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Abstract

We present an active vision algorithm for computing the orientation and position of a

locally planar object, onto which is cast a shadow of the edge of a half-plane at an unknown

location. This algorithm utilises active position control of a point light source, and employs

a Kalman �lter to perform temporal integration of measurements. The light source position

is adjusted after each measurement so as to reduce the trace of the expected state estimate

error covariance matrix for the next measurement. We demonstrate the active shape-from-

shadows algorithm using a real robotic system.

1 Introduction

It has long been known that images of object self- and cast-shadow boundaries contain information
as to the shape of the object. This information is not, in general, suÆcient to completely determine
the object shape. The additional information that is required is often provided in the form of a
priori assumptions about the object shape [22]. This often produces poor results, as the a priori
model overly biases the result, leading to unacceptable distortions in the computed object shape.

One way of providing additional information, and of reducing dependence on a priori assump-
tions, is to obtain shadow images of the object taken using a set of di�ering illuminant positions.
There have been many techniques proposed that use moving shadows, such as those produced by
the track of the sun as the day progresses, to provide the missing information needed to determine
object shape (e.g. [10, 12, 17]).

In this paper we describe a technique that di�ers from the previously cited approaches in that it
uses controlled motion of a nearby light source, and provides absolute surface depth information as
well as surface normal information. Our technique is based on the principles of active vision [1, 2].
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Active vision systems are characterized by control over various aspects of the imaging process.
A number of active vision techniques have been proposed that use such control to improve the
process of obtaining shape information about object surfaces. For example, Whaite and Ferrie
[24] introduced a method for determining the location of a sensor that minimizes a measure of
uncertainty about the shape of an object. They applied this to the task of building up object
surface descriptions from range-�nder data. Shmuel and Werman [19] presented a Kalman Filter
based temporal integration scheme for depth from stereo where the cameras are positioned so as
to minimize an uncertainty measure. The Kalman �lter allows information from a sequence of
sensor readings to be integrated, resulting in a reduction in the e�ect of noise on the information
derived from the sensor data. Each of these techniques shares a common thread in that they have
control over some aspect of the imaging process, and use this control in a way so as to optimize
the extraction of information from the sensor data.

Control of imaging parameters in active vision systems is not limited to control over the position
of the image sensor. One can control other parameters such as the position of the illumination
source. For example, Clark [4] describes a technique for obtaining the shape and absolute position
of objects from shading information that rely on the control over the position of a light source.
Our shape-from-shadows technique is based on this idea, as it obtains object shape and position
information from the sequences of images of shadows cast by objects, acquired as we purposely
vary the position of a point light source. We apply a trajectory speci�cation process based on
those proposed by Whaite and Ferrie [24] and Shmuel and Werman [19] to determine the light
source motions.

The organization of the paper is as follows: section 2 describes the geometry underlying the
shadow formation process and provides the derivation of the equations that form the basis of the
shape-from-shadows algorithm; section 3 describes how we make use of active control over the
light source position to facilitate estimation of the object shape and position parameters; section
4 describes a set of experiments with real imagery that demonstrates the validity of the active
shape-from-shadows technique and the e�ectiveness of the trajectory optimization process. The
appendix gives the derivation of equations used to generate the light source trajectory using the
Shmuel-Werman approach to optimizing the acquisition of data.

2 The Shape From Controlled Shadow Motion Algorithm

2.1 Geometry of the shape-from-shadows Algorithm

Our active shape-from-shadows technique is based on controlling the motion of a point light
source that shines on an object and a background plane. The object casts a shadow onto the
background, and also self-shadows a portion of its own surface. The locations of the cast-shadow
and self-shadow boundaries are determined with a simple image analysis process acting on images
acquired from a video camera viewing the scene.

The geometrical aspects of our algorithm are shown in �gure 1. For simplicity we show the
2-D case, but the analysis given below is for the more general 3D case. We assume that the light
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Figure 1: Geometry for the active shape-from-shadows technique.

source is a point source, that the background object (onto which the shadow is cast) is planar and
that the foreground object (which casts the shadow) is a half-plane or a surface having a sharp
edge. As the algorithm determines shape on a pixel by pixel basis, the planarity assumption on
the background object needs only be satis�ed locally. The background plane is de�ned by the
vector, ~n, normal to its surface, and by a vector, ~rp, from the origin of a world coordinate frame

to any point on the plane, ~P , via the following equation:

~nTp ~rp + 1 = 0 (1)

The three components of ~n de�ne the plane. The reciprocal of the magnitude of ~n can be seen to
be the closest distance from the background plane to the origin of the world coordinate system.
The direction of ~n is seen to be normal to the background plane. Thus ~n is a constant, independent
of the shadow point p that is being viewed. The shadow boundaries at points p and q project to
the camera's image plane at the points represented by the vectors ~ip and ~iq.

