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Montréal, Québec, Canada H3A 2A7

Incorporation of visual-related self-action signals can help neural net-
works learn invariance. We describe a method that can produce a network
with invariance to changes in visual input caused by eye movements and
covert attention shifts. Training of the network is controlled by signals
associated with eye movements and covert attention shifting. A temporal
perceptual stability constraint is used to drive the output of the network
toward remaining constant across temporal sequences of saccadic motions
and covert attention shifts. We use a four-layer neural network model to
perform the position-invariant extraction of local features and temporal
integration of invariant presentations of local features in a bottom-up
structure. We present results on both simulated data and real images to
demonstrate that our network can acquire both position and attention
shift invariance.

1 Introduction

Humans are adept at visually recognizing objects or patterns under dif-
ferent viewing conditions. They are tolerant of position shifts, rotations,
and deformations in the visual images. Psychological evidence (Bridgeman,
Von der Hejiden, & Velichkovsky, 1994; Deubel, Bridgeman, & Schneider,
1998; Leopold & Logothetis, 1998; Norman, 2002; Walsh & Kulikowski, 1998)
shows that there exist mechanisms along the visual pathway that maintain
perceptual stability in the face of these variations in visual input. Hubel
and Wiesel (1962) found that simple neurons in the primary visual cortex
respond selectively to stimuli with specific orientation, while complex neu-
rons present certain position-invariant properties. Neurons in higher visual
areas, such as the inferotemporal cortex (IT), have larger receptive fields
and show more complex forms of invariance. They respond consistently to
scaled and shifted versions of the preferred stimuli (Gross & Mishkin, 1977;
Ito, Tamura, Fujita, & Tanaka, 1995; Perrett, Rolls, & Caan, 1982; Rolls, 2000).
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Maintaining perceptual stability is also an emerging issue in computer
vision systems. An important consideration in the design of robotic vision
systems is to be able to recognize the external world from the video stream
acquired as the robot is wandering about. The video input is often erratic
and unstable because the robot moves its eyes, head, and body to perceive
the surroundings and avoid obstacles when it performs tasks. To perform
well in recognition tasks, a robot should be able to maintain a constant
perception of the structure of an object when changing views of the object
during its motor activities.

A number of models have been proposed to describe the mechanisms
underlying perceptual stability, such as spatial-phase invariance, transla-
tion invariance, and scale invariance (Chance, Nelson, & Abbott, 2000;
Fukushima, 1980; Riesenhuber & Poggio, 1999; Salinas & Sejnowski, 2001).
In particular, temporal association is deemed an important factor in the de-
velopment of transformation invariance (Miyashita, 1988; Rolls, 1995). Tem-
poral continuity was first employed by Földiák (1991) to capture the tempo-
ral relationship of input patterns. It has been demonstrated that transforma-
tion invariances such as translation or position invariance and viewpoint
invariance can be learned by imposing temporal continuity on the response
of a network to temporal sequences of patterns (Bartlett & Sejnowski, 1998;
Becker, 1993, 1999; Einhäuser, Kayser, König, & Körding, 2002; Földiák, 1991;
Körding & König, 2001).

The human visual system as a whole seamlessly combines retinal images
and visual-related motor commands to give a complete representation of
the observed external environment. However, most research work done
so far has focused on achieving different degrees of invariance based only
on the sensory input, while ignoring the important role of visual-related
motor signals. In our opinion, visual-related self-action signals are crucial
in learning spatial invariance, as they provide information as to the nature
of changes in the visual input.

A critical issue that must be considered in modeling human vision is that
the visual system has to deal with an overwhelming amount of information.
It is well known that selective attention plays an important role in the human
visual system by permitting the focusing on a small fraction of the total input
visual information (Koch & Ullman, 1985; Maunsell & Cook, 2002). Shifting
of attention enables the visual system to actively, and efficiently, acquire
useful information from the external environment for further processing.

Our goal is to develop object recognition systems that use covert and
overt shifts in attention for feature selection. Covert attention shifts result
from a change in feature selection processes occurring with the eye held
fixed. Overt attention shifts refer to the change in the image data being
attended to that results from a large, saccadic eye movement. Both overt
and covert attention shifts cause changes to the visual input that the object
recognition system works on. It is important that the functioning of the
object recognition system be invariant to the effects of these attention shifts.
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With respect to changes induced by eye movements, or overt attention shifts,
this invariance is specifically position invariance, where the recognition
process should provide the same answer regardless of the location on the
retina that the image of the object is projected.

Most object recognition techniques that employ attention shifts are
mainly based on covert or overt attention shifts, and they rarely consider
both. The bulk of these methods consider only covert shifts, where the reti-
nal input to the systems remains unchanged during the learning and recog-
nition process (Kikuchi & Fukushima, 2001; Olshausen, Anderson, & Van
Essen, 1993). If we directly apply such methods to overt attention shifts,
the distortions due to the nonuniformity of the retina and the nonlinear-
ity of projection on to the hemispherical retina may cause problems when
foveating eye movements take place. For example, even though Kikuchi and
Fukushima’s model of invariant pattern recognition (2001) employs a “scan
path” of eye saccades, it does not model any associated relative distortions.
In their approach, the only effect of eye movement is a spatial displacement
of the imaged features. Their model achieves shift invariance and scale in-
variance based on extracted spatial relations, which are internally encoded
by the visual system as a chain of saccadic vectors and fixated local features.
This model is too simplistic, however; a true model of recognition with eye
movements must take into account the image distortions resulting from eye
movements.

