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This paper presents an FPGA-based system for detecting people from video. The system is designed to use JPEG-compressed
frames from a network camera. Unlike previous approaches that use techniques such as background subtraction and motion
detection, we use a machine-learning-based approach to train an accurate detector. We address the hardware design challenges
involved in implementing such a detector, along with JPEG decompression, on an FPGA. We also present an algorithm that
efficiently combines JPEG decompression with the detection process. This algorithm carries out the inverse DCT step of JPEG
decompression only partially. Therefore, it is computationally more efficient and simpler to implement, and it takes up less space
on the chip than the full inverse DCT algorithm. The system is demonstrated on an automated video surveillance application

and the performance of both hardware and software implementations is analyzed. The results show that the system can detect
people accurately at a rate of about 2.5 frames per second on a Virtex-II 2V1000 using a MicroBlaze processor running at 75 MHz,

communicating with dedicated hardware over FSL links.
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1. INTRODUCTION

This paper describes a system for detecting people in images,
implemented on a field-programmable gate array (FPGA).
People detection is an important subtask in many computer
vision applications, such as automated video surveillance,
human activity recognition, and smart room systems. The
output of a people detector can be used, for instance, to in-
fer a person’s location in a scene or to track the person over
time. Such location and tracking data can then be analyzed
to automatically generate a human-understandable descrip-
tion of what the person might be doing, or raise an alarm if
the person’s behavior seems unusual.

Many vision applications often involve a large number
of cameras. For example, wide-area surveillance networks
use tens to hundreds of cameras to monitor many different
scenes. Sending the video from all the cameras to a single
central workstation for processing can be prohibitively ex-
pensive because of the need for high-bandwidth transmis-
sion. An attractive alternative is to perform the processing on
the camera itself with a fast and inexpensive FPGA chip. In

recent years, FPGA technology has become increasingly pow-
erful, less expensive, and more practical for use in real-time
vision applications. Our long-term goal is to build a frame-
work in which a large number of cameras cooperate to carry
out a collective task (such as surveillance), with each per-
forming its own FPGA-based video analysis, and exchanging
high-level, low-bandwidth information over a network.

As a first step toward such a framework, we have im-
plemented a single-camera people detection system on an
FPGA. The system is demonstrated on a corridor surveillance
application. Here the task is to detect people appearing in an
office corridor from the JPEG-compressed frames provided
by a fixed network camera. Example frames from the camera
are shown in Figure 1. By “detecting people,” we mean com-
puting an accurate bounding box for each fully visible person
in a frame.

Our approach to people detection uses a classifier trained
by a supervised machine-learning algorithm. This is in con-
trast to the traditional approach based on techniques such
as background subtraction or motion detection. Such tech-
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FiGure 1: Example images of the scene under surveillance.

niques are relatively easy to port on to a chip because they
mainly involve simply differencing images. An example of
this approach implemented on an FPGA is [1]. However, de-
tection methods based on background subtraction or motion
can often fail because of sudden changes in scene illumina-
tion, shadows, similar pixel values shared by the foreground
and the background, and other difficult background model-
ing problems. As explained later, the learned classifier-based
approach is not affected by these problems and therefore can
be more robust and accurate. The detection algorithm we use
is developed by Viola and Jones [2]. This algorithm is de-
scribed in Section 3.

Such an approach to people detection is also an unusual
choice for FPGA implementation, since vision and image
processing algorithms successfully ported to FPGAs tend to
be of the data-streaming or small-neighbourhood filter va-
riety. Many of the more complex algorithms are frequently
deemed unsuitable for FPGA implementation due to the ne-
cessity for floating-point operations or because of the lim-
ited amount of rapid, on-chip memory compared to the vol-
ume of data that needs to be processed. Instead of avoiding
these problems by changing algorithms, we explore methods
to mitigate their effects on system performance, thereby ex-
panding the range of algorithms suitable for FPGA. Details
of the firmware implementation of the people detection al-
gorithm and JPEG decompression are provided in Sections 4
and 5.

Another contribution of our work is an algorithm that
combines the JPEG decompression with the detection algo-
rithm in a hardware-friendly manner. The Viola-Jones detec-
tor needs to compute an “integral image” of a video frame in
order to detect people in that frame. We present a method
for computing an approximate integral image directly from
JPEG, without computing the fully decompressed frame.
This method is simpler to implement on an FPGA than a
full-fledged JPEG decompressor, it takes up less space on the
chip, and it requires fewer computations compared to calcu-
lating the integral image from a fully decompressed frame.
The algorithm for approximating the integral image is de-
scribed in Section 6. The firmware implementation details of
the approximation algorithm are given in Section 7.

An overview of the system we have implemented is given
in Section 2. Accuracy results for the trained detector are pre-
sented in Section 8.

2. SYSTEM OVERVIEW

People detection is rarely an end in itself, but more often
an intermediate step in a higher-complexity algorithm. Our
approach to this problem is to have multiple, independent
camera-based processing units communicating high-level in-
formation about a scene instead of raw data. In the more
complex applications, one can expect that the camera net-
work will be highly heterogeneous, with cameras implement-
ing low-level algorithms and passing on their results to cam-
eras with higher-level algorithms, in an analogous manner to
the multiple levels of processing found in the human visual
system.

To simplify the design of the various modules that would
be required in such a network, it is important to have a pow-
erful yet flexible and adaptive framework. Cost is also a factor
due to the large number of nodes that should compose the
network. In fact, it should be expected that the system’s true
power comes from distributing the processing load over
multiple nodes rather than from the processing power of the
individual nodes in the network.

The desire to have as many nodes as possible combined
with the requirement that each node be capable of executing
moderately complex algorithms in real time were the guid-
ing constraints in node design. This required the solution
to be as cost-effective as possible, yet still capable of high-
performance image processing. Reconfigurable computing
architectures have shown time and again an ability toward
accelerating image processing tasks [3, 4, 5, 6, 7], and are
therefore ideally suited to this application.

