The opacity of this mask at a
given point in the image is inversely proportional to the number
of fixations in a region about this point. In these maps the areas
with a large number of fixations are shown clearly, whereas the
areas with no, or few, fixations are masked. As can be seen, the
areas near the faces get more fixations in the people task and the
areas around objects such as the telephone, tie, pipe and the
objects on the desk, are more likely to get fixated in the wealth
task.

By using this simple technique we can get a sense of the con-
spicuous locations for different tasks with a computational com-
plexity of O(n) Xu and Wunsch (2005). The K-means clustering
will provide us with K points that indicate the centroids of the
top K fixated areas in the training set. In the generic HMM, we will

use these centroids as the initial means of the observation pdfs of K
states. This initial placement of the 2D Gaussians of the generic
HMM on the image, however, is only an estimate of their eventual
positions, which may change during the Baum-Welch training.

4. Experiment

To validate our HMM-based approach, we carried out an exper-
iment in which human observers carried out abstract tasks while
viewing photographs of complex natural scenes. In order to bench-
mark our results against those of Greene, Liu, and Wolfe (2012), we
used the same database of natural images as they used in their
experiment. The image set comprises 64 gray-scale photographs
taken from the LIFE magazine photo archive hosted by Google
and photo archive hosted by Google (2013), an example of which
is shown in Fig. 7a. The date of the images span the years between
1930 and 1979. In each image there are at least two people, and the
images do not display faces or locations that were familiar to our
test subjects.

For the sake of comparison of the results, in building a database
of task-dependent eye trajectories, we followed the same proce-
dure as in Greene, Liu, and Wolfe (2012). In total, we ran 1280 tri-
als and recorded the eye movements of five subjects while
performing a set of pre-defined visual-tasks. Five graduate stu-
dents (one female and four males), aged between 18 and 30, with
normal or corrected-to-normal vision volunteered to participate in
this experiment. We used the same four tasks as in the Greene
et al. experiment:

e Memorize the picture (memory).

e Determine the decade in which the picture was taken (decade).

e Determine how well the people in the picture know each other
(people).

o Determine the wealth of the people in the picture (wealth).

The images were displayed on a 1920 x 1080 pixel LCD monitor
with a screen size of 53.3 x 30 cm. The viewing distance was
45 cm. Each image had a resolution of 800 x 800 pixels, which sub-
tended 28 degrees of visual angle. The background pixels were all
set to black.

Each subject did four segments of trials during his/her experi-
ment. Each segment consisted of four blocks of 16 images. The sub-
ject was informed of the task by an instruction image at the
beginning of each block. During each segment, each of the 64
images were displayed once and subjects had 10s to view each
image. In order to better engage the subjects in the tasks, after each
image in the “decade”, “people” and “wealth” blocks, a question in
form of a five-alternative-forced-choice was presented to the sub-
ject. The subjects were asked to select the best answer by clicking
on one of the five choices. (We used the same routine and ques-
tions as in the Greene et al. experiment.)

After each segment, a mandatory rest period was assigned to
the subject, followed by the next segment of 64 images. In each
segment we rotated the task order so that each subject performs
all the tasks on all the images. In the end, we obtained five trajec-
tories per task, per image, from which we selected the test and
training set using leave-one-out (LOO) cross-validation.

A Tobii X120 eye tracker was used to record the participants’
eye positions, running at an acquisition rate of 120 Hz. The eye
tracker’s spatial resolution is approximately 0.2° and its accuracy
following calibration is about 0.5°. The subjects used both eyes
when conducting the experiments.

At the beginning of each segment, we calibrated the eye tracker
using the built-in, five-point, changing diameter, moving dot
calibration routine in Tobii Studio software (ver. 3.2.0, Tobii
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Fig. 7. Compilation of the fixation spots during two visual-tasks in the form of opacity maps. (a) The original image on which the tasks were executed. (b) The gaze opacity for
the task of “determining how well the people in the picture know each other (people)”. (c) The opacity map for the task of “determining the wealth of the people in the picture

(wealth)”.