In this letter, we propose a new approach to attaining position invariance
in which the processes of covert and overt attention shifts play a central
role. We implicitly assume that the variation of feature positions on various
cortical feature maps arises entirely from the action of covert and overt at-
tention shifts. Motion of scene features in the external world is irrelevant,
as it is the action of the attention systems that determines the location of
the scene features in the internal representations. In this way of thinking,
position invariance is really invariance to attention shifts, whether they be
covert or overt. Desimone (1990) points out that the effects on the visual
cortex of covert and overt attention shifts are very similar. It is conceivable,
therefore, that we could develop a unified approach in which covert and
overt shifts are not distinguished. We employ a temporal difference learn-
ing scheme where knowledge of the attention shift command is used to gate
the learning process, permitting temporal correlation to take place between
visual inputs across attention shifts. We implement a four-layer neural net-
work model and test it on simulated data consisting of various geometrical
shapes undergoing transformations.

2 A Neural Network Model of Attention Shift Invariance

The overall model being proposed is composed of two submodules, as il-
lustrated in Figure 1. One is the attention control module, which generates
attention-shift signals according to a saliency map. This module also gen-
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Figure 1: The proposed neural network model is composed of two modules: a
control module and an executive module. The control module is an attention-
shift mechanism that generates attention-shift signals and saccade motor signals
to trigger the learning processes in the executive module. It also selects local
features, which are part of the raw retinal image falling within the attention
window, as input to the executive module. The executive module consists of
a four-layer network, which accomplishes the extraction of position-invariant
local features and the integration of attention-shift-invariant complex features
from lower level to higher level, respectively.

erates saccadic motor command signals (or overt attention shift signals),
which are used to determine the timing for learning. The module obtains
as input local feature images from the raw retinal images via a dynam-
ically position-changing attention window. The second submodule is the
executive module, which performs the learning of invariant neural rep-
resentations across attention shifts in temporal sequences. Two forms of
learning, position-invariant extraction of local features, and integration of
position-invariant object representation (a composition of a set of local fea-
tures) across attention shifts, are triggered by the saccadic motor signals and
attention shift signals from the control module, respectively.

2.1 Temporal Continuity Approaches to Development of Position In-
variance. In this section, we detail how our network learns invariance to
position changes that result from eye movements. Our approach is based on
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the work of Földiák (1991) and Einhäuser et al. (2002). They proposed meth-
ods for developing position invariance that rely on a temporal continuity
of the images of objects projected onto the retina. These methods have been
shown to work well in learning position invariance in both simulated data
and real-world video sequences. Einhäuser et al. proposed a three-layer
feedforward network model capable of learning from natural stimuli that
develops receptive field properties matching those of cortical simple and
complex neurons. Hebbian learning in each output layer cell emphasizes
the temporal structure of the input in the learning process. Experimental
results show that the middle layer cells learn simple cell response proper-
ties that have strong selectivity to both orientation and position. The output
layer cells learn complex cell response properties, which exhibit a level of
position invariance while preserving orientation selectivity. However, their
learning algorithm depends crucially on temporal smoothness in the input.
The learning result is very sensitive to the timescale and the temporal struc-
ture in the input. When the time interval between successive input scenes
becomes large, the temporal difference in the input data can also become
large. Equivalently, when structures in the scene are moving rapidly, the
temporal changes in the input stream can be large. Einhäuser et al. reported
that the output layer cells lose the position-invariant property when the
input lacks temporal smoothness.

In order to produce position-invariant recognition, the visual system
must be presented with images of an object at different locations on the
retina. In techniques such as those of Einhäuser et al. (2002) and Földiák
(1991), it is mainly the motion of the objects in the external world that
produces the required presentations of the object image across the retina.
There are a number of problems with this. Most important, the motion of
objects in 3D space can change the appearance of objects significantly. Thus,
the problem of developing position invariance is converted to the much
more difficult problem of developing viewpoint invariance. The difference
in the appearance of a moving object is generally greater as the displacement
increases. This means that only local position invariance can be learned.

In this letter, we propose a position-invariance learning method that is
not overly affected by external object motion. The key aspect of our approach
is the use of rapid attention shifts (overt or covert) to provide the necessary
object image displacements. In this way, position invariance can be seen to
arise from attention shift invariance. The short time between acquisition of
images across an attention shift minimizes the change in the image due to
motion of the object in space. Thus, in our approach, most of the change in
the image is due to the attention shifts (and not to the motion of the object).
Clearly, learning invariance with respect to some quantity requires exposure
to data that varies only with respect to this quantity. Since we are learning
invariance to attention shifts (covert or overt), we require a signal in which
the variation is entirely due to attention shifts. This is accomplished by
using only those images associated with attention shifts. At other times, the
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images are changing due to extraneous factors, such as object motion, and
thus can interfere only with the learning of the invariance. Our approach
has the additional advantage that the attention shift command can be used
as a signal to direct learning. We can, for example, arrange for learning to
take place only during the period of time immediately before and after the
attention shifts.