Current advances in FPGA technologies are making
it possible to envisage the design of a system on a pro-
grammable chip (SOPC), in which all the components which
previously required separate components on a printed circuit
board (PCB) can be fit onto a single FPGA chip. This allows
embedding of a microprocessor on the FPGA itself instead of
placing it alongside on a PCB. Xilinx provides two avenues
to this effect, the MicroBlaze soft processor for the Virtex-11
family of chips, and the IBM PowerPC processor embedded
into the Virtex-II Pro family of FPGAs.

Using such an approach, the microprocessor can be used
to control the general behavior of the system, as well as the
complex network communication protocols. In parallel, an
application-specific firmware (ASFW) module can be config-
ured to do the bulk of the processing, taking full advantage of
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FIGURE 2: Organization of IP cores on the FPGA for a single-chip
solution.

the parallelism offered by custom hardware designs. This also
permits a tight, optimized coupling between the data pro-
cessing elements and the data source, such as the camera or
memory.

The more conventional approach to a reconfigurable
computing architecture is to have a dedicated micro-
processor ASIC using an FPGA as a reconfigurable copro-
cessor. Such a configuration has many advantages, namely,
performance, but it sacrifices some of the flexibility and cost-
effectiveness of a single-chip solution.

Other limitations were imposed by the prototyping plat-
form that was initially chosen. Although the video input will
be tightly coupled to the FPGA in future versions, no read-
ily available commercial board was found to satisty this re-
quirement along with all the others. The chosen prototyping
board was Insight Memec’s V2MB1000 board, which pro-
vides a large variety of I/0, such as LVDS pins, which will be
necessary for high-speed board-to-board communication. It
was decided that the actual source of the video feed had lim-
ited impact on the functionality of the system, and that rea-
sonable performance estimates could still be garnered from
the implementation.

For the node application example described in this pa-
per, the source images were gathered from a network camera
with onboard JPEG compression and HTTP server over Eth-
ernet, Axis Communication’s NetCam 200-+. Unfortunately,
the live stream from this camera is limited to 1 352 x 288
pixel frame per second. Having a JPEG video source allowed
exploration into the possibilities of integrating real-time im-
age compression and decompression into a standard com-
puter vision algorithm. Integrating compression and decom-
pression of a data stream into the application (whether using
JPEG or other means) is an important step toward reduc-
ing the bandwidth required in transferring data between net-
work nodes or even between the FPGA and memory. In fact,
hardware implementations of computer vision and image
processing algorithms are more often limited by the speed
of their I/O than by the speed at which they are able to pro-
cess data, which is why most of the algorithms implemented
in hardware are of the streaming filter variety, where mem-

ory demands are limited. Compressing the data that is to be
transferred therefore has the potential of improving the sys-
tem performance by increasing the effective bandwidth as
long as compression and decompression of the data have a
limited effect on the speed of the overall system.

The global system organization can be seen in Figure 2.
Execution starts when the MicroBlaze processor retrieves the
JPEG image from the network camera using HTTP over Eth-
ernet. The JPEG data is separated from the header and passed
to the JPEG decoder and people detection module, which
is described in more detail in this paper. The integral im-
age (an intermediate format needed by the algorithm) is
stored in DDR SDRAM for the use of the application-specific
firmware, to which it is tightly coupled with a controller op-
timized for this specific application to minimize overhead
costs.

3. THE PEOPLE DETECTION ALGORITHM

People detection is performed using the Viola-Jones algo-
rithm, which is a general method that can be used to learn
a detector for any type of object. Here we give a brief sum-
mary of the algorithm as it applies to our work. For a full
description, see [2].

3.1. Viola-Jones detection algorithm

The basic detection strategy of the Viola-Jones algorithm
consists of two steps. First, an image classifier is trained to ac-
curately classify cropped people and nonpeople images (ex-
amples of such images are shown in Figure 3). Then, in-
stances of the “people” object are detected in a given video
frame by “scanning” the frame with the classifier. Scanning
involves sliding a window over the frame, and the classifier
is asked to label the subimage defined by each window posi-
tion as either “people” or “nonpeople.” When the window is
right on top of a person in the image, the classifier will (hope-
fully) label it as “people” and thus detect the person. People
of different sizes can be detected by scanning at many differ-
ent window scales. Note that this strategy does not make any
assumptions about the scene background or interframe dif-
ference, so it is not affected by problems such as sudden illu-
mination changes, shadows, and other difficult background
modeling problems that commonly plague detection meth-
ods based on background subtraction or motion.

The Viola-Jones algorithm uses the AdaBoost learning al-
gorithm [8] and a set of cropped people and nonpeople im-
ages to train the image classifier. Learning is performed on a
local feature-based representation of the training images, in-
stead of on the raw pixel representation. These features are
rapidly computable and allow for efficient scanning at dif-
ferent scales. Examples of the three types of features we use
in our detector are shown in Figure 4, as superimposed on
a cropped image. For all three types, the numerical value of
the feature is the absolute difference between the sum of the
white pixels and the sum of the black pixels. The features are
essentially local edge and bar detectors with different orien-
tations. For each type, thousands of features can be defined
by varying the location and the size of the feature within the
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F1Gure 3: Examples of cropped people and nonpeople images.

FIGURE 4: The three feature types used by the people detector.

cropped image. We use a total of 21804 such features for all
three types. Therefore, during training, each cropped image
is represented as a 21804-dimensional feature vector.

Most of these features are likely to be useless for classi-
fying people and nonpeople images. The AdaBoost learning
algorithm is used to select the few features that are actually
useful for accurate classification. The final classifier obtained
at the end of the training contains only a small fraction of
the initial pool of features. So when a frame is scanned using
the classifier, only O(100) features have to be computed per
subimage, rather than all 21804.