Technology, Stockholm, Sweden). The calibration grid spanned the
entire display.

After the recording of the eye movements, data analysis was
carried out on each trial, wherein we removed the blinks and out-
liers from the data and classified the eye movement data as either
saccades or fixations using the velocity-threshold identification (I-
VT) method provided in the Tobii Studio software. The outliers
were all fixations that appeared to be out of the screen area, which
might have been caused by errors in the interpolation or real fixa-
tions at points outside of the screen boundary. It is generally
agreed that visual and cognitive processing primarily occurs during
fixations and little or no visual processing can be achieved during a
saccade (Fuchs, 1971). Therefore, in our analysis we only consid-
ered the fixation points.

4.1. Methods

In this experiment we use the proposed HMM-based model to
infer the visual-task. The inference is made by applying Bayes rule
(Eq. (4)) to the likelihood term calculated by the forward algo-
rithm. A uniform distribution is used for the a priori task probabil-
ities, which makes the inference a maximum likelihood estimation
of the task. However, in practical applications we typically would
have some prior information about the tasks, which can be applied
to the a priori term and increase the accuracy of the inference.

In order to obtain the likelihood term (P(0|6)), we need to train
the parameters of an HMM for each task (0) by using the training
eye movements of the corresponding task. To do so, first we need
to define the structure of the generic HMM and then customize it
by training it with eye movements of that task. For the generic
HMM we assign an ergodic, or fully connected, structure wherein
we can go to any state of the model in a single step no matter what
the current state of the model.? This is consistent with the charac-
teristics of eye movement, where we can also move our COG to
any target in a given stimulus.

As explained in Section 3, we use K-means clustering to define
the initial locations (means) of the observation pdfs in the generic
HMM. For each task-image pair, we examine different values for
the number of clusters ranging from K = 2 to 10 and use the value
that gives the maximum a-posterior probability (MAP) to the train-
ing data, i.e.:

K =arg P:]zal)gp«ov H>tmining|N =K), 9)

2 “strictly speaking, an ergodic model has the property that every state can be
reached from every other state in a finite number of steps.” Rabiner (1990).

where N is the number of states. If we use a very small number of
clusters, the HMM will not be able to capture the transition patterns
between the objects and will be less task-dependent. On the other
hand if we assign a large number to K, the training algorithm will
diverge and will not find a feature set that maximizes the likelihood
of the training set. We expect that the value of K will be highly
dependent on the number of task relevant targets in an image.
For instance, for the people task model (6 = people) of the image
in Fig. 8, where we have six faces, K = 6 gives us the best result,
suggesting that a 6-state HMM would be the best choice for A,eopie
of the image.

To define the covariance of the Gaussian distributions, we use a
technique called parameter tieing (Rabiner, 1990) to force a unique
covariance matrix across all the Gaussian distributions. We also fix
the off-diagonal elements of the covariance matrix to zero, which
leads to fully circular Gaussian observation distributions:

COV(B) = ¢*I(N), (10)

where I(N) is the identity matrix of size N x N. These two provisions
allow us to obtain convergence in training the HMMs with the very
limited number of observations in the training database, since the
number of parameters to train the covariance matrices decreases
from 3K to 1. Moreover, a fully diagonal covariance matrix results
in a circularly-symmetric Gaussian distribution, which is similar
to the quasi-circular FOA of the human visual system (Eriksen &
James (1986)).

For defining the standard deviation (o) used in the covariance
matrix we tested several values ranging from 14 pixels (0.5°) to
210 pixels (15°) in 14 pixels steps (0.5°) and obtained the best
result for 126 pixels (4.5°).

As stated in Rabiner (1990), a uniform distribution assumption
suffices as the initial pdf of the initial state distribution (IT) and the
state transition probability distribution (A).

