Image and Vision Computing 19 (2001) 753-761

image
vision
COMPUTING

www.elsevier.com/locate/imavis

View-based route-learning with self-organizing neural networks

F. Hamze™, J.J. Clark

MCcGill University, Center for Intelligent Machines, Montreal, Canada

Accepted 10 December 2000

Abstract

This paper describes a view-based mobile robot navigation system relying on self-organizing neural networks. Route navigation was
presumed to consist of a chain of view—action associations. A sequence of view images from a test route was obtained, pre-processed, and
used to train a system of self-organizing maps. The converged networks consisted of a set of weights representing the learned views and a set
encoding the actions to be carried out at those views. A view presented to the trained networks can thus associatively elicit the action coupled
to it, allowing autonomous execution of the route. The data were presented to the system of networks using a simple place-dependent scheme,
and a context-sensitive decision-maker was used to minimize potential recognition ambiguity during the execution stage. © 2001 Elsevier

Science B.V. All rights reserved.

Keywords: Robot navigation system; Self-organizing neural networks; Trained networks

1. Introduction

Navigation and route-learning are two of the fundamental
tasks of mobile robotics. In this work, we outline a system
inspired by biological observations of this phenomenon and
of learning in general. Many animals demonstrate a highly
robust capacity to form internal maps of their surroundings
and to navigate within them. In contrast, most artificially
engineered systems, which rely heavily on a priori data and
modeling techniques, show nowhere nearly the same ability
to adapt and generalize to novel surroundings and conse-
quences. The superior performance of biological systems in
this respect stems from their parallel neural organization.
We believe that using a similar strategy, allowing the so-
called higher-level features to autonomously emerge from
the early processing, will yield a system that is less situa-
tion-specific than the constrained methods in fashion today.

1.1. Navigation in biological systems

Much of our knowledge of navigation in animals comes
from experiments done with rats in mazes. Tolman [1]
postulated that rats navigate using cognitive maps, defined
as “a series of interconnected places that are systematically
linked together through spatial transformation rules” [1].
Rats in radial maze experiments exhibited behavior that

* Corresponding author.

suggested the occurrence of place-learning, where animals
acted with the goal of moving to a certain location, rather
than response-learning, in which rats simply output a motor
action when presented with a sensory stimulus. O’Keefe and
Nadel [3] distinguish between routes and maps in naviga-
tion. A route is defined as a list of stimulus—response—
stimulus (S—R-S) associations which lead the navigator
from one sensory input (e.g. view) to another until a final
goal destination is reached. O’Keefe and Nadel point out
that, in order to strictly follow a route, the cues must inflex-
ibly appear in the correct order. Consequently, they are
sensitive to error; an occluded, distorted, or unattended
cue can wreak havoc on the accuracy of navigation. Maps,
on the other hand, are representations of parts of space. They
are free from the stimulus ordering constraints of routes;
novel routes from between places can be computed. The
flexibility that arises comes at the expense of a longer
processing time and increased storage requirements.

A brain structure known as the hippocampus has been
found to be crucial to place-learning for mapmaking. The
so-called hippocampal place-cells are neurons characterized
by their responsiveness to particular environmental loca-
tions called place fields. Place fields can overlap, and cells
are known to be responsive to more than one place field [3].
This is highly suggestive of a distributed approach to the
encoding of place-cell data. In other words, it is unlikely
that a place-cell (or population) exists to encode every place
experienced. Also, it is now believed that the hippocampus,
rather than simply contain the map information, serves to

0262-8856/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0262-8856(00)00106-2

754 F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761

2
LEG2 }
-T ---------- —
'
'
| | LEG3
5 ;
! '
: '
' V 3
1 ! i
' '
' !
: |
'
: : LEGEND
\ . —— TURN
' |
, ' - - = - ORWARD
LEG | X 1
' |
! |
! :
' '
: '
1
!
START END

Fig. 1. The route used on the 4th floor of the McGill center for intelligent
machines. Note the division into three ‘legs’, each consisting of zones
where FORWARD or TURN (STOP in leg 3) actions are acceptable execu-
tions (see Section 2.2).

modulate map storage in cortical regions (called the asso-
ciation cortex) [4].