These features can be computed rapidly using what Viola
and Jones call the “integral image.” Given a grayscale image,
its integral image is a matrix whose element at the rth row
and cth column is the sum of all pixels up to and including
row r and column c¢ of the grayscale image. Once the inte-
gral image is computed, the sum of any rectangular region
of pixels in the image can be computed with only four addi-
tions, as explained in [2]. This means that the value of a local
image feature can be computed very quickly at any scale. So
when scanning a frame for people at various scales, it is not
necessary to resize the frame at those scales with an image
pyramid. Instead, the classifier itself can be “resized” sim-
ply by rescaling the features it uses. As a result, scanning is
computationally much more efficient than with the pyramid
approach. What makes this algorithm particularly attractive
for hardware implementation is that most of the arithmetic
operations involved during detection are additions.

To improve the speed of the detection process, a cascade
of strong classifiers is constructed, instead of just one strong
classifier. This strategy is based on the observation that al-
most all subimages encountered when scanning a frame be-
long to the negative class (i.e., nonpeople). Therefore, the
structure of an efficient classifier should be geared toward re-
jecting negative instances as quickly as possible, with large
amounts of classification effort expended only on the rare
positive instances. To classify a subimage, it is passed through
a cascade sequence of strong classifiers until one of them
rejects it as a negative instance. If the subimage survives
all stages of the cascade, then it is labeled as a positive in-
stance. The further down the cascade a strong classifier is,
the more features it contains. As a result, the small initial cas-
cade stages quickly eliminate the “easy” nonpeople instances.
More computational effort is required to reject the remain-
ing, more ambiguous nonpeople instances by the subsequent
larger stages. Although classifying a subimage as “people” re-
quires evaluating all the features in the entire cascade, such
subimages are rare. Therefore, the average number of fea-
tures computed per subimage, which determines the overall
speed of the detector, still remains fairly small.

The dimensions of the network camera frames we use are
352 x 288. Scanning is done only in a 216 X 288 rectangular
region in the middle of the frame that corresponds to the
part of the corridor where people actually appear. The size
of the scan window is restricted to be a multiple of 16 x 48
(width X height). Allowed multiples go from 1.0 (16 x 48)
t0 6.0 (96 x 288) in increments of 0.25. The number of pixels
by which the subwindow is shifted horizontally and vertically
is computed as 25% of its width and height, respectively. In
each frame, 3079 subimages have to be classified during scan-
ning.

4. PEOPLE DETECTION IN FIRMWARE

At first glance, the implementation of Viola and Jones’ de-
tection algorithm is rather straightforward. The module im-
plementation’s flowchart is shown in Figure 5. Having stored
the image in integral image format, the sum of pixels in a
rectangular region of any size only requires the addition or
subtraction of the region’s four corners. Therefore, all that is
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FiGure 5: Flowchart for the firmware implementation of the people
detection algorithm.

required to calculate a feature’s value is a simple accumulator
circuit. Each accumulated point is either multiplied by =1 or
+2, and the features that were used can have either 6 or 8
points of interest. The only difficulty stems from the limited
amount of on-chip memory available. Since the integral im-
age is much too large to fit on-chip, it must be stored in an ex-
ternal memory, which is necessarily much slower to access. In
the current implementation, the off-chip memory is a DDR
SDRAM with a 16-bit data bus working at 100 MHz. This al-
lows for a transfer rate which can never surpass 32 bits per
10 nanoseconds. With the targeted FPGA system clock speed
also at 100 MHz, the system would be receiving at most one
integral point per cycle, even without taking into account ad-
dressing overhead and memory refresh times. Various meth-
ods were considered in order to compress the integral im-
age and allow greater throughput, but the necessity to access
widely separate points in a pseudorandom order made this
a difficult task. Given that we have a priori knowledge of the
patterns with which data points can be fetched, it should be
possible to optimize the memory controller for this applica-
tion, for example, by inserting memory refreshes in natural
pauses in the flow, but this would be far from trivial and is
therefore left as future work.

Classifier training determines the position, size, and type
of features that are required to detect a person. These val-
ues are all given with respect to a 16 x 48 template window,
which is then shifted and scaled to detect people of different
sizes in varying places in the image. The address of a point
in external memory therefore depends both on its position
in the template window, and on the template’s position and
scale in the image at any given point in the scan. Training also
determines the feature’s threshold, its weight in the stage, and
the global threshold for each stage. In order to minimize de-
lays, this information should all be stored on-chip, but this
can require a large amount of memory if one is not careful.
Consequently, it is necessary to organize the information so

as to most tightly pack it into the available memory formats.

The first step is to determine the minimum required data
width for each signal. This is simple for most signals, but
some require more detailed analysis, and can usually be split
into absolute and relative ranges. Analysis of absolute ranges
is simply a question of finding the maximum and minimum
values for a variable and scaling it to fit an integer of mini-
mum size. An example of such a signal is the feature thresh-
old, which is determined by the feature size and maximum
pixel value, such that it can necessarily fit into 18 bits. How-
ever, analysis of the training data shows that no threshold
ever needs more than 15 bits. Since the system can be recon-
figured through judicious use of parameters if this changes,
the optimal size for a given training session can be used for
storage.

Relative ranges, such as that of the feature weights, only
have relevance one with respect to the others, and can be rep-
resented as numbers of arbitrary precision between zero and
one. These ranges can never be fully covered, but statistical
analysis of the training results yields the error associated with
a given data width. For example, normalizing the weights to
18-bit integers allows for all but 0.13% of the weights to have
a unique value compared to the full floating-point represen-
tation.

Once the data widths have been optimized, the signals
which are always retrieved together can be packed into a sin-
gle word in memory to reduce the number of memory ac-
cesses. This mapping, however, should be encapsulated in
such a way as to present the functional separations rather
than the actual ones in order to facilitate code reuse and
maintenance.

5. CALCULATING THE INTEGRAL IMAGE FROM JPEG

Computing the integral image of a grayscale frame is sim-
ple (see [2] for details) if the frame is not compressed. In our
case, however, it is compressed in JPEG format. The JPEG de-
compression algorithm involves computing the inverse dis-
crete cosine transform (DCT) [9], which requires nontriv-
ial hardware resources and computational effort. Therefore,
we seek to avoid computing the inverse DCT. It is possible
to obtain the integral image directly from the DCT coeffi-
cients because both the forward and inverse discrete cosine
transforms are linear transformations, which means that the
coefficients are linear combinations of pixel values and vice
versa. So the pixel sums required in the integral image com-
putation can be obtained through linear combinations of the
DCT coefficients.