Having defined the structure of the generic HMM, we can obtain
a task-dependent HMM by training it with task-specific eye trajec-
tories by using the expectation maximization-based (EM-based)
algorithm of Baum-Welch Rabiner (1990).

Fig. 8a shows the generic HMM for the task of people, superim-
posed on the original image. The standard deviation of the observa-
tion distribution is set to 126 pixels and K = 6 centroids are used
for clustering. The result of training the generic HMM to the
task-specific trajectories of the people task is shown in Fig. 8b. As
we can see, the states (pdf means) move from their positions in
the generic HMM to be compatible with the observations in the
training set.
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Fig. 8. In this figure it is shown how an HMM is trained for the task of “determining how well the people in the picture know each other (people)” on a given picture. To begin
the training we first need to define the main structure of the HMM in the form of a generic HMM. The generic HMM is composed of six 2D Gaussian pdfs centered on the
centroids of the K-means clustering conducted on the training set. The standard deviation used in the covariance matrix of each Gaussian is set to 126 pixels and a uniform
transition matrix is used for governing the transitions between the states (each Gaussian represents a state). Part (a) shows the model that is used as the generic HMM for
training the task-dependent HMM. Each Gaussian observation pdf is shown by a heat-map, centered on the centroids of its corresponding cluster. The generic HMM is used in
the Baum-Welch algorithm to train the task-specific HMM. Part (b) shows the final, task-specific, model after training the generic HMM by the eye trajectories of the training

set.
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Fig. 9. (a) Accuracy of task classification versus standard deviation (STD) of the Gaussian observations. The accuracy is obtained by averaging the diagonal elements of the
confusion matrix of all 64 images and the error bars show the standard error of the mean (SEM). The table at the bottom of the figure shows the values of the means and SEMs.

(b) Confusion matrix of task inference using the HMM-based model.

4.2. Results

In Section 4.1 we remarked that the best value for the stan-
dard deviation is ¢ = 4.5°. This value is the standard deviation
used in the covariance matrix which defines the area covered
by each of the 2D Gaussian observation pdfs. In other words, this
value shows the best scale for the diameters of the Gaussians
shown in Fig. 8. Increasing this value will expand the overlapped
area between different observation pdfs, which in turn relaxes the
overtness constraint of the attentional spot. However, too large
values of the standard deviation causes too much overlap in the
observation pdfs, which flattens the likelihood distribution func-
tion of Eq. (5).

As mentioned in the introduction, the confusion matrix given in
the study by Greene, Liu, and Wolfe (2012) indicated that task
inference was at the chance level (25%). Fig. 9b shows the confu-
sion matrix obtained using our HMM model. The numerical values
of the confusion matrix are shown in Table 1. The diagonal ele-
ments of the confusion matrix show the percentage of trajectories
whose task labels were correctly classified (hits) and the off-diago-
nal elements comprise the misses in the classification.

Fig. 9a shows the accuracy of task classification versus standard
deviation (STD) of the Gaussian observations. The accuracy is
obtained by averaging the diagonal elements of the confusion

matrix and the error bars show the standard error of the mean
(SEM). The table at the bottom of the figure shows the values of
the means and the SEMs. In the experiment we use a leave-one-
out cross-validation to define the training set and use the average
accuracy across all images to represent the overall accuracy. The
SEMs are the sample estimate of the population standard deviation
of the accuracies across all images divided by the square root of the
number of images.

The diagonal values of the confusion matrix in Fig. 9b are well
above the chance level. The model is able to infer the visual-task
with average accuracy of 59.64%, as given by averaging the diago-
nal elements of the confusion matrix.