In contrast to mapmaking, route-learning relies on lower
brain structures; the caudate nucleus is thought to play a
large role as evinced by the inability of rats to store the
necessary cue information following caudate lesions [5].

Neural network simulations comprising the route and
map systems co-acting have been carried out with agree-
ment with the physiological data; specifically, that hippo-
campal lesions beget a reliance on the route system for
navigation [2].

1.2. The Kohonen map

Many populations of biological neurons are known to be
arranged in spatial ‘map’ formations, where cells that are
‘close’ together tend to optimally respond to stimuli that are
‘similar’. Primate cortical area VI, for example, was discov-
ered by Hubel and Wiesel [6] to be organized into blocks
containing columns that respond best to specific visual edge
orientations. The inferotemporal cortex (IT) is also
comprised of columns, responding to complex shapes [7].
Within a given column in IT, the cells’ preferred shapes are
quite similar; across columns, neurons with different selec-
tivities are found.

The neural populations discussed above are said to be
topologically organized. A neural network architecture
designed to simulate this organization is the Kohonen self-
organizing map(SOM) [8]. Its objective is to cluster into
some meaningful pattern, the frequency of occurrence of a
set of training inputs x;, of dimensionality n (i.e. x; =

(X1, %02, s X3] . It consists of an array (usually two-
dimensional, although others are possible) of units each
defined by a weight m;, also of n dimensions (m; =
[m;1, myp, ..., m;,]). During training, an input x is compared
to all the units relative to some pre-defined similarity metric;
a common one is the Euclidean distance. The location of the
most similar, or ‘winning’ m; is expressible as:

¢ = arg min [— m (1

During training, the closest matching neuron, along with
those in a specified neighborhood of it, have their weights
updated by the rule:

m(t + 1) = m(t) + he(D[x(®) — m;(1)] @

where ¢ is the discrete-time instant of presentation of input
x(t). The weights for the selected neurons have their ‘posi-
tions’ altered toward the input x along a ‘line’ joining x to
the old weight. The term A is called the neighborhood
function. We use a neighborhood set, a collection of points,
whose size diminishes with time centered around the
winning node. Only weights within the set are updated.
Thus, we have:

alt) ifi €N,
hei(8) = { 3)

0 otherwise

The parameter «(?) is called the learning rate; it is also a
decreasing function of training time.

2. The route-learning and following system

We now describe our designed mobile agent route-learn-
ing system. Here, we explain how it would learn:

1. Different places based on views from a camera system.
2. The actions associated with those views in order to
follow a route.

and subsequently, after training, how it would ‘recall’ the
required actions from a series of views while operating
autonomously.

We should point out now that in order to be truly useful,
the system must be capable of operating in real time. Owen
and Nehmzow [9], who developed and tested an online,
sonar/IR-based SOM navigation system, rightfully object
that accounting for the real world’s tremendous variability
is practically impossible through simulation. Our study,
however, was a preliminary system designed to test the
feasibility of using a SOM for view-based navigation, a
task considerably more difficult than using the sonar’s
low-dimensionality data, especially in a non-artificial envir-
onment (i.e. without intentionally placed ‘objects’). We
performed a simulation to test the system’s capacity to
‘recognize’ a view and see whether it merits a real-time
implementation.

The target route went through an office hallway

F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761 755

(a) (b)

(c)

Fig. 2. A sample of the raw image data provided by the camera setup; (a),
(b), and (c) are views from locations which roughly correspond to the
numbered points in Fig. 1. Note that views (a) and (c) are similar; this
observation is shown to be echoed by our network in Section 3.2.

environment, shown in Fig. 1. The path is conceptually
divided into different zones; this will be discussed later. A
sequence of training images on the route was obtained using
a video camera mounted on a manually driven trolley.
Masking and electrical tape were placed on the floor and
walls at various locations to inform the trolley operator
when turns were required; no other artificial cue information
was imposed. Five training passes were performed, with the
camera data stored on video tape. The images were later
sampled using a gray-scale frame capture utility. Some
raw images from the numbered viewpoints in Fig. 1 are
shown in Fig. 2. Five fest passes were also filmed to assess
the autonomous performance of the system.