Figure 6 shows how such a direct method would work,
and for comparison, the gray box shows the indirect method
of computing the integral image. But computing the inverse
DCT and computing the integral image from the DCT coef-
ficients are roughly equivalent since both the grayscale frame
and its integral image contain the same amount of informa-
tion, and the conversion between the integral and grayscale
forms is trivial compared to the inverse DCT. Therefore, cal-
culating the integral image directly from the DCT coefficients
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requires about as much effort as the inverse DCT itself. How-
ever, it may be possible to directly compute an approximate
integral image with fewer computations.

5.1. Extraction of DCT coefficients

The extraction of DCT coefficients from a JPEG stream re-
quires first that a Huffman-encoded value be decoded, which
is then used to decode the bits in the stream which encode
the coefficient’s actual value. This necessitates the use of a
Huffman table which is transmitted with the image. How-
ever, JPEG encoders (including the one used for this exper-
iment) generally use the same Huffman table for all the im-
ages that they generate. Having verified whether this is the
case for a particular encoder, and with knowledge that all fu-
ture images in the series will come from the same encoder,
it is possible to only extract the table from the first image
received or, in a prototyping environment, to hardcode the
tables into the FPGA’s configuration bitstream. The quanti-
zation tables used in Section 7 may be treated in the same
manner.

It was clear from the start that the speed at which the
JPEG decoding module processes data would be limited at
the input by the fact that the data is being sent over a
10/100 Ethernet line, which has a maximum transfer rate of
10 ns/bit, and at the output by the integral image module,
which needs to write its results to external memory. There-
fore, a simple serial lookup table approach to Huffman de-
coding, such as the one described in [9], should be sufficient
to meet data rate limitations at both ends. Once the Huffman
decoding is complete, decoding the coefficient’s value and in-
dex is relatively simple to do in parallel at a small additional
cost in complexity. Simplified block diagrams of these mod-
ules’ implementations can be seen in Figures 7, 8, and 9.

Tests on a source image suggest that if the decoding hard-
ware were only slightly limited by input speed (overhead of 2
cycles per 16 bits of data), the hardware should take approxi-
mately 75 kcycles to treat a typical image, which translates to
1.5 milliseconds for a worst-case 20 nanoseconds minimum
period. However, as will be seen in Section 7, most of this
time can be absorbed by the calculation of the integral im-
age, with a simple FIFO buffer to synchronize the modules.

6. AN EFFICIENT ALGORITHM FOR APPROXIMATING
THE INTEGRAL IMAGE

We have developed an algorithm for calculating an approx-
imate integral image that needs significantly fewer compu-
tations and hardware resources than the inverse DCT. The

basic idea is to compute the integral image exactly at some
points in the image and then approximate it everywhere else
by interpolation. The JPEG compression algorithm parti-
tions a grayscale image into nonoverlapping 8 x 8 pixel blocks
and computes the 64 DCT coefficients for each block. These
coefficients can be obtained from the JPEG data by Huffman
decoding and dequantization [9]. Since the DC coefficient of
a block encodes the average pixel value of that block [10], the
sum of all pixels in an 8 X 8 block can be calculated from its
DC coefficient alone. Using all such local 8 x 8 block sums of
an image, it is possible to compute the exact value of the inte-
gral image at the bottom-right corner of every 8 x 8 block in
the image, as shown by the example in Figure 10a. Suppose
that S;, S,, S3, and S, are the 8 x 8 block sums for the four
blocks shown in Figure 10a. Then the exact value of the in-
tegral image at point A is Sy, at point B is §; + S,, at point C
is S; + 83, and at point D is §; + S, + S5 + S4. The rest of the
integral image can then be filled in by interpolating these ex-
act values, but the resulting approximate integral image may
have a large error compared to the true integral image.

The approximation error can be reduced, at a greater
computational expense, if we divide up each 8 x 8 block into
four 4 x 4 blocks and calculate all the 4 x 4 block sums from
the DCT coefficients. Then the exact integral image value can
be obtained in a similar manner as above at four times more
points than before, as shown in Figure 10b. Reducing the
error further by computing the exact integral image values
even more densely further diminishes the benefits of avoid-
ing the inverse DCT. (Taken to the extreme, reducing the er-
ror to zero by computing the exact integral image values ev-
erywhere becomes roughly equivalent to the inverse DCT.)
How much approximation error can be tolerated in the in-
tegral image should be determined by how the error affects
the detection accuracy of the people detector. As the results
in Section 8 show, the approximate integral image computed
from 4 x 4 block sums provides a reasonable balance of high
people detection accuracy and low computational effort, and
therefore shows that is the approximation level we have cho-
sen.

Given an 8 x 8 block of DCT coefficients, how can the
8 x 8 and 4 x 4 block sums be calculated for that block? If
we consider the DCT coefficients in the block to be a 64-
dimensional vector d, and the corresponding 8 x 8 block of
pixels to be a 64-dimensional vector p, then we can write

p = Ad, (1)

where A is the constant 64 X 64 matrix representing the in-
verse DCT. Computing the sum of an arbitrary set of pixels
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within an 8 X 8 block is the same as taking the dot product

ar

of p with a 64D vector i whose components corresponding to
the pixels included in the sum are 1 and all other components

e 0. So the sum S of the pixels can be written as

S=ip=i'Ad
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Let r = i’A. Then we get
S=rd (3)

For a given i (i.e., a given set of pixels to add up in an
8 x 8 block), r is a constant vector that can be precomputed
independently of d.