In order to show the advantage of HMMs over DTMCs, we used
the same database and did the task inference using DTMCs. To do
so, we used the same set up as in the HMMs (using K-Means clus-
tering), but rather than setting an observation pdf to each state, we
used Euclidean nearest-neighbors to select the current state of a
fixation. This is equivalent to assuming that covert attention is
the same as the overt attention (i.e. that attention is allocated to
the same location as the eye fixation). The confusion matrix
obtained when using DTMC has an average accuracy of 31.54%
and is shown in Table 2. Comparing the results of HMM and DTMC
highlights the importance of allowing for off-target fixations in our
model for inferring the task in real images.
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Table 1

Numerical values of the confusion matrix for task classification using the HMM-based
model. To obtain the results we set ¢ = 4.5° and did LOO cross validation over all task
dependent eye trajectories.

MEMORY DECADE PEOPLE WEALTH
MEMORY 59.35 13.76 12.98 13.91
DECADE 11.86 55.91 18.84 13.39
PEOPLE 12.56 11.57 65.84 10.03
WEALTH 15.44 11.64 15.46 57.46

Bold values indicate maximum number in each row.

Table 2

Numerical values of the confusion matrix for task classification using the DTMC-based
model. To obtain the results we used the same setup (number of clusters) as in the
HMMs and did LOO cross validation over all task dependent eye trajectories. In order
to define the presumably overt state, we set the state to the closest state using the
Euclidean nearest neighbor.

MEMORY DECADE PEOPLE WEALTH
MEMORY 23.54 28.64 32.57 15.25
DECADE 13.43 27.68 21.64 37.25
PEOPLE 10.63 2847 45.29 15.61
WEALTH 24.74 16.47 29.14 29.65

Bold values indicate maximum number in each row.

5. Conclusion

In this article we presented a probabilistic framework for task
inference in natural images. This work was motivated in part by
previously reported difficulties in developing a reliable approach
for implementing an inverse Yarbus process. In particular, we
examined the study of Greene, Liu, and Wolfe (2011, 2012), who
concluded that visual-task cannot be inferred using eye movements,
and tried to understand why their approach was not successful. We
hypothesized that the difficulty lay in the lack of explanatory power
of the summary statistics that were used, such as the number of
fixations, and duration of fixations, that were used to classify the
trajectories. These features, however, have been shown (e.g.,
Castelhano & Henderson (2008)) to be unreliable in task inference.

Another reason for the failure of the aggregate-based method in
inferring the task is that no contextual information about the
image is used in classification. This is in spite of the fact that image
context has been shown to have a major effect on eye movement
behavior (Torralba et al., 2006; Goferman, Zelnik-Manor, and Tal,
2012).

To handle these problems we used features that are more infor-
mative than summary statistics, and provided a way to incorporate
local (contextual) information. To validate our approach in relation
to the results of the Greene, Liu, and Wolfe (2011, 2012), experi-
ments, we used the same database of natural images and the same
experimental protocol.

One could argue that the negative results in the Greene, Liu, and
Wolfe (2011, 2012), experiments imply that it is not possible to
perform the inverse Yarbus process. However, there is evidence
that such a process is in fact possible, provided by work on predict-
ing the cognitive state of an observer from eye movements. Eye
movement measurements have been used in the recognition of
physical activity Bulling et al. (2009), Bulling et al. (2011), detec-
tion of tiredness or distraction (Di Stasi et al., 2012), estimating
mental workload levels (Di Stasi et al., 2010), diagnosis of schizo-
phrenia (Benson et al., 2012) and detection of mental fatigue
(Schleicher et al., 2008). As the cognitive state of a viewer carrying
out a visual task is presumably affected by the nature of the task it
is reasonable to expect that viewer task can likewise be detected
from eye movement measurements. The results of applying our
technique support this conclusion.