2.2 Extraction of Position-Invariant Local Features. The need for de-
velopment of position invariance arises due to projective distortions and
the nonuniform distribution of visual sensors on the retinal surface. These
factors result in qualitatively different signals when object features are pro-
jected onto different positions of the retina. For example, when a linear
object feature in space is projected onto a hemispherical surface, such as
the retina, it is relatively undistorted when projected near the optical axis
(i.e., near the fovea), whereas its image becomes curved when projected
away from the optical axis (e.g., in the periphery). The problem of finding a
position-invariant representation for such features can therefore be thought
of as that of finding the underlying relationship between various distorted
retinal images of the same physical feature at different retinal positions. We
propose that this problem can be simplified if a canonical representation
of the feature can be specified. The foveating capability of the human vi-
sual system gives us such a canonical representation. It is the role of the
foveating system to shift the image of a feature being attended to in the
retinal periphery to become centered on the fovea. The foveal image of an
object feature is a suitable candidate for the feature’s canonical representa-
tion since, statistically, among all the retinal images of a feature, the foveal
image is the most frequently observed. Furthermore, the process of fixation
and tracking ensures that the foveal image representation is very stable rel-
ative to the peripheral images. When we refer to the neural representation
of a feature’s foveal image as its canonical representation, the problem of
position-invariant representation of a feature can be interpreted as one of
associating the neural representations of all of its peripheral images with its
single canonical representation.

At a deeper level, the approach that we are proposing involves executing
self-actions of the observer (in this case, saccadic eye movements) and ob-
serving the resulting changes in the retinal image. The idea that knowledge
of self-action and the resulting sensory changes plays a role in perception
is becoming popular. For example, O’Regan and Noë (2001) proposed that
visual percepts are based on the sensorimotor contingencies that describe
the relation between motor activities and visual sensory input.

Our approach to the learning of position invariance is based on the
proposal of Clark and O’Regan (2000) that position invariance could be
achieved through learning of the sensorimotor contingencies associated
with a given feature. They presented a prototype of an association mech-
anism using the temporal difference learning schema of Sutton and Barto
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(1981) to learn the association between pre- and postmotor visual input data,
leading to the desired position-invariance properties. A saccade is employed
to foveate preattended features, so that associations between presaccadic pe-
ripheral stimuli and postsaccadic foveal stimuli (the canonical image) can
be learned each time a saccade occurs. Given an input presaccadic neural
response X, an association matrix V, and a reinforcement reward λ, their
learning rule is as follows:

�Vij = α(λ(t) + Vij(t − 1)[γ Xj(t) − Xj(t − 1)])X̄j(t) (2.1)

with

�X̄j(t) = δ(Xj(t − 1) − X̄j(t − 1)). (2.2)

The reinforcement reward λ(t) here is the postsaccadic neural response
to the foveal feature (the canonical image), and has the same dimension as
X.

Clark and O’Regan’s model (2000) works well in handling geometric dis-
tortions of images features due to position variance. However, a limitation
of their model is that the association is very space and time-consuming,
with resource requirements growing exponentially with the number of in-
put neurons.

In this letter, we provide a more efficient version of the Clark-O’Regan
approach. Our aim is to reduce the computational requirements of their
model while retaining the capability of learning position invariance of local
features. We make a modification to their learning rule, using temporal
differences over longer timescales rather than just over pairs of successive
time steps. In addition, we use a sparse coding approach to reencode the
simple neural responses, which reduces the size of the association weight
matrix and therefore the computational complexity. Our model includes an
input layer, an encoded layer, and a hidden layer, as well as the connection
matrix between the layers.

We model the input layer neuronal receptive field profile with a Gabor-
like function. We refer to the input layer units as simple neurons, as they
have similar properties to the simple cells of the visual cortex. The response
of each simple neuron to a retinal image is the convolution of its receptive
field profile and the image. The simple neural responses then are encoded
by a sparse coding approach (Hyvärinen & Hoyer, 2001; Olshausen & Field,
1996, 1997) to reduce the statistical redundancies in the input pattern. The
learning of basis functions sets and their sparsely distributed coefficients
ensures that only a small number of active neurons in the encoded layer
represent the original input pattern. The details of the encoding process are
as follows.

Let F denote the simple neuronal responses. A set of basis functions bf
and a set of corresponding sparsely distributed coefficients ai are learned
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to represent F:

F(j) =
∑

i
ai ∗ bfi(j) ⇒ F = bf ∗ a. (2.3)

The basis function learning process is a solution to a regularization prob-
lem that finds the minimum of a functional E. This functional measures the
difference between the original neural responses F and the reconstructed
responses F′ = bf ∗ a, subject to a constraint of sparse distribution on the
coefficients λ:

E(bf, a) = 1
2

∑
j

[
Fj −

∑
i

ai ∗ bfij

]2

+ α
∑

i
Sparse(ai) (2.4)

where Sparse(a) = ln(1 + a2). (2.5)

Sparseness is enforced by the second term of equation 2.4, which drives the
coefficients a toward small values.

In our implementation, E is minimized over its two arguments bf and a,
respectively. The minimization is first performed over a, with a fixed value
of bf, and then performed over bf.