For example, to find the sum of all pixels in any 8 x 8
block, we set all components of i to 1 and then compute r =
i’A. The components of the resulting r turn out to be all zeros
except for the one that multiplies the DC coefficient, which
has a value of 8. This means that the sum of an 8 x 8 block
can be computed by multiplying the block’s DC coefficient by
8. Once d is computed for a particular 8 X 8 DCT block, the
pixel sum is given by the dot product of r and d. Note that the
number of additions and multiplications needed to compute
the dot product of r with any d is equal to the number of
nonzero components of r.

To find the four exact integral image values in an 8 x 8
block, the sums of the shaded pixels denoted by Si, S, S3
and Sy in Figure 11a are needed. Direct computation of these
sums requires 100 additions and multiplications because the
r vector for each sum contains 25 nonzero components.
However it is possible to obtain the 4 X 4 block sums in-
directly with fewer additions and multiplications using the
pixel sums denoted by W,, W,, W3, and W, in Figure 11b.
The advantage of these sums is that they can be computed
with a total of only 27 additions and multiplications— W,
and W, need 5 adds and multiplies each, while W3 needs 17.
As mentioned before, Wy, the sum of all pixels in a block,
is calculated by multiplying the block’s DC coefficient by 8,
which can be done with shifts. Then the 4 x 4 block sums can
be computed as follows:

S Wi+ W+ W5 — W,y
1= >

2
S2=Wy -8y, (4)
S3 =W =38,
Sy = W35 —=§4.

6.1. Interpolating exact integral image values

Once the exact integral image values are obtained, the rest of
the image is filled in by interpolation. There are many differ-
ent types of interpolation methods that can be used here, but
to keep the computation hardware-friendly, we assume that
the integral image values are approximately linear within a
4 % 4 neighborhood and use simple local linear interpola-
tion. This is equivalent to assuming that the pixel values in a
4 x 4 neighborhood of the grayscale image are equal, because
integrating a constant pixel neighborhood results in a linear
integral image neighborhood.

The interpolation can be done in two steps: initially the
integral image consists of 5 X 5 neighborhoods of the kind
shown in Figure 12a. The black squares are the points where
the integral image values have already been computed and
the white squares are the missing points. In the first step, the
gray squares in Figure 12a are obtained using the equations
shown there. The four gray squares along the border of the
5% 5 neighborhood are computed by averaging the two near-
est black squares, and the middle gray square is computed by
averaging all four black squares.

After the first interpolation step, the integral image con-
sists of 3 x 3 neighborhoods of the kind shown in Figure 12b.
The procedure for filling in the remaining missing points in
the 3% 3 neighborhood is analogous to that of the 5% 5 neigh-
borhood, as shown by the equations in Figure 12b. A valid
integral image must be nondecreasing (since grayscale pixels
are never negative), and it can be easily shown that the in-
terpolated values computed using the equations in Figure 12
do satisfy the nondecreasing requirement, provided that the
exact integral image values satisfy them.

This interpolation scheme is suitable for hardware im-
plementation because it only requires additions and divi-
sions by 2 and 4, which can be done with shifts. The total
work needed to fill in an 8 X 8 block is 27 multiplications,
64 additions, and 20 shifts. On the other hand, the inverse
DCT is an O(nlog, n) algorithm, so it requires on the order
of 64 x log, 64 = 384 multiplications and additions for an
8 < 8 block. Basically, the savings in computational effort and
hardware resources come from replacing the multiplications
in the inverse DCT algorithm with shift operations.
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FIGURE 11: Two alternative sets of pixel sums (of the shaded regions) that can be used to compute the four exact integral image values in an
8 x 8 block. Set (b) requires fewer additions and multiplications to compute from DCT coefficients than set (a).

The algorithm for computing the approximate integral
image is related to the idea of decompressing a JPEG im-
age by “scaled decoding.” Scaled decoding is a feature of the
JPEG format that allows efficient decompression of an image
at either 1/2, 1/4, or 1/8 of its original resolution. Our algo-
rithm can be thought of as first computing a grayscale image
by scaled decoding at a lower-resolution, but still maintain-
ing the same dimensions as the original image by filling in
the missing pixels with replicas. Then this lower-resolution
grayscale image is integrated to obtain an approximate inte-
gral image.

7. FIRMWARE IMPLEMENTATION OF THE
APPROXIMATE INTEGRAL IMAGE

The algorithm described in Section 6 uses sums of DCT co-
efficients multiplied by a constant to exactly calculate the
half-block integral points. Since the coefficients are fed se-
quentially to the module by the JPEG coefficient extractor,
this can be implemented using a multiply and accumulate
(MAC) circuit for each point, as illustrated in the simplified
block diagram in Figure 13. Careful inspection of the coeffi-
cient multipliers shows that their values are dependent on the
index of the multiplied DCT coefficient rather than the posi-
tion in the position of the point that it is being accumulated
for. This suggests that a single multiplier can be shared by all
the points. The MAC circuit also intrinsically takes advan-
tage of zero runs in the JPEG stream, since not accumulating
these coefficients is the same as accumulating 0. This means
that the time needed to calculate a point is dependent on the
number of nonzero coefficients in the image.

However, JPEG DCT coefficients only contain informa-

tion about the 8 x 8 block that they are in, and are totally
independent of their position in the image. An integral im-
age point, on the contrary, is dependent on all the points
above it and to its left in the image. It is therefore necessary
to offset each block-integral point extracted from the DCT
coefficients by the integral image as it has been accumulated
so far. Referring to Figure 14, where the grayed-out portions
are the blocks that have already been received, and the black
squares are the half-block integral points that are extracted
directly from the DCT coefficients, it is evident that going
from the block-integral points that are extracted from the
coefficients to the final image-integral points requires points
from the blocks immediately above and to the left of the cur-
rent block. For any given 8 x 8 block decoded from JPEG, the
desired image-integral points, (r + 3,¢ + 3);, (r + 7,¢ + 3);,
(r+3,c+7)i, (r+7,c+7);, where (r, c); is the position of the
upper-left pixel of the block in the image, can be calculated
from the block-integral points (3, 3)p, (7,3)p, (3,7)p> (7,7)p>
with the origin at (0, 0); in the upper-left corner of the block,
according to the following:

(r+ic+i)i= 0 jp+(r—1c+j)i+ (r+ic—1);
(5)
—(r—1,c—-1);

This dependence on previous points requires the use of
some form of memory. Although it would be possible to refer
to the image stored off-chip, this would incur significant de-
lays, making on-chip caching preferable. Since JPEG blocks
are read from left to right and top to bottom, it is only nec-
essary to keep the integral points from a single row of the
image, in addition to the final column of the previous block.