Our approach is based on the idea that visual task is revealed by
the spatio-temporal patterns of the allocation of visual attention.
In practice, attention has most often been tracked using eye move-
ments, and models of attention are frequently evaluated based on
how well they can predict eye trajectories. However, classical sal-
ience-based models of eye movement generation exhibit limited
performance in accounting for eye movements in real-world situ-
ations of viewing complex natural scenes. This is due, in part, to
their pure bottom-up dependence on low-level image features. In
such situations single human observers outperform even the best
salience-based models in predicting eye trajectories (Judd,
Durand, and Torralba (2012)). Low-level features often have low
salience in areas near fixations (Ballard & Hayhoe, 2009; Hayhoe
et al., 2003; Land & McLeod, 2000; Land, Mennie, & Rusted,
1999). Therefore we developed our model based on real, task-
dependent eye trajectories recorded while viewing natural images.
To go beyond the simple salience-based approaches we used Hid-
den Markov models (HMMs) as a tool for time-series analysis of
the eye trajectories. This allows us to encode the dynamics of nat-
ural eye movements into task-dependent models.

The HMM-based method not only allows us to track overt foci
of attention (i.e. fixation locations), but also allows for the tracking
of covert attention and other sources of discrepancy between the
center of gaze (COG) and the focus of attention (FOA). A deviation
between the COG and FOA can arise by a variety of mechanisms.
For example, in the phenomenon known as the center-of-gravity
(also known as the global effect) (Zelinsky et al., 1997; He &
Kowler, 1989; Najemnik & Geisler, 2005), the target of the eye
movement is actually the center-of-mass of a set of visually-salient
objects, one of which would correspond to the FOA. The resulting
COG at the center-of-mass location would generally not corre-
spond to a location of high salience. As Coéffé and O'regan
(1987) point out, the global effect is less pronounced when saccad-
ic latencies are long, as is typically the case when visual search is
being carried out in a slow, deliberate manner. But when a task
is being done quickly, then significant deviations between the
COG and FOA can rise. The advantage of decoupling the COG and
the FOA becomes clear by comparing the results of our Discrete-
Time-Markov-Chain (DTMC) and HMM models, since the only dif-
ference between these two models is the linkage between the FOA
and the COG. The HMM:s allow for decoupling the COG and the FOA
by means of the state-specific Gaussian distribution functions,
whereas in the DTMC they are assumed to be the same. The Gauss-
ian distribution functions used in the model definition of the
HMMs span an area around the covert attentional loci. The actual
eye fixation points are then considered as a random outcome of
the Gaussian process, which can be result in locations well away
from the covert attention locus. The experimental results show
that by separating the COG and FOA leads to better performance
in inferring viewer task.

The improvement in performance in inferring visual task with
the HMM approach as compared to the DTMC approach also pro-
vides indirect experimental evidence for separation between the
COG and the FOA in real-world picture viewing tasks. This indica-
tion of the separation of covert and overt attention is an important
by-product of our approach, since it is not easy to demonstrate
such separations in scene viewing eye movement recordings. The
possibility of this dissociation between the COG and FOA has been
raised before in oculomotor studies by indirectly tracing atten-
tional spot on non-fixated targets. In a study by O'Regan et al.
(2000) COG-FOA decoupling is implied from observers’ lack of
awareness of changes in an image 40% of the time, even though
they were directly fixating the change location. Declines in reac-
tion times to attentional probes away from fixation (Hoffman &
Subramaniam, 1995; Kowler et al., 1995; Deubel & Schneider,
1996; Schneider & Deubel, 2002), have also been used to indicate
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allocation of covert attention away from fixation. To avoid the
problems that arise from using measurements of the COG to track
the FOA, other more direct techniques for tracking covert attention
could be incorporated in our model. These include techniques such
as the dot-probe task (MacLeod, Mathews, & Tata, 1986), detecting
microsaccades (Hafed & Clark, 2002), or fMRI recording (Wojciulik,
Kanwisher, & Driver, 1998). However, these methods can interfere
with the on-going task and provide limited spatial and temporal
resolution. Thus they are not appropriate for practical applications
of the inverse Yarbus process.