The inner minimization loop over a is performed by iterating the non-
linear conjugate gradient method (Shewchuk, 1994) until the derivative of
E(bf , a) with respect to a is zero:

∂E(bfij, ai)

∂Ri
=
∑

j

bfij ∗
(

Fj −
∑

k

ak ∗ bfkij

)
− α ∗ ∂Sparse(ai)

∂ai
. (2.6)

The outer minimization loop over bf is accomplished by simple gradient
descent:

�bfij = η < ai ∗
(

Fj −
∑

k

ak ∗ bfkj

)
> . (2.7)

After each learning step, bf is normalized to ensure that
∑ ‖bf‖ = 1. The

normalization prevents bf from being unbounded, which would otherwise
lead to undesired zero values of a.

The sparsely distributed coefficients a then become the output of the
encoded layer, which we denote as S. A weight matrix between the encoded
layer and the hidden layer serves to associate the encoded simple neuron
responses related to the same physical stimulus at different retinal positions.
Immediately after a saccade takes place, this weight matrix A is updated
according to a temporal difference reinforcement learning rule, to strengthen
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the weight connections between the neuronal responses to the presaccadic
feature to those of the postsaccadic feature.

The neuronal response in the hidden layer H is represented by the fol-
lowing equation:

H = A ∗ S. (2.8)

The weight matrix A is updated only at those times when a saccade occurs.
The updating is done with the following temporal reinforcement learning
rule:

�A(t) = η ∗ [((1 − κ) ∗ R(t) + k ∗ (γ ∗ H(t) − H̃(t − 1))) ∗ S̃(t − 1)], (2.9)

where

�H̃(t) = α1 ∗ (H(t) − H̃(t − 1))

�S̃(t) = α2 ∗ (S(t) − S̃(t − 1)). (2.10)

The factor γ is adjusted to obtain desirable learning dynamics. The pa-
rameters η, α1, and α2 are learning rates with predefined constant values.
In order to investigate the use of the temporal reinforcement in the learning
of position invariance, we introduce a weighting parameter κ to balance
the importance between the reinforcement reward and the temporal out-
put difference between successive steps. The effect of a varying κ will be
demonstrated in section 3.1.

The short-term memory traces, H̃ and S̃, of the neural responses in the
hidden layer and the encoded layer are maintained to emphasize the tem-
poral influence of a response pattern at one time step on later time steps.
These are temporally low-pass filtered traces of the activities of the hid-
den layer neurons and encoded layer neurons, respectively. Therefore, the
learning rule incorporates a Hebbian term between the input trace and the
output trace residuals (the difference between the current and the trace ac-
tivity), as well as between the input trace and the reinforcement signal. This
temporal reinforcement learning rule is not the same as traditional trace
rules (Földiák, 1991; Wallis, Rolls, & Földiák, 1993; Wallis & Rolls, 1997),
which emphasize the Hebbian connection between the input stimulus and
the decaying trace of previous output stimuli.

Equation 2.9 differs slightly from equation 2.1 in Clark and O’Regan
(2000), in that we use the temporal difference of the output trace residuals
(over longer timescales) instead of the pair-wise temporal difference. This
modification enables us to have a longer trace of activities of hidden layer
neurons in previous time steps, which helps to obtain more globally optimal
solutions.

The reinforcement reward R(t) is the sparsely encoded simple neural
response right after a saccade. The weight update rule correlates this rein-
forcement reward R(t) and (an estimate of) the temporal difference of the
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Figure 2: Illustration of temporal difference learning under a temporal percep-
tual stability constraint. The short-term memory trace of neural response in the
encoded layer emphasizes the temporal influence of previous neural responses
on later training. The weights between the encoded layer neurons and the hid-
den layer neurons are enhanced when there is a significant temporal difference
between the current hidden neural output and the previous output.

hidden layer neural responses with the memory trace of the encode layer
neural responses. The constraint of temporal perceptual stability requires
that updating is necessary only when there is a difference between cur-
rent neural response and previous neural responses kept in the short-term
memory trace, as illustrated in Figure 2.

Our proposed position-invariant approach is able to eliminate the limi-
tations of Einhäuser et al.’s model (2002) without imposing an overly strong
constraint on the temporal smoothness of the scene images. For example, in
the case of recognizing a rapidly moving object, a uniform temporal sam-
pling results in the object appearing in significantly different positions on
the retina. This could cause a temporal discontinuity in the input that will
cause problems for the Einhäuser et al. model. Even worse, the appearance
of the object may have changed due to a change in its pose as it moves. This
means that the variation in the input data depends not only on the position
of the object, but also on its orientation in space. Such object motion will
not affect the learning result of our approach, however, because it employs
a nonuniform temporal sampling, in which images are obtained only im-
mediately before and after an attention shift (either overt or covert). As the
attention shift takes little time, there is little effect of object motion on the
input data. Most of the variation in the position of the object in the image is
due to the attention shift.
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2.3 Temporal Integration of a Position-Invariant Representation of an
Object Across Attention Shifts. The integration level of the executive sub-
module in our system is concerned with the invariant representation of an
object across attention shifts. Position invariance is implicitly incorporated
because the attention shift invariance is based on a temporal integration of
position-invariant local features.

Attention shift information is provided in our model by the control mod-
ule. This module receives as input the retinal image of an object (combina-
tion of simple features). It constructs a saliency map (Itti, Koch, & Niebur,
1998; Koch & Ullman, 1985) that is used to select the most salient area as the
next attention-shift target. The saliency map is a weighted sum of feature
saliencies, such as edge orientation, color, and edge contrast. The selection
of feature types and their corresponding weights depends on the tasks to be
performed. Currently, our implementation uses gray-level images, and we
use only orientation contrast and intensity contrast as saliency map features
(refer to Itti et al., 1998, for implementation details).