The astute reader will notice that no mention has yet been
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as = (a1 +az)/2
ag = (uz + a4)/2
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ag = (ul +u3)/2
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(a)
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bg = (b + by + b3 +by)/4

(b)

FiGure 12: Interpolation scheme for (a) 5 x 5 and (b) 3 x 3 neighborhoods.
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Figure 13: Simplified block diagram of calculation of half-block integral points.

R1 R2
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FIGURE 14: Illustration of integral image being constructed from 8 x 8 blocks. The grayed-out portions are the blocks for which the integral
image has already been calculated, and the black squares are the points which are extracted exactly from the DCT coefficients.

made of the quantization factor required by JPEG decom-
pression. When a JPEG image is encoded, each DCT coeffi-
cient is divided by a quantization factor chosen according to
its index in the block. The reason that this is not dealt with
by the coefficient extractor is that, similarly to the coefficient
modifiers, the quantization factor is fixed for a particular in-
dex value, and is known in advance, which means that the
two multiplicative factors can be combined offline, so that
only one multiplication is required online.

In an effort to minimize the memory taken up by the var-

ious tables, it is necessary to optimize the number of bits that
need to be stored. A close study of the JPEG standard re-
veals that 14 bits are needed to store all possible coefficient
values. Consequently, the largest useful quantization factor
also requires 14 bits. Since the coefficient modifiers’ abso-
lute values are all less than 3 (excluding the DC modifiers,
which are powers of 2, and can be taken care of with shifts),
3 bits are required to store the modifiers’ whole parts in 2’s
complement notation. The number of bits reserved for the
fractional part will increase precision, but will not otherwise



An FPGA-Based People Detection System

limit the range, and is therefore temporarily left undefined.
The combined “quantized” modifier consequently requires
17 bits to represent its whole part. Since multiplication of the
quantized coefficient by the quantization factor simply re-
stores the original 14-bit coefficient, the final result should
also fit in 17 bits for a properly encoded image. These values
are then accumulated to give a 32-bit integer, the value of the
integral image at that point. Since the result is expected to be
an integer, the fractional part is only useful in intermediate
results, and rounding off to the closest integer according to
the MSB of the fractional part should be enough to correct
for any lack of precision in intermediate calculations, as long
as the accumulated error in the block is under 0.5.

Calculating the integral image directly from the JPEG co-
efficients has the obvious advantage of eliminating the need
for an explicit integrator. In fact, calculating the integral im-
age directly is equivalent to decompressing the image. One
might wonder why linear interpolation is used instead of
simply storing a smaller image, since the images are essen-
tially equivalent. Although a high-resolution image is not re-
quired by this algorithm to detect people, the features will be
misaligned at large scales unless they are placed at what is es-
sentially subpixel resolution at small scales. The method that
was chosen to achieve this was to duplicate pixels to allow
more precise placement of features. Although this could have
been achieved by fully decompressing a smaller image, it was
evaluated that the bottleneck was more likely to be in stor-
ing the image to memory rather than in receiving the com-
pressed data. A tradeoff can be achieved between the size of
the input stream and the complexity of the on-chip decom-
presser. This is due to the observation that JPEG decompres-
sion does not scale linearly with the resolution. While a full-
resolution decompression would require 64 accumulators,
one for each pixel in the block, a (1/4)-resolution scan only
requires 4 accumulators, or 1/16th of that needed for the full
resolution. To give a feel for the amount of resources saved
by this method, the module calculating the 4 exact points
takes up 400 slices in a Virtex-II FPGA (each slice contains
2 flip-flops and 2 four-input lookup tables). The modules
approximating the remaining 60 points take up collectively
less than 100 slices. Even by limiting estimates to the storage
space required for the DCT coefficients’ accumulators, cal-
culating the exact values of the 60 remaining integral-image
points would require more than taking 960 slices. This would
have severe impacts on both placement and routing efforts
for the entire module, possibly resulting in a reduced mini-
mum period.

7.1. Putting it all together

Once the various modules have been designed, a method still
needs to be chosen to allow them to communicate. In an at-
tempt to maximize flexibility and code reuse, a single, com-
mon interface protocol was required for all the modules so
that they could be swapped in and out easily without affect-
ing adjoining modules. And, of course, this must be achieved
while minimizing the impact on system performance.

The transport layer chosen to satisfy these various con-
straints was the fast simplex link (FSL) unidirectional point-

11
JPEG JPEG stream
module MicroBlaze
<
IntIm . .
module Integral image points Match coordinates
and sizes

Person detection module

L

DDR SDRAM
controller

DDR SDRAM memory
(integral image)

FiGure 15: Flow of data through functional modules—bold arrows
are FSL bus connections, thin arrows are single control lines, and
bold dashed arrows are module-specific interconnections.

to-point bus protocol already used by Xilinx for communica-
tion with its MicroBlaze processor. This protocol essentially
boils down to a 33-bit wide (32 bits of data and 1 of control)
first-in first-out (FIFO) buffer with all of the traditionally as-
sociated synchronization flags. Using this protocol has many
advantages, namely, that any module using it can be plugged
directly into the processor, is very low overhead, and most of
the more complex protocols already use FIFOs for synchro-
nization of the different modules, making it a simple matter
to adapt them to simulate the FSL bus on one end. Figure 15
shows the layout of the different modules in the data path,
as well as the flow of data through them. The JPEG stream
is received by the MicroBlaze and sent to the JPEG decoding
module after the header has been stripped off. This stream
is decoded, and the nonzero JPEG coefficients are sent to the
integral-image module. The integral image points are then
sent to the memory controller through the person detection
module. Once the integral image is received, the person de-
tection algorithm is started, and the size and coordinates of
the bounding boxes for any positive matches are sent back
to the MicroBlaze. Once the image has been scanned at all
scales, the MicroBlaze is informed so that it can start over
the process.