Time-series analysis incorporates temporal information about
fixations as well as spatial into an attention model. In previous
approaches to analyzing eye movement behavior, usually only spa-
tial information is considered and temporal information of fixa-
tions is simply omitted. For example, the Greene, Liu, and Wolfe
(2011, 2012), studies ignored the temporal aspect of the viewer
eye movement trajectories. However, it is becoming increasingly
clear that temporal analysis of eye movement is as important as
its spatial counterpart in describing the underlying mechanisms.
The temporal order of fixations is an important feature in describ-
ing the underlying mechanism of the visual behavior. The question
of whether and how the temporal order of fixations matters in
modeling eye movements has been considered often, beginning
with the pioneering studies of Buswell (1935) and Yarbus (1967).
In salience-based models of attention the temporal order of fixa-
tions is not usually considered in training the models (Borji &
[tti, 2013, Figure 7). From a statistical point of view, these models
postulate a naive Bayes assumption in evaluating the likelihood
probability of Eq. (5), which assumes independence between con-
secutive fixation locations. In contrast to these models, consecutive
fixations have been shown to be highly dependent on each other.
Hacisalihzade, Stark, and Allen (1992) recorded the eye move-
ments of observers during the task of recognizing an object and
showed that the fixations loosely follow a Markov process. They
showed that the eyes visit the features of an object cyclically, fol-
lowing regular scanpaths rather than moving randomly. Elhelw
et al. (2008) used a first-order, discrete-time, discrete-state-space
Markov chain to model eye movement dynamics. Stark and Ellis
(1981) also came up with a Markov process as a general model
of fixation placement during the task of reading. Pieters,
Rosbergen, and Wedel (1999) observed a similar pattern in the
scanpaths of the observers while looking at printed advertise-
ments. There is more information in the time-series of eye posi-
tions than just the ordering of fixation locations. Evidence from
studies done with viewers carrying out natural real-world tasks
emphasizes the need to consider fixation duration as well as fixa-
tion location in understanding the mechanism of the visual system
(Droll et al., 2005; Hayhoe, Bensinger, & Ballard, 1998; Land,
Mennie, & Rusted, 1999).

The HMM approach that we propose in this paper conveniently
incorporates the temporal aspects of attention through its Markov
modeling. The temporal order of the fixations plays an important
role in decoding the pattern of eye movements in the HMMs. The
transition matrix of the HMMs (A) adjusts its elements according
to the order of the fixations viewers make on targets during the
training. This information is later used by the HMM to match the
pattern of state transitions against that of a test trajectory. The bet-
ter the transition pattern of the test trajectory accords with that of
a task-dependent HMM, the more likely the trajectory is to be an
observation of that task.

It is possible to extract at least temporal order information from
the eye trajectories in the original Yarbus experiment (Yarbus,
1967, Figs. 107-124), as well as in the experiment by Greene,
Liu, and Wolfe (2012), figure 3. So, the machine learning method
employed in the Greene et al. study could have used temporal fea-
tures as well as the summary spatial statistics. It is possible that

the human classifiers did (unconsciously) assume some sort of
temporal order by tracing along the lines of the displayed eye
tracks. The Greene et al. study therefore leaves open the question
of whether temporal information can improve the task inference.
To judge the influence of the temporal information on the ability
to infer task, we created a constrained HMM method which lacked
any temporal information. We removed the temporal information
of the fixations from the trained HMMs by setting the transition
matrix to equal values. In this way no knowledge of the temporal
order of fixations that may be in the training set is incorporated
into the HMM. Throwing away the temporal information in this
manner resulted in a 15.51% average degradation on the diagonal
elements of the confusion matrix. This is a significant drop in per-
formance but it should be noted that the performance is still above
chance, showing that the decoupling of the FOA and COG results in
some improvement over the summary statistics. The HMMs fail
completely in inferring the task when spatial information from
the eye trajectories is also removed. Thus, we conclude that both
spatial and temporal information is crucial in solving the inverse
Yarbus problem, and the lack of such information may be one rea-
son that the Greene et al. approach did not work.