Intensity features, I(σ ), are obtained from an eight-level gaussian pyra-
mid computed from the raw input intensity, where the scale factor σ ranges
from [0..8]. Local orientation information is obtained by convolution with
oriented Gabor pyramids O(σ, θ), where σ ∈ [0..8] is the scale and θ ∈
[0◦, 45◦, 90◦, 135◦] is the preferred orientation.

Feature maps are calculated by a set of “center-surround” operations,
denoted by �, which are implemented as the difference between fine (at
scale c ∈ [2, 3, 4]) and coarse scales (at scale s = c + δ, with δ ∈ [3, 4]):

I(c, s) = |I(c)�I(s)| (2.11)

O(c, s, θ) = |O(c, θ)�O(s, θ)|. (2.12)

In total, 30 feature maps—6 for intensity and 24 for orientation—are calcu-
lated and are combined into two conspicuity maps, at the scale (σ = 4) of
the saliency map, through a cross-scale addition ⊕:

Ī =
4⊕

c=2

c+4⊕
s=c+3

N(I(c, s)) (2.13)

Ō =
∑

θ∈{0◦,45◦,90◦,135◦}
N

(
4⊕

c=2

c+4⊕
s=c+3

N(O(c, s, θ))

)
, (2.14)

where N(·) is a map normalization operator.
The saliency map S is obtained by the weighted sum (here, we choose all

weights to have the same value) of the two maps:

S = 1
2
(N(Ī) + N(Ō)). (2.15)
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A winner-take-all algorithm (Koch & Ullman, 1985) determines the location
of the most salient feature in the calculated saliency map. This location then
becomes the target of the next attention shift.

In the case of an overt attention shift, the positional information of the
target (including saccadic direction and amplitude) is sent to the executive
submodule to command execution of a saccade. The target is foveated after
the commanded motion, and a new retinal image is formed. The new im-
age is fed into the module as input for the next learning iteration. A covert
attention shift, on the other hand, will not foveate the attended target, and
therefore the subsequent retinal image input remains unchanged. Since both
overt and covert attention shifts play an important role in determining the
timing for learning process at this stage, we use an attention-shift signal
instead of a saccade signal as a motor signal from the control module to
trigger the integration learning. In the implementation of our model, an
inhibition-of-return (IOR) mechanism is added to prevent immediate atten-
tion shifts back to the current feature of interest to allow other parts of the
object to be explored.

The localized image features, which are obtained when part of an object
falls in the attention window before and after attention shifts, are fed into the
input layer of the four-layer network. Given that position-invariant repre-
sentations of local features have already been learned, an integration of local
features from an object can be learned in a temporal sequence as long as the
attention window stays within the range of the object. Here we assume that
attention always stays on the same object during the recognition procedure
of an object even in the presence of multiple objects. In our experiments,
this assumption is enforced by considering only scenes that contain a single
object. In practice, of course, there will be attention shifts between different
objects. Although we have not yet tested our method in such situations, it is
expected that such interobject attention shifts will only slow learning. This
is because a given object will typically be viewed in proximity to a wide
range of different objects and backgrounds. Thus, there will be no persis-
tent pairing of an object feature with a particular background feature, and
no strong association will be made. The only persistent associations will be
those of features within the same object.

The learning at this stage includes two further aspects: a winner-take-all
interaction between the output layer neural activities and a fatigue effect on
the continuously active output layer neurons. The winner-take-all interac-
tion ensures that only one neuron in the output layer wins the competition
to respond actively to a certain input pattern. The fatigue process is a mod-
ified implementation of inhibition of return, which prevents one unit from
winning all of the input patterns. The fatigue process gradually decreases
the fixation of interest on the same object after several attention shifts. Al-
though in our testing we restrict the scenes to contain only one object at a
time, we have several objects to be learned on the model. Therefore, it is
necessary that the currently active neuron will be suppressed for a while
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when the learning moves to the next object. The fatigue effect is controlled
by a fixation-of-interest function FOI(u). A u value is kept for each output
layer neuron in an activation counter initialized to zero. Each counter traces
the recent neural activities of its corresponding output layer neuron. The
counter automatically increases by 1 if the corresponding neuron is acti-
vated and decreases by 1 until 0 if not. If a neuron is continuously active
over a certain period, the possibility of its subsequent activation (i.e., its fix-
ation of interest on the same stimulus) is gradually reduced, allowing other
neurons to be activated. A gaussian function of u2 is used for this purpose:

FOI(u) = e−u4/σ 2
. (2.16)

The output layer neural response C0 is obtained by multiplying the hidden
layer neural responses H with the integration weight matrix W. C0 is then
adjusted by multiplying with FOI(u) and is biased by the local estimation of
the maximum output layer neural responses (weighted by a factor κ < 1):

C′ = C0 ∗ FOI(u) − k ∗ C̃0. (2.17)

If C′
i exceeds a threshold, the corresponding output layer neuron is activated

(Ci = 1).
The temporal integration of local features is accomplished by dynami-

cally tuning the connection weight matrix between the hidden layer and the
output layer. Responses to local features of the same object can be correlated
by applying the constraint that output layer neural responses remain con-
stant over time. Given as input the hidden layer neural responses H from the
output of the lower layers, and as output the output layer neural responses
C, the weight matrix W is dynamically tuned in a Hebbian manner using
the short-term memory trace Ĉ of the complex layer neural responses C:

�W(t) = γ ∗ [(Ĉ(t) − η ∗ C(t)) ∗ H(t) − C(t) ∗ W(t)] (2.18)

with

�Ĉ(t) = α ∗ (C(t) − Ĉ(t − 1)). (2.19)

The short-term memory trace Ĉ acts as an estimate of the neuron’s recent
responses. The second term of the learning rule emphasizes the importance
of the temporal difference between successive steps in maintaining a stable
state. The last term is a local operation that keeps each weight bounded.