2.1. Image pre-processing

After the acquisition of training images, a data pre-
processing stage reduced the large dimensionality of the
input to a tractable yet useful size. This stage also tried to
achieve a degree of invariance to transformations that result
from changes in vantage.

The initial raw image size was 640 X 480 pixels, giving a
307,200-element vector. This was reduced to 320 X 240

(76,800 elements) by subsampling and averaging image
regions. The next step was to remove the images’ peripheral
data and maintain the central portion. The inner part was
treated as a single ‘object’. Bachelder and Waxman [10]
have also used this technique of reducing the peripheral
significance in their view-based navigation system. We
performed the central windowing with a mesa filter [11],
generated by the convolution of a disc with a Gaussian:

() evcmnven(;)
M(u,v) (f) exp(—m(ryf)”) X II > 4)
where II is a unit-valued disc region, y defines the sharp-
ness of the 2D Gaussian, f specifies the disc radius, and r is
the radial image-plane coordinate sgrtx® + y*. The resulting
convolution has the effect of ‘blurring’ the disc.

Edge detection was then performed; the centroid of the
vectorized image was then repositioned to the middle of the
image plane. In effect, this allowed us to work on the scene
center rather than the image center, compensating for small
translational shifts in viewing position.

The images were then subject to the log-polar transform,
a space-variant mapping that mimics the non-uniform
photoreceptor distribution in the primate retina. It consists
of sampling an image along a system of circles of exponen-
tially increasing radius. Mathematically, an image point
(p, 0) is transformed into a point (7, §) on the log-polar
plane by:

N=q6; jE [l .;Npng] o)
f:]n& i e [ls’Nmr] (6)
Po

where p, is the radius of the smallest sampling circle; Ny,
and N, are the number of angular and radial subdivisions,
respectively. All changes in rotation (6) and scale (p) trans-
form into translations in the log-polar plane. The mapping is
periodic in 6, so rotations will merely affect the ‘starting
point’, which results in a vertically ‘shifted’ image in the
log p plane. Likewise, changes in scale map into ‘delays’ on
p, which is a horizontal translation in log-polar space. The
mapped images’ log-polar centroids are then centered,
taking the periodicity of 0 into account. Finally, the images
are convolved with a Gaussian kernel and subsampled. The

INPUT(640x480) Reduce to 320x240, Shift to Rectangular
——=>{ Window with Mesa Edge Detection centroid
Filter
Convolution with
Log-Polar Map Shift to Log-P Gaussian, Reduce _?_;TPUT (16x8)
Centroid to 16x8 (Subsample)

Fig. 3. The steps in the pre-processing, described in the text.

756 F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761

Append : __________________ !
" Routing Switch : : :
. . r——--- -
: by y vV v
.
B . I
‘) \\ |
Input x \ b
.—)O L
1
SOM City 1 SOM City 2 SOM City 3

T _-

Action Leg Status

Fig. 4. Schematic of the pathways involved in training the network. The view input x is concatenated with the action code as described in the text. The ‘leg
status’ is a supervised input that delineates the current active segment of the whole route. This directs the training data to the right SOM; when in leg 2, for

example, SOM city 2 gets trained.

resulting ‘image’ size is 16 X 8 (128) elements. A schematic
summary of the pre-processing stage is shown in Fig. 3.