The HMM task inference method we proposed requires that the
location of attention targets be known beforehand. In the past, sal-
ience was used to define targets for attention shifts, but in real-
world viewing of complex scenes, with abstract tasks, defining sal-
ience is difficult. The specification of task-dependent salience mea-
sures is an open research problem, and our paper only scratches
the surface of what is necessary. Well-performing task-dependent
salient point localization schemes will involve high-level symbolic
reasoning about the scene directed by task knowledge. Our
approach is very simple, but was sufficient for the restricted prob-
lem posed by the Greene, Liu, and Wolfe (2011, 2012) work - that
of training a viewer-task classifier from a set of images and eye
movement trajectories recorded while viewers examine these
images under various task instructions. These training examples
can be used to find a statistical model for the salient locations.
We used the K-means clustering technique on the training set
and used the centroids of these clusters as the salient points or
potential targets. Due to the lack of knowledge about the task rel-
evance of these potential targets, we cannot reject the possibility of
next attending a given target given the currently fixated one. Thus,
to model the temporal aspect of the eye movements we used an
ergodic structure for a generic HMM that allows transitions from
a state to any other one. The generic HMM undergoes a training
phase to build attention models for each task-image combination,
whereby we can calculate the likelihood term of Eq. (5) and make
an inference about the task. While this approach to predefining
attention targets worked well in this specific application, a more
unconstrained and unsupervised problem would require a much
more sophisticated approach to learning what the targets are. For
example, if we applied our trained HMMs to inferring visual task
for viewers looking at images that were not trained on, the method
would fail miserably, since the targets will be in locations different
than those in the training set. Some method for generalizing the
location of the targets to different images would be needed.

An interesting phenomenon seen in the training results is the
variation of performance with different standard deviations of
the observation pdf (Fig. 9a). This figure shows a falloff in the task
classification accuracy as the standard deviation moves away from
a value of roughly 4° of visual angle. The optimal value is consis-
tent with previous estimates of the size of the operational fovea
as the central 3° of vision Johansson et al. (2001). Carpenter
(1991) shows that targets within 4° of central vision are still per-
ceived at 50% of maximal acuity. Based on the current evidence
we cannot tell whether this merely a coincidence, but further
experimentation could investigate this more deeply. Certainly,
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the degree of spatial decoupling of the FOA and COG is worth quan-
tifying, whether this information is used to tune a statistical atten-
tion model such as ours, or to gauge the level of acuity needed for
carrying out specific visual tasks.

Task inference has many applications. Knowing what the user is
seeking on a web page combined with a dynamic interactive
design can lead to a smart web page that highlights the relevant
information in a page according to the ongoing visual-task. The
same idea applies to an intelligent signage that changes its con-
tents to show relevant advertisements according to the task
inferred from each viewer’'s eye movements. We believe that in
each of these applications an HMM-based model can be used as
a reliable model to infer the visual-task. Indeed, by increasing
the amount of training data and using prior task knowledge in
the Bayesian formulation we can improve the accuracy of the
results. Other examples of interesting applications can be found
in the literature. Vidal et al. (2012) implemented a pervasive
healthcare system by using eye movements to infer the mental sta-
tus of patients. Bulling, Roggen, and Troster (2011) used eye move-
ments to obtain information about a person’s context, and
suggested a context-aware pervasive computing system based on
the eye movements. As mentioned earlier, a by-product of our
HMM model is that it can locate the focus of attention, whether
it is overt or covert. This feature allows us to track the more infor-
mative attentional spot, rather than the simple motion of the gaze.
Thus, in applications based on eye movements, performance gains
might be obtained by using the attentional locus, which is task-ori-
ented and robust, rather than the gaze information provided by
standard eye trackers.
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