2.4 Discussion. The development of the human visual system proceeds
gradually from the very basic learning stage, as in the way a newborn baby
learns to recognize the complicated external world by exploring simple
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shapes and colors step by step. Similarly, in our model, the integration
of responses to local features that belong to the same object is based on
lower-level extraction of position-invariant local features that have already
been learned to some extent. The integration becomes faster when position-
invariant representations of local features are correlated in a temporal order
rather than the correlation between numerous different neural responses to
all local features in random positions. This is also a reason that we do not
explicitly distinguish overt and covert attention shift at this stage. In the
case of covert attention shifts, although the attended local features are not
brought into the fovea, the representations of these peripheral local features
are position invariant based on the learning accomplished by the first stage.
In the case of overt attention shifts, the attended local features are retargeted
to the fovea, and therefore the representations of these local features are al-
ready identical to the learned position-invariant representations. Therefore,
both types of attention shift can function under this integration.

Our approach is basically a description of a technique for encoding in-
variant neural responses to changes induced by attention shifts; therefore,
attention shifts are an important part of encoding invariant representations
for the input patterns, but not necessarily for recognition of an already en-
coded object. We only need to assume that these attention shifts do occur
and that only a single object is being viewed.

For online learning, the two processes of feature extraction and inte-
gration are concurrently performed. Because the early learning process of
integration is essentially random and has no effect on the later result, we
can use a gradually increasing parameter to adjust the learning rate of in-
tegration. This parameter can be thought of as an evaluation of the gained
experience at the basic learning stage. The value of this parameter is set
near 0 at the beginning of the learning and near 1 after a certain amount
of learning, at which point the extraction process is deemed to have gained
sufficient confidence in its experience on extracting position-invariant local
features.

3 Simulation and Results

We designed two experiments to test our model’s position-invariant and
attention-shift-invariant properties, respectively. In our model, position in-
variance is achieved when a set of neurons can discriminate one stimulus
from others across all positions. We refer to a set of neurons, as our represen-
tation is in the form of a population code, in which more than one neuron
may exhibit a strong response to one set of stimuli. Between each set of
neurons there might be some overlap, but the combinations of actively re-
sponding neurons are unique and can therefore be distinguished from each
other. We consider attention-shift invariance to have been achieved when
the position-invariant set of neurons retains their coherence across attention
shifts, when such attention shifts stay on the same object.
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We designed a third experiment to show that our model performs better
than the models of Földiák (1991) and Einhäuser et al. (2002) when the input
patterns lack temporal smoothness.

3.1 Demonstration of Position Invariance. To demonstrate the process
of position-invariant local feature extraction, we focus on the extraction
submodule. This module is composed of three layers: the input layer, the
encoded layer, and the hidden layer. We use two different test sets of local
features as training data at this stage: a set of computer-generated images
of simple oriented linear features and a set of computer-modified images of
real objects.

We first implemented a simplified model that has 648 input layer neu-
rons, 25 encoded layer neurons, and 25 hidden layer neurons for testing
with the first training data set. The receptive fields of the input layer neu-
rons are generated by Gabor functions over a 9 × 9 grid of spatial displace-
ments, each with eight different orientations evenly distributed from 0 to 180
degrees.

The first training image set is obtained by projecting straight lines of
four different orientations ([0 degrees, 45 degrees, 90 degrees, 135 degrees])
through a pinhole eye model (as shown in Figure 3) onto seven different
positions of a spherical retinal surface. The simulated retinal images each
have a size of 25×25 pixels. The training data are shown in Figure 4A, along
with a subset of the input layer receptive fields (see Figure 4B).

Figure 5 shows the 25 basis functions (which are the receptive fields of the
encoded layer neurons), trained using Olshausen and Field’s (1997) sparse
coding approach on simple neural responses.

It was found in our experiment that some neurons in the hidden layer
responded more actively to one of the stimuli regardless of its positions on
the retina than to all other stimuli, as demonstrated in Figure 6. For example,
neuron 8 exhibits a higher firing rate to line 4 than to any of the other lines,
while neuron 17 responds to line 1 most actively. The other neurons remain
inactive to the stimuli, which leaves possible space to respond to other
stimuli in the future.