2.2. The SOM architecture

After the acquired training images have been manipulated
into a usable size, they are presented to the SOM system for
training. Note that in a real-time implementation, the acqui-
sition/processing/training would be performed online; in our
preliminary study, we executed each step separately. In
order to simultaneously allow the SOM network to indepen-
dently cluster view information and to accept the supervised
action inputs, it was necessary to make a slight modification
to the Kohonen algorithm. This was done by concatenating
the view vectors with externally dictated action codes. A
two-element action vector was appended to the pre-
processed view data produced by the last stage. Idan and
Chevallier [12] have proposed a training algorithm for hand-
writing recognition, a version of which we use here, that
allows a modulation of the influence of the input pattern
(view) and the supervised association target (action, in our
case). Making the action into an ‘input’ by appending it to
the view data results in the network nodes learning view—
action pairs, as routes have been defined to consist of
earlier.

During run-time (after training), pre-processed novel
views are compared to the neuron centers with the learned
actions truncated. The winner of this phase is the neuron
whose view weights most closely resembles the new test
place’s. The action required is then extracted from that
neuron’s action weights. In effect, this is a topologically
organized associative network.

During preliminary experiments, a single 20 X 20 Koho-
nen map was trained on all the data; results were quite poor,
with many misclassified actions and confusions which
would result in catastrophic misorientaion in a mobile
robot. The map architecture was then modified due to
inspiration from cortical area IT containing shape-respon-
sive columns. As can be seen from Fig. 1, our test route
contained three ‘legs’. Under the assumption that views
from a given leg will be ‘similar’, a separate Kohonen popu-
lation was set up for each. We termed these SOM

populations ‘cities’ as an extension of the neighborhoods
defined during training. The system’s operation was divided
into three phases (to be clarified shortly):

1. training;
2. test-orientation;
3. test-execution.

The action appended to the views within each leg was
either ‘Forward’ or ‘Turn’ relative to the current working
leg. The system relies on context to elicit the correct action;
it is pre-defined, for example that leg 3 comes after leg 2. If
the system ‘believes’ that it is in leg 2 and has reached its
end (i.e. has encountered a turn code), then it will expect to
begin receiving data corresponding to leg 3.

2.2.1. Training

The training phase (Fig. 4) works as follows: the pre-
processed view data x; is appended with the user-defined
action vector x, [1 0] for ‘forward’ (F) or [0 1] for ‘turn’
(S). Note that the final ‘turn’ in leg 3 is in fact a ‘stop’
command, but this is easily recognized by the contextual
decision-maker which ‘knows’ that the third leg is the last.

The user also issues the ‘leg status’ to the training
mechanism, which directs a data-routing switch to present
the view—action vector to the correct city. The data from leg
1 is only used to train city 1. The training method follows
[12]:

1. Our view vector x, € R'*® and action vector x, € R’
imply the need of codebook vectors € R'*°. The m; are
structured as m,; € R the ‘view’ components of the
neuron centers, and m,; € R?, their ‘action’ components.
The distance is:

PR Lt N it

14+ A 128 1+ A 2 Q)

The parameter A controls the ‘emphasis’ that view and
action components get in the training. We chose A = 1 to
give the view and action equal weight.

2. As in the standard Kohonen algorithm, the winning

F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761 757

Input x

SOM City 1

SOM City 2

SOM City 3

d_min from each city

City with Winning Node

Fig. 5. The orientation system. The view input x is fed to each SOM; the local winners’ deviation from the input proceed to a ‘final showdown’ in the Min
block. The SOM which sent the least-divergent error measure wins the start-point competition.

neuron c is found by:

¢ = arg min d; 8)

3. The modification of the weights m,; and m,; are done
individually using the same Kohonen method described
above:

the last step thus has its components updated.
4. This sequence is repeated for all view—action data in the
training set.