With the image measurements~ip and~iq, and the known light source position ~r
l
, we seek to �nd

the least number of equations from which we can solve for the unknown object shape and position
parameters: ~np, ~tq, Mq, ~rp, and ~rq. Each light source position gives rise to a set of constraint
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equations that describe the geometric relations among points on the surfaces and their images
on the image plane. Assuming perspective projection and a pinhole camera model, the image
formation process gives rise to the following perspective projection equations:

~ip =
f

rpz
~rp; ~iq =

f

rqz
~rq (2)

Noticing that, for each light source position, the vectors ~rl, ~rp, and ~rq, are coplanar, we have the
illumination constraint equations:

(~rp � ~rl)� (~rq � ~rl) = 0; (3)

The three equations provided by this constraint are linearly dependent, however. To see this,
consider the case where both ~rl and ~rq are known. These de�ne a line on which ~rp must fall, but
leave free where on the line ~rp falls.

It can be seen that the illumination constraint permits us to �nd correspondences between the
images of self-shadow points and cast-shadow points. To see this, consider the line that passes
from the illumination source, through a given point on the self-shadow boundary, and thence on
to the corresponding point on the cast-shadow boundary (this is the dashed line in �gure 1).
This line in 3-D space will project to a line in the image plane. We assume that we know the
position of the light source so that its \image" on the image plane can be assumed to be known
(even if it might not actually fall on the limited extent of the camera sensor). We can choose a
self-shadow boundary point in the image plane. These two points then de�ne a line in the image
plane. The cast-shadow boundary point that corresponds to the chosen self-shadow boundary
point is easily found as the intersection of this line with the 2-D cast-shadow boundary curve.
This correspondence technique works no matter whether the shadow boundaries are straight or
curved.

The assumption that the object that is casting the shadow contains a \sharp" edge at the self-
shadow boundary simpli�es the solution for the position and orientation parameters. At a sharp
edge the self-shadow boundary does not move as the light source moves. Thus the vector ~rq does
not vary with the light source position. The sharp edge assumption is, of course, not universally
valid, but in man-made environments objects with sharp edges abound.

There are a total of 6+ 3k unknowns, where k is the number of di�erent light source positions.
These are the 3 components of ~rq and the 3 components of ~np; the 3 components of ~rp at each light
source position. There are a total of 1+5k independent equations obtained from the constraint
relating ~n and ~rp; the 4 image plane measurements ipx; ipy; iqx; iqy and the single independent
equation implied by equations (3). Thus, we need at least three light source positions to be
able to solve for the unknowns. If we use only three equations, however, the solution process
will involve �nding the roots of quadratic equations. While this is possible, it results in multiple
solutions. If we use four light source positions, however, we can reformulate the equations in a
way which only require the solution of a linear system.

To arrive at the linear system solution, we split the solution process into two stages. In the
�rst stage we look at the illumination constraint equation (eq. 3). This equation expands to:

~rp � ~rq + ~rq � ~rl + ~rl � ~rp = 0 (4)
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As noted earlier, two of the three equations in this vector equation are redundant, so we should
only consider one component. Let us choose the y-component. Expanding out the cross products
and choosing the y-component gives us:

(rpxrqz � rpzrqx) + (rqxrlz � rqzrlx) + (rlxrpz � rlzrpx) = 0 (5)

If both rpz and rqz are non-zero (which will usually be the case) we can divide this equation by
rpzrqz. We can use the perspective projection equations (2) to express rpx; rpy; rqx and rqy in terms
of ipx; ipy; iqx and iqy. Doing so allows us to rewrite the above expression as:

(ipx � iqx) + (iqxrlz � frlz)=rpz + (frlx � ipxrlz)=rqz = 0 (6)

Finally, we can replace the inverse depth of the background plane with:

1=rpz = �iTp ~np=f (7)

With this substitution we get, for each light source position, an equation which is linear in three
of the unknowns - ~np and the reciprocal of another, 1=rqz:
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(10)

will give a unique solution for the shape variable ~np, and the inverse depth of the object edge point,
1=rqz, as long as the coeÆcient array is invertible. From these values, the remaining parameters
can be recovered, in stage 2 of the solution process, as follows:

~rq =
rqz
f
~iq; ~rp =

�1

ip
Tnp

~ip (11)

Using these equations, we can solve, in closed form, for the desired quantities from image mea-
surements obtained at four di�erent light source positions.

5



It should be noted that the algorithm determines the orientation and location of the shadowed
object pointwise, and so the assumption of planarity for the shadowed object need only be satis�ed
locally. Thus the algorithm will work for piecewise planar surfaces, such as polyhedra, except at
the edges between facets. The algorithm will also function on curved surfaces, as long as the
curvature is low enough that the surface is approximately 
at on the scale of the movement of the
shadow boundary between successive light source positions. Deviations from 
atness will result
in an error in the derived shape and position quantities.