It was next shown that the value of the weighting parameter κ in equa-
tion 2.9 had a significant influence on this submodule performance. To eval-
uate the performance, the standard deviation of activities of the hidden layer
neurons are calculated when the submodule is trained with different values
of κ(= 0, 0.2, 0.5, 0.7, and 1). The standard deviation of the neural activities
is calculated over a set of input stimuli. The value stays low when the neuron
tends to maintain a constant response to the temporal sequence of a feature
appearing at different positions. Figure 7 shows the standard deviation of
the firing rate of the 25 hidden layer neurons with different values of κ . The
standard deviation becomes larger as κ increases. This result shows that the
reinforcement reward plays an important role in the learning of position in-
variance. When κ is near 1, which means the learning depends fully on the
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Figure 3: Distorted retinal images obtained when features projected through a
pinhole eye model onto the hemispherical surface of the retina.
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Figure 4: (A) Computer-simulated retinal images of lines with four orientations
at seven positions used as training data set. (B) A random sample of 100 out of
648 Gabor receptive field profiles of the simple neurons.
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Figure 5: Basis functions visualized as the receptive field profiles of the 25 en-
coded layer neurons. The basis functions were trained using Olshausen and
Field’s sparse coding approach.

temporal difference between stimuli before and after a saccade, the hidden
layer neurons are more likely to have nonconstant responses.

In our second simulation we tested image sequences of real-world ob-
jects, such as a teapot and a bottle (see Figures 8B and 8C). The images of
these objects were projected onto the simulated retina at nine different po-
sitions following routes such as that illustrated in Figure 8A. Each retinal
image has a size of 64 × 48 pixels. The number of neurons in the encoded
layer and the hidden layer has been increased from 25 to 64 from the num-
bers used in the previous experiment. This was required because the size
of the basis function set to encode the sparse representations should also
increase as the complexity of the input images increases.
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Figure 6: Neural activities of the four most active hidden layer neurons respond-
ing to computer-simulated data set at different positions. The neuron firing rates
for each of the four stimuli (four lines with different orientations) at each of the
seven retinal positions are shown. Each neuron has its preferred orientation
selectivity across all positions.

Figure 9 shows the neural activities of the four most active neurons in the
hidden layer when responding to the two image sequences of a teapot and a
bottle, respectively. Neurons 3 and 54 exhibit relatively strong responses to
the teapot across all nine positions, while neuron 27 mainly responds to the
bottle. Neuron 25 has strong overlapping neural activities to both stimuli.
The sets of neurons that have relatively strong activities are different from
each other, satisfying our definition of position invariance.

3.2 Demonstration of Attention Shift Invariance. For simplicity in this
experiment, we use binary images of basic geometrical shapes such as rect-
angles, triangles, and ovals. These geometrical shapes are, as in the previous
experiment, projected onto the hemispherical retinal surface through a pin-
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Figure 7: Comparisons of position-invariant submodule performance with var-
ied weighting parameter κ (κ = 0, 0.2, 0.5, 0.7, 1), using a measurement of stan-
dard deviation of each neuronal response to a stimulus across different positions.
The weighting parameter emphasizes the importance of the reinforcement re-
ward with small κ . Lower standard deviation values mean that the neural re-
sponses remain stable while higher values mean instability. The values for the
25 neurons in the hidden layer are shown.

hole. Their positions relative to the fovea change as a result of saccadic
movements.

Here we use a weighted combination of intensity contrast and orientation
contrast to compute the saliency map, as they are the most important and
distinct attributes of the geometrical shapes we use in the training. A winner-
take-all mechanism is employed to select the most salient area as the next
fixation target. After a saccade is performed to foveate the fixation target,
the saliency map is updated based on the newly formed retinal image, and
a new training iteration begins. Figure 10 shows a sequence of saliency
maps calculated from retinal images of geometrical shapes for a sequence
of saccades.

Figures 11B and 11D show a sequence of pre- and postsaccadic local fea-
tures of the retinal images of a rectangular shape falling in a 25 × 25 pixel
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Figure 8: Training image sequences of two real objects (B and C). The images in
the sequences were taken at nine positions following a path as indicated in A.
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Figure 9: Neural activities of the four most active hidden layer neurons respond-
ing to two real objects at different positions. The neuron firing rates for each of
the two stimuli (a teapot and a bottle) at each of the nine positions are shown.

attention window, respectively. The local features shown in Figure 11 af-
ter a saccade are not exactly the ideal canonical foveal images because of
calculation errors in the position of the saccadic target. This situation also
occurs in human vision where saccadic eye movements are not always able
to put the selected target exactly in the fovea. In fact, undershooting of the
target is the usual situation. This undershot local feature is likely to be re-
foveated by a subsequent small, corrective saccade. An enhanced algorithm
dealing with this undershooting was described in Li and Clark (2002). Even
if the correction of undershooting is not taken into consideration in this
model, we still can obtain invariance, although the efficiency of the model
performance will be impaired somewhat. This is because these noncanon-
ical foveal features will exhibit greater variability than the ideal canonical
features and therefore require a longer learning process. But the temporal
association mechanism is still able to associate the various near-canonical
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Figure 10: Dynamically changing saliency maps for three geometrical shapes.
They are computed from the retinal images after the first six saccades follow-
ing an overt attention shift. The small, bright rectangle indicates an attention
window centered at the most salient point in the saliency map.

Figure 11: Local features of a rectangular shape before (b) and after (d) an overt
attention shift. (a, c) Retinal images of the same rectangle at different positions
due to overt attention shifts.
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Figure 12: Neural activities of the two most active output layer neurons across
attention shifts. The neuron firing rates for the two geometric shapes of a triangle
and a rectangle are shown.

neural representations and produce a stable neural response to the same
stimulus across transformation.