A total of 2358 images were used in training. The cities
were 20 X 20 square configurations with randomly initia-
lized weights. 150,000 weight updates were performed

my(t + 1) = my(t) + h;(1)[xy(£) — my(t 9 . . .
vil) vill) + hei(Dlx (1) w0l ©) using the training set. A square neighborhood set N.(7)
was chosen; the size diminished to 1 with training time.
Myt + 1) = my(t) + he(O[x, (1) — my(t 10 L T . :
ail) aill) + (1% () (D] (10) The learning rate « implicit in h,(¢) linearly declined to
The ‘common winner’ determined jointly by x, and x, in Zero.
Wherq AmI?
i
e > STOP
L T
T R !
\ ot 1 1
) [L,] !
oo v [v
PE N
Input x - .
--=-=
_____ ’ SOM City 1 SOM City 2 SOM City 3
Action | Action 2 Action 3

If "turn" is asserted, switch aclive cities

Otherwise, remain at current

Fig. 6. The method conceived to follow the route once the system has passed the orientation phase with output ‘where am I?” This is used as the input to a
switch controlling passage of data to the cities. The orientation input is used to initialize the routing to the correct city, but after that, it is the outputed actions
that signal a map-switch. The ‘?” on the bottom delivers the ‘end-of-leg-x’ signal to the routing switch, where x is the leg number. The final end-of-leg results in

a STOP signal.

758

|CO O S O O R A A
N G S A I
Eri et et
S SN S S O R O £
EE PP LD ID
| Z00 T SO T S (O (O ¢
EEEELLLELD
EEEPEELLDLDE
EEELEDELLDLI
GO T O S G N G
EEteEeLl LI L
EFEFPRELIILDLD
EEPERELLLD
EEEEEBELL
EEFELEERELE
EEEEEEREEE
BEEEEEEEEE
B EELELEEEEE
EEEBEEFEEEEREE
e ERLIEETE

Lo R ool B koo R Ras Ran i i wtodh ol vl sl Sl oo W 4

T W T Y TR TN ey Ty) e o o o e e

F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761

[L Lrrerr
| BN
| bbb
|]
1 bbb
1 bbobobon
Phrb b
I bEporonon
Lrrrreeree
I rrrrrr
| Lrrrrer
[rrroret
§ PrrLrt
[Prrrrr
I Prvreree
t Prtropt
B T A
1 OO0 LEE
b DDEDEE
3 HORGEE

Fig. 7. The converged state of SOM city 1. The individual blocks are the network nodes; each is a 16 X 8 block of image. The map is an adaptation to the pre-
processed input data. Note how the overall organization of the map seems to change gradually along the plane; this is motion in Kohonen’s feature space. In

the Fig. 8, we inspect the topological similarity property further.

2.2.2. Test-orientation

The first step in following a route is to identify your
current position. The initial identification is the task of the
orientation system shown in Fig. 5.

Upon startup, the novel pre-processed image vector x;
is presented to all three cities. The closest match
between itself and the view codebooks m,; is obtained
for each city. The distances corresponding to these
‘regional-winners’ then proceed to a ‘national-cham-
pionship’, with the champion being the minimum of
the three city winning distances. The robot’s location
is thus determined; the problem of resolving ambiguity
remains since a scene can be misclassified. (On occa-
sion, subordinate sports teams do ‘luck out’ and win
against the favorites!) We could not actually implement
this system since we did not have real-time data contin-
gent on the action available; ‘simulation’ of this is
fairly meaningless. An idea, similar to one by Siebert
and Waxman [13], is to rely on multiple views and the
learned allowable transitions between the views to
corroborate or discount the decision-making. A short-
term memory buffer of a given number, say 10, of
image-decisions is retained while the robot is in the
‘confused’ or ‘ambiguous’ state. Once a certain number
of correctly defined view-transitions have been
executed, the robot enters the confident test-execution
phase (Section 2.2.3). While the robot is confused,
however, a certain ‘exploratory’ fixed-action pattern is
necessary to try to ‘catch’ a correctly recognizable
view.

2.2.3. Test-execution

Once the starting location has been correctly identified,
the remainder of the route follows the algorithm described
in this section, and shown in Fig. 6. The input ‘Where am 1?7’

designates which city the route will start from and directs
the next pre-processed image to it.

From then on, the orientation mechanism is passive; the
context-dependent nature of the system takes over the deci-
sion making as follows:

1. Within the operating city, the closest matching view
vector m,,. to the image x,; is determined; the correspond-
ing action vector of node c is then executed.