2.2 Relation to Structured Light Techniques

The shape-from-shadows approach described above is similar in many ways to structured light
techniques [16, 18]. In a typical structured light approach, a planar sheet of light, or \light
stripe", is generated and used to illuminate an object. A camera views the object and measures
the locations at which the sheet of light intersects the object surface. From the observed image
coordinates of the intersection points one can compute their 3-D locations in space. One can think
of the shadow boundary cast in our approach as equivalent to the light stripe in the structured
light techniques. Our shadow casting method has a number of advantages over the light striping
methods, however. The �rst advantage is that our method provides the surface normal of the
shadowed surface, which light striping methods do not give directly. Secondly, our method provides
the 3-D position of the edge of the shadowing object. In structured light techniques, this edge
is �xed in space and is either known a priori or determined with a calibration process. In our
approach the object that casts the shadow can be in an unknown location, and does not have to
be part of the imaging apparatus. For example, a robot waving a 
ashlight around could use the
sharp edge of an object in its vicinity to cast shadows on walls, and use our algorithm to compute
the distance to the wall and its orientation. Finally, observation of the self-shadow boundary
permits frame-to-frame correspondence of points on the cast-shadow boundary as the light source
moves. Determining the correspondence between points as the light stripe moves is often one of
the most diÆcult aspects of structured light techniques.

The active shape-from-shadows algorithm can be simpli�ed somewhat by �xing the shadowing
object in space relative to the camera. For example, the shadowing edge could be made part of
the measurement apparatus along with the controllable light source and the camera. In this case
equation (10) reduces to a system of 3 equations, so we need to make only 3 measurements. This
implementation would be closer to that of standard structured light techniques, except that we
still retain the ability to compute the local surface normal of the shadowed object.
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3 Temporal Integration and the Control of the Light Source

Position

3.1 Temporal Integration

In the previous section we showed that the desired shape and position parameters of the shadowing
and shadowed surfaces can be obtained from measurements of the images of the self-shadow and
cast-shadow boundaries made from four di�erent positions of the light source. The results of doing
this straightforward solution are, in general, unsuitable in practice due to noise in the localization
of the images of the shadow boundaries and to uncertainties in the location of the light source. To
alleviate this sensitivity to noise, we can apply a recursive �ltering scheme, such as Least-Squares
�ltering, Wiener �ltering, or Kalman �ltering [8], to provide estimates of the orientation and
position parameters, integrating information obtained over many light source positions.

In applying a recursive estimator to our problem we have two approaches that we can use.
The �rst is to temporally integrate the solutions to the linear system given in equations (7). The
primary drawback to this approach is that the noise in these solutions is, in general, non-Gaussian.
Even if we assume that our sensor noise (i.e. shadow edge image localization error) is Gaussian,
the nonlinear dependence of the solution with the sensor measurements results in non-Gaussian
noise in the computed solutions. While some work has been done on estimation with non-Gaussian
models (e.g. [11, 25]), the techniques are applicable only in certain cases and are computationally
expensive. The paper by Wu and Kundu [25] provides a good overview of the diÆculties involved
in estimation with non-Gaussian noise models.

Another approach is to use the recursive �lter to regularize the ill-conditioned solution process
directly, rather than simply �ltering the solution. As shown in [5], a recursive �lter can be thought
of as a Bayesian regularization, in which an ill-conditioned or ill-posed solution process is replaced
by the well-conditioned process of �nding the mean of the a posteriori conditional probability
density of the state variables given the measurements. This probability density is the product
of a prior model of the state estimate and a model of the relationship between the measurement
and the state. In this approach, the state vector is as before, but the measurements are now the
raw sensor values rather than the outputs of the solution process. In this case the measurement
noise can often be well approximated as Gaussian, but the dependence of the measurement on the
state variables is usually nonlinear. Unlike the case of non-Gaussian measurement noise, however,
e�ective and computationally eÆcient techniques, such as the Iterated Extended Kalman Filter
[8], exist to handle the case of nonlinear measurement equations. For these reasons it is better
to apply the recursive �lter to estimating the state directly from the raw sensor measurements
rather than merely �ltering the outputs of some, possibly ill-conditioned, solution process.

The Kalman �lter is a speci�c type of recursive �lter that has been successfully used in many
vision algorithms. For example, the various vision algorithms described in [3, 6, 7, 9, 13, 14,
21] use the Kalman �lter to integrate multiple measurements. Recursive estimators �lters are
especially suited for use in active vision algorithms, as active vision algorithms typically produce
temporal sequences of image data and associated derived quantities. For example, in the work of
Shmuel and Werman [19], a Kalman �lter was used to integrate depth estimates obtained with
a position controlled camera. At each step of the integration process, the position of the camera
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was determined that would minimize the predicted covariance of the updated estimate. Similarly,
Whaite and Ferrie [24] computed the sensor position that would minimize the expected variance
in shape model parameters after the subsequent measurement.

It should be noted that, if we adopt the active vision approach of Shmuel and Werman and
of Whaite and Ferrie, in which the imaging system is altered between measurements, then the
statistics of the measurement noise may be non-stationary (but still well approximated as Gaus-
sian). For this reason recursive �lters that assume stationarity of the measurement noise, such as
the Wiener