We show in Figure 12 some of the output layer neural responses (neurons
2 and 5) to two geometrical shapes: a rectangle and a triangle. Neuron 2
responds to the rectangle more actively than to the triangle, while neuron 5
has a more active response to the triangle than to the rectangle.

3.3 Comparison with Other Temporal Approaches. In this section, we
demonstrate how our proposed approach performs well in situations where
the input lacks smoothness in time. Position-invariant learning models that
use temporal continuity, such as those of Földiák (1991) and Einhäuser et
al. (2002), are observed to perform poorly in these situations.

We use a digital camera mounted on a computer-controlled pan-tilt unit
(PTU) to acquire images around a toy bear. Images of the object are acquired
as the PTU randomly changes its pan and tilt positions. The PTU movements
are constrained so as to keep the bulk of the object in view at all times. The
action of the PTU simulates human eye and head movements, which result
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in the displacement of the object features on the imaging surface. Pairs of
images before and after each movement are obtained and converted into
gray-level images. These image pairs are fed into the model as training data
in a random order. The resulting time sequence of images is not smooth at all.
This is an extreme test but nonetheless realistic, and it clearly demonstrates
the difference in performance between our method and the methods based
on temporal continuity.

We implement Földiák’s trace rule (1991) and the learning rule for the
position-invariant complex neuron of the top layer as given in Einhäuser et
al. (2002). We use the training data to train using both of these rules as well
as with our proposed model. The learning results are compared using the
mean variance of the output neuron responses over the whole stimuli set.
If the model is to exhibit position invariance, the output neuron responses
should remain nearly constant and therefore have a low variance. We show
the results produced by the three models in Figure 13. Each time unit in
the plot represents 25 learning iterations. The figure shows that our model
converges to a stable state very quickly, with a low mean variance. The
mean variance in Einhäuser’s model is larger than in our approach, and it
descends very slowly over the time interval. Földiák’s model produces an
increasing response variance with time, implying a complete failure of the
learning process for such a nonsmooth input sequence.

4 Conclusions

In this letter, we have presented a neural network model that achieves posi-
tion invariance. Our approach is based on a study of a more general problem:
learning invariance to attention shifts. Attention shifts are the primary rea-
son for images of object features to be projected at various locations on the
retina. Object motion in the world is rarely the cause of such variation, as
pursuit tracking of object features cancels out this motion. Following Desi-
mone (1990), we treat covert and overt attention shifts as equivalent, from
the point of view of their effect on the visual cortex. For the task of learning
position invariance, the advantage of treating image feature displacements
as being due to attention shifts is the fact that attention shifts are rapid and
that there is a neural command signal associated with them. The rapidity
of the shift means that learning can be concentrated to take place only in
the short time interval around the occurrence of the shift. This focusing of
the learning solves the problems with time-varying scenery that plagued
previous methods, such as those proposed by Földiák (1991), Becker (1993,
1999), Körding and König (2001), and Einhäuser et al. (2002).

We used an extension of Clark and O’Regan’s (2000) association model
to learn position invariance across overt attention shifts via temporal dif-
ference learning on pairs of pre- and postsaccadic stimuli. The extension
involves the use of a sparse coding approach, which reduces the size of
the association weight matrix and therefore the computational complexity.
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Figure 13: Comparison of the performance of three models (our proposed
model, Földiák’s, and Einhäuser’s respectively) in learning of position invari-
ance in the case of time-varying scenery. The performance is evaluated by mean
variance of the hidden layer neuron responses over the whole stimuli set along
a time interval. Each time unit in the x-axis is composed of 25 learning iterations.

We apply the constraint of temporal stability across attention shifts, and
temporally integrate position-invariant neural response patterns of local
features within attention windows to attain attention-shift-invariant object
representations.

We implemented a simplified version of our model and tested it with
both computer-simulated data and computer-modified images of real ob-
jects. In these tests, local features were obtained from retinal images falling
in an attention window by an attention shift mechanism. The incorporation
of the attention shift mechanism speeds up the learning process by actively
acquiring useful information about the correlated relationship between dif-
ferent neural responses of a same local feature at various positions, and
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relationship between the partial and the whole (i.e., local features of an ob-
ject and the object as a whole entity). The results show that our model works
well in achieving both position invariance and attention-shift invariance, re-
gardless of retinal distortions. We demonstrated that our method performs
well in realistic situations in which the temporal sequence of input data is
not smooth, situations in which earlier approaches have had difficulty.
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Einhäuser, W., Kayser, C., König, P., & Körding, K. P. (2002). Learning the in-
variance properties of complex cells from their responses to natural stimuli.
European Journal of Neuroscience, 15, 475–486.
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Wallis, G., Rolls, E. T., & Földiák, P. (1993). Learning invariant responses to
the natural transformations of objects. International Joint Conference on Neural
Networks, 2, 1087–1090.

Walsh, V., & Kulikowski, J. J. (Eds.). (1998). Perceptual constancy: Why things look
as they do. Cambridge: Cambridge University Press.

Received April 23, 2003; accepted April 5, 2004.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0166-4328()66L.177[aid=217486]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0301-0082()51L.167[aid=214861]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()27:2L.205[aid=6230700]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0033-295x()88:2L.135[aid=4927955]
http://www-2.cs.cmu.edu/jrs/jrspapers.html
http://www-2.cs.cmu.edu/jrs/jrspapers.html