2. The process continues in this ‘municipal’ fashion until
the action my,. dictates a turn (or more accurately, an
‘end-of-leg’). The control system issues the required
action code depending on the context, i.e. current city.
In our case, we know that after the first leg, a right-turn is
required, and that after the third segment, the route is
complete.

3. After executing the ‘turn’, the system ‘expects’ to receive
input corresponding only to the next city in the sequence.
We observe that control is constrained to flow in a
sequential, unidirectional manner.

4. In the final (third for us) city, the ‘turn’ command is
synonymous with ‘stop’.

We concede that the decision and orientation systems
are far less biologically realistic than the classification
and learning methods; they do, however, functionally
resemble the cognition that occurs while following
routes. Context is often used while identifying cues;
for example, a view of a traffic light on a certain street
corner would not cause confusion of being somewhere
else just because most traffic lights look similar. The
cognitive context of ‘where am I’ prunes the possible
influences that visual stimuli can have on place-recogni-
tion. The decision-maker presented is useful from an
engineering perspective.

F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761 759

-..»
. h

- o e

ar
——

- e e

|

PR —

i
w:

o

Fig. 8. Here, we show a magnification of a 5 X 5 top-left portion of Fig. 7.
Observe how similar the codebook vectors seem; nodes that are farther
apart tend to look different. This smooth transition of the mapping of the
input is designed to accommodate the gradually changing view obtained as
one proceeds down the route.

o o 0k

3. Simulation results

We now present various experimental findings. The
network operation is discussed in the following phases:

1. SOM training;
2. SOM test: initial orientation;
3. SOM test: post-orientation execution.

Table 1

Performance of the initial orientation system. The images represent those
that would be used upon initiation of the route. ‘Bad’ images are those that
are classified outside of their actual city

Test error: orientation system

Test pass no. Total imgs. Bad classif. % Error
City 1

1 55 2 3.64
2 51 4 7.84
3 55 4 7.27
4 27 5 18.51
5 55 6 10.91
City 2

1 55 0 0.00
2 54 1 1.85
3 55 0 0.00
4 54 3 5.56
5 52 1 1.92
City 3

1 65 5 7.69
2 63 3 4.76
3 60 9 15.00
4 59 7 11.86
5 64 6 9.38

3.1. SOM training

Fig. 7 shows the converged state of the 20 X 20 city 1;
Fig. 8 shows the 5 X 5 top left corner of the map for clarity.
The network nodes are the ‘best-fit’ pre-processed views
that the weights converged to during training. Note how in
Fig. 7, the nodes seem to be ‘shaped’ to give the whole
network a sense of overall order; this is the topological
organization of the map.

3.2. SOM test: initial orientation

We now examine the performance of the SOM on the
images in the test set. Each test image was fed to the orien-
tation match system individually; an error rate compiled for
each leg of the route. These are shown in Table 1.

To show some of the difficulty encountered during orien-
tation, we observe the classification response to two sample
test routes (total number of images: 175 and 170). This
shows what would have occurred had the route been insti-
gated from that location (viewpoint). In Fig. 9, our a priori
knowledge of the correct location is plotted against the
actual orientation decision for both routes. It is worth noting
that legs 1 and 3 were most frequently confused; views were
rarely misclassified as either falsely belonging to 2 or
belonging elsewhere, while actually in 2. (Two test passes
resulted in 0% error there!) We hypothesize that this is a
consequence of the similar appearance of route legs 1 and 3
(see Fig. 2). A human navigator can resolve this discrepancy
based on inference from prior knowledge. It is quite concei-
vable that if one were to ‘wake up’ in either leg 1 or 3, some
confusion about location can initially be present; after all,
they are both long hallways with doors on the sides! Subse-
quently wandering about and thinking relieves the doubt.
Our system faces the same ambiguity upon its own ‘wake-
up’; hence our stated need for an exploratory system. None-
theless, the performance of this system is promising
(isolated worst-case error of 18%).