8. PEOPLE DETECTION RESULTS

Now we present the results of training the cascaded people
detector using AdaBoost. We also give the results of evaluat-
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FIGURE 16: Receiver operating characteristics for detectors at vary-
ing integral image resolutions.

ing the accuracy of the trained detector on a test set.

8.1. Training the detector

We use 2252 people instances and the same number of non-
people instances to train the first stage of the cascaded clas-
sifier. Each subsequent stage is trained with the same 2252
people images and 2252 false positives of the previous stages
collected from a set of 1500 frames. The number of cascade
stages and the size of each stage (i.e., the number of local
image features in each stage) are determined automatically
with a validation set containing 1585 people instances and
2901 421 nonpeople images. Because of on-chip memory re-
strictions, we constrain the cascade construction to a maxi-
mum of 5 stages with the maximum sizes of (in layer order)
20, 50, 100, 250, and 500. These values are found empirically
to be sufficient for constructing a reasonably accurate and
fast classifier. The details of the cascade construction algo-
rithm can be found in [2]. When using (1/4)-resolution level
for approximating the integral image, the training algorithm
generates a 5-stage cascade classifier with stage sizes 20, 50,
98, 205, and 310, for a total of 683 features.

8.2. Testresults

To evaluate the accuracy of the trained detector, we test it on
a set of frames containing 981 people instances and 1246 644
nonpeople instances. (These instances are not used either for
training or validation.) The receiver operating characteristic
(ROC) of the detector on this test set is shown in Figure 16.
For comparison, we also show the ROC for detectors trained
on exact integral images and (1/8)-resolution approximate
integral images. (Note that for each detector, the same res-
olution is used in approximating the integral images during
both training and testing.) Clearly, the ROC improves as the
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FIGURE 17: Number of subwindows seen by each stage of the cas-
cade.

approximation error of the integral image decreases. So there
is a tradeoff between the accuracy of the detector and the
computational effort needed for approximating the integral
image.

It is also important to compare the average number of
features computed per subwindow by each detector. This is
because the computational savings obtained by approximat-
ing the integral image may be lost if the approximation er-
ror causes the detector to be computationally more expensive
during detection. On the test set, the full-resolution detector
computes 40.48 features per subwindow, the (1/4)-resolution
detector computes 40.43 features per subwindow, while the
(1/8)-resolution detector computes 47.94 features per sub-
window. So the (1/4)-resolution and the full-resolution de-
tectors require approximately the same amount of computa-
tion during detection. However, the (1/8)-resolution detec-
tor needs more computations because the subwindows get
past more of its cascade stages, as shown by Figure 17. There-
fore, the savings provided by the (1/8)-resolution approxi-
mate integral image are lost during the detection process.

The benefit of the cascade structure can be seen from
Figure 17. For all three detectors, the first stage is able to re-
move almost 75% of the subwindows even though it con-
tains only 20 or fewer features. Only about 1.8% of all sub-
windows reach the last stage of the full-resolution and (1/4)-
resolution detectors, while about 3.5% of subwindows reach
the last stage of the (1/8)-resolution detector. As these results
show, the cascade structure allows the computational effort
expended on a subwindow to be determined by how diffi-
cult the subwindow is to classify. Since a vast majority of the
subwindows can be classified easily, this strategy results in
significantly more efficient detection compared to using one
large single-stage detector.
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FiGURE 18: Examples of frames scanned with the (1/4)-resolution detector.

Figure 18 shows examples of frames scanned using the
(1/4)-resolution detector. Since the detector is insensitive to
slight shifts and small size differences in a people instance,
it almost always detects a single people instance multiple
times during scanning. But many false positives tend to be
isolated detections. So isolated detections are ignored and
highly overlapping detections are averaged to obtain a single
detection window.

9. FIRMWARE PERFORMANCE ANALYSIS

Given the primitive interfaces available for board-computer
communications in the prototyping setup, extensive tests
could not be performed on the physical implementation of
this algorithm. However, a detailed analysis of the algorithms
accuracy was extracted from the full software implementa-
tion, as shown in Section 8. Given the functional equivalence
between these two approaches, the analysis found therein
should hold true for the hardware implementation as well.
Exact timing numbers are equally difficult to extract from
the physical chip. However, synthesis tools are very proficient
at estimating the internal delays with greater precision than
might even be achieved through direct measurement. Com-
bining these estimates with functional models and extrapo-
lating using the statistical distributions observed in the soft-

ware implementation, it is possible to get an accurate mea-
sure of what the system’s average performance should be un-
der various circumstances.

Since the design was made in a fully synchronous man-
ner, it should be sufficient to know whether or not all tim-
ing requirements have been met to know whether the func-
tional simulation is an accurate reflection of the actual im-
plementation. This allows us to use a functional model of
the memory provided with the memory controller to get a
cycle-accurate functional simulation. This is necessary since
the exact time taken in retrieving data from a given address
depends on many memory-dependent factors. Using an ac-
curate functional module for the memory allows these delays
to be taken into account in functional simulations, and thus
allows accurate timing estimates to be extracted from these
simulations. The average memory access time was calculated
by observing a large number of memory accesses during the
person detection module’s normal operation. The mean ac-
cess time per point was then calculated by dividing the to-
tal number of points fetched from memory by the total time
that it took to fetch these points. This spreads the memory
overhead over the entire operation, giving a more accurate
estimate than using local measures. It is important to note
that memory throughput could be further optimized by cus-
tomizing the memory controller to take advantage of natural
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pauses in memory accesses to refresh or activate the memory
banks in view of future accesses. This would have the effect of
lowering the average memory access time, thereby increasing
the overall performance.