3.3. SOM test: post-orientation execution

Finally, we examine how well the networks issued appro-
priate actions within the given legs of the route. Once again,
the overall results will be shown in tabular form and the
functional details of a few sample route executions will be
followed.

Table 2 shows the percentage of the forward and turn
section for each leg that were correctly assigned an action.
Earlier we assigned the vectors [1 0] and [0 1] to represent
‘forward’ and ‘turn’, respectively. Prior to classification, the
action output elements My, j =1, 2, were thresholded as
follows:

0 for 0 = m,; = 0.25
my; =11 for 0.75 = my; = 1 (1T)

my; otherwise

760

Desired Route-Leg Classification

0.5 1
0 L s L L . . n s
o 20 40 60 80 100 120 140 160
Image Number
(@)
Desired Roule-Leg Classification
5 T T T T T T T
45
4t 4
ast 1
2 3
8as
2
é.
1.5
1
05
° L " s s
o 20 40 60 80 100 120 140 160

(©

Fig. 9. Performance of the orientation system for two test routes. (a) and (c) are the desired orientation results (i.e. the actual location of the robot while the test
was performed) for the two passes; (b), (d) are the ‘believed’ decision of our system. ‘Spikes’ occur where falsely classified images were obtained; note how

F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761

Actual Route-Leg Classification

° 20) 80 100 120 140 160
Image Number
Actual Route-Leg Classification
5
- v r r
4sf
s]
ast
g 3
[}
825 1
]
-]
e, J
15 1
s
oS}
) 20 60 80 100 120 140 160
Image Number

(d)

most spikes are from leg 1 to 3 and vice versa; those segments of the route looked similar.

Activation Sequence of SOM City 1: Test Pass 1

0O 000 OO0 00

D 0 o oo o oo
0o oo ocooo
0 0 0o oo o O
9 00000 o0 o0/0o0 0

0 0o oo o0 o0oO

(a)

Fig. 10. Activation profiles for SOM city 1 for two test passes of the route; arrows show progression of the most excited neuron as the route is followed. Note

that the two patterns are quite disparate.

o 0o oo0ooooo

0o oo o oo o

o oo o

90000000 O0CO0O0O0OCOOO0O0G G OGO o0

00000 D0DOCODODOOCOOOOU OO OCOU OO O

0o o oo

o o

0 00 000D 0O 0O O OO OO QOO

3 0o 0Do o0 oo
2 0000 00O0C O
D 0oo0oooo0oOOoOO0
00000 DODOOO
J 00 00 0O C O O
9 0000 0O O O

(b)

9 000 00O0OD0OOO OO D g 0

000 0O0DO0DO0DOOOO OO OG GO O

Activation Sequence of SOM City 1: Test Pass 2

0O 00O O0O0ODO0OODOO OO OO OCOTO CO\\0 0 00 0

0 0 0 OD0O DD ODOCOOG OO OO

0O 00 OO0 DD DODOOCOOOO OOOODOOG OO

3 00 0OO0OC OODOOODODOOOOOCOOOCODOOO

0 0 00O O DD OCDODODO O

0 0 0o0ooo 0O

F. Hamze, J.J. Clark / Image and Vision Computing 19 (2001) 753-761 761

Table 2

Results of the action-execution system, broken down into the three cities
and individual route passes for clarity. In this case, the action depends on
competing neurons within a given city only

Test error: execution system

Test pass no. Total imgs. Bad classif. % Error
City 1

1 55 9 16.36
2 51 1 1.96
3 55 8 14.54
4 27 3 11.11
5 55 2 3.63
City 2

1 55 3 5.45
2 54 1 1.85
3 55 1 1.82
4 54 2 3.70
5 52 2 3.85
City 3

1 65 2 3.08
2 63 2 3.17
3 60 2 3.33
4 59 3 5.08
5 64 3 4.69

Note that outside of the ranges decreed by the above func-
tion, the action elements remain the same, and a misclassi-
fication subsequently results. The tables thus show the
classification of the thresholded actions. Note that in this
phase, it is local similarity or ambiguity between two actu-
ally different views that gives misclassification.

The erroneous outputs in this case include meaningless
action codes (such as [0 O] or [1 1], which some nodes did
converge to). Leg 1 was the worst ‘disciplined’ of the three;
again, we posit that the smoother (and hence more ambig-
uous) view transition to the ‘turn’ region resulted in this
fact. Legs 2 and 3 had a fairly sharp definition to the entry
of their ‘stop’ zones. Again, though, research into a short-
term memory-based confidence system that relies on more
than one image to execute is required.

An interesting aspect of the system to look at is the acti-
vation sequence of the units within the topologically ordered
SOMs. Fig. 10 shows the response sequence of the two
sample routes in Fig. 9 in city 1. The arrows show the
transition of location of the winning neuron as the view
sequence along the route proceeds; nodes corresponding
to the start and end locations are labeled ‘S’ and ‘E’, respec-
tively. An important observation to draw now is that a
geometric relation between two points in space does not
at all imply that the relation will be preserved in the
SOM; the node neighborhoods represent ‘perceptually’

similar (assuming that the Euclidean norm is a perceptual
measure!) locations. Also, two different executions of the
route give substantially different activity profiles despite the
fact that the views on these two passes look very similar!

4. Conclusions

This paper has looked at a neural view-based route-learn-
ing mechanism. It was inspired by the robust performance of
biological navigation. The preliminary results appear
promising. View data was pre-processed, associated with
the required actions, and fed to an SOM network for topo-
logical view—action clustering. Subsequently, actions while
following the route autonomously at viewpoints along it
would be dictated by the system. The order-dependent
nature of routes was exploited in the design of the SOM
architecture. A ‘start-up’ orientation system was used to
permit execution of the route from any point.

References

[1] E.C. Tolman, Cognitive mapping in rats and men, Psychology Review
55 (1932) 189-208.

[2] N. Schmajuk, A. Thieme, H. Blair, Maps, routes, and the hippocam-
pus: a neural network approach, Hippocampus 3 (3) (1993) 387-400.

[3] J. O’Keefe, L. Nadel, The Hippocampus as a Cognitive Map, Clar-
endon Press, Oxford, 1978.

[4] N. Schmajuk, Role of the hippocampus in temporal and spatial navi-
gation: an adaptive neural network, Behavioral Brain Research 39
(1990) 205-229.

[5] M.G. Packard, J.L. McGaugh, Double dissociation of fornix and
caudate nucleus lesions on acquisition of two water maze tasks:
further evidence for multiple memory systems, Behavioral
Neuroscience 106 (1992) 439-446.

[6] D. Hubel, T. Wiesel, Receptive fields and functional architecture of

monkey striate cortex, Journal of Physiology 195 (1968) 215-243.

I. Fujita, K. Tanaka, Columns for visual features of objects in monkey

inferotemporal cortex, Nature 360 (1992) 343-346.

[8] T. Kohonen, Self-Organizing Maps, Springer, Berlin, 1995.

[9] C.Owen, U. Nehmzow, Route-learning in mobile robots through self-
organization, Proceedings of Eurobot 96 Workshop on Advanced
Mobile Robotics, IEEE Computer Society, 1996.

[10] I. Bachelder, A. Waxman, A view-based neurocomputational system
for relational map-making and navigation in visual environments,
Robotics and Autonomous Systems 16 (1995) 267-289.

[11] A.B. Watson, The cortex transform: rapid computation of simulated
neural images, Computer Vision, Graphics, and Image Processing 39
(3) (1987) 311-327.

[12] Y.Idan, R. Chevallier, Handwritten digits recognition by a supervised
Kohonen-like learning algorithm, 1991 IEEE Joint Conference on
Neural Networks, vol. 1576, 1991, p. 1581.

[13] M. Siebert, A. Waxman, Adaptive 3D object recognition from multi-
ple views, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 14 (2) (1992) 107-123.

[7

—