The creation and storage of the integral image to memory
fora 352288 image, cropped to 216x288 by the hardware, is
approximately 30 milliseconds. This is governed by the num-
ber of points written to memory, which is fixed from one im-
age to the next, and therefore should be relatively constant.
Evaluation of the average frame rate of the detector is com-
plicated by the fact that the number of points that need to
be calculated varies according to the number of near-people
windows in the image. Using a sample space of 981 frames
containing people, it is found that on average, 40.43 features
are required in each of the 3079 windows of an image. As-
suming an average of 7 points per feature, this means that
there are approximately 870000 points evaluated in an av-
erage frame. Given a memory access time hovering around
350 nanoseconds per point, it can be estimated that frames
containing people can be treated at the rate of approximately
1 frame every 0.3 seconds. In comparison, treating an image
that has very few false positives can take as little as 25 mil-
liseconds once the integral image has been written to mem-
ory.

Of course, this is assuming that the memory controller
is able to run at 100 MHz. Although this should be possible,
recent versions of the synthesis tools have unexpectedly been
unable to meet the timing constraints at such speeds. This
forces the use of the on-chip digital clock managers (DCM)
to synthesize a slower clock. Although the DCMs allow syn-
thesis of the most rational number multiples of the input
clock, 75 MHz is sufficiently slow and reduces complications
in crossing clock domains. With the design running at this
speed, the frame rate with a subject in the image should drop
from around 3 fps to slightly under 2.5 fps. This constraint
makes running the design at full speed less of an issue. This
turns out to be quite useful, as the synthesis tools were not
quite able to meet the 10-nanoseconds period requirement,
even by using the highest effort level for placement and rout-
ing, due to some paths of excessive length in the MicroBlaze
processor. While careful floorplanning should make it pos-
sible to run the design at 100 MHz, the memory controller’s
speed limitations make this not worth the effort, especially
considering that it would be significantly more trouble.

Synthesizing the design without the MicroBlaze proces-
sor (leaving only the framework’s ASFW) reveals that the
100 MHz constraint could be satisfied if the MicroBlaze were
replaced by an off-chip processor. Given that the place and
route tools abandon their search for greater performance
once the requirements are met, it is possible that this design
could run slightly faster still, but the trouble that the tools
had in achieving even this level of performance hint that this
would probably not be a significant gain. The fact that sys-
tem performance is limited by memory bandwidth makes
any possible speed optimizations unnecessary.

The place and route reports also show that the system has
some space remaining for extra logic, with the design only
taking up 3438, or 67%, of all slices in the Virtex-II 2V1000

chip. In fact, excluding the MicroBlaze, the full system only
takes 2233, or 43%, of the available space. A more significant
difference is in the usage of Block Select RAMs, and hard-
ware multipliers. Although the ASFW only uses 7 blocks of
memory and 9 multipliers, the MicroBlaze requires an extra
18 blocks of memory, and an extra 3 multipliers. This means
that while the ASFW accounts for 65% of the logic used by
the entire system, the MicroBlaze accounts for 72% of the
memory used.

10. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed an FPGA-based people detec-
tion system based on the Viola-Jones object detection algo-
rithm. We have introduced a novel algorithm for computing
an approximate integral image from DCT coefficients that
is suitable for hardware implementation. Our work has ex-
plored some of the hardware issues involved in implement-
ing our system on FPGA. We have developed methods for
adapting algorithms which make use of floating-point op-
erations and which require access to large amounts of data.
Dealing with such obstacles is a necessary step in adapting the
more complex, and more interesting, computer vision algo-
rithms to FPGAs. We have also shown that a relatively simple
platform suitable for widespread, low-cost distribution into
a network configuration can handle image processing tasks
of moderate complexity with a low latency.

The current iteration of this project does not have a hard-
ware training module. However, given that the FPGA-based
detector will be operating on the same images as the soft-
ware one, the training can be done in software and the results
loaded into hardware. Since the training data is currently
hardwired into the HDL code, it is necessary to resynthe-
size the code whenever a new training set needs to be loaded.
However, it is a relatively simple matter to isolate the parts of
the bitstream that correspond to this data and modify them.
This allows the creation of a partial reconfiguration bitstream
which only modifies the memory locations containing train-
ing data and leaves the rest of the FPGA untouched. In fact, it
should be possible to use the MicroBlaze itself to reconfigure
these sections using the Virtex-II’s internal configuration ac-
cess port (ICAP). For memory segments that only ever need
to be changed in their entirety, or that are seldom modified,
partial reconfiguration of the memory segments permits the
read/write capabilities of RAM without the added complex-
ity of providing a datapath and control for writing to that
memory.

Partial reconfiguration also offers interesting possibilities
in view of online training of the detector. A camera module
could be configured to gather training data to establish or re-
fine the features that are needed by the detector. These feature
points can then be stored in the same format and physical
location as will be used by the detector itself. When train-
ing is complete, the FPGA can be partially reconfigured to
replace the trainer with the detector, but leaving intact the
data written by the trainer. The detector will then automati-
cally be using the new training data, without the need to ex-
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plicitly load it. However, this requires a judicious use of hard
macros in both modules, and may lead to suboptimal place-
and-route in one or both modules. Since real-time training is
not required, suboptimal performance in the trainer can be
accepted, which suggests that the detector be optimized first,
and the trainer be implemented according to the restrictions
this imposes.

More immediate gains could be achieved through devel-
opment of a caching module to reduce the need for external
memory accesses, directly improving system performance.
This is aided by the possibility of developing application spe-
cific cache architectures to take full advantage of a task’s spe-
cific memory access patterns, thereby further taking advan-
tage of the FPGA’s reconfigurability. However, whether or not
individual nodes are working at peak efficiency, it is unfeasi-
ble that large numbers of cameras in widely disparate envi-
ronments could be hand trained. It would be preferable to
have some method allowing unsupervised, automatic train-
ing of the cameras; and so we come full circle to that which
guided the design of the node’s architecture, which is the in-
clusion of this module into a networked environment, work-
ing hand in hand on more complex tasks that no module
could tackle independently.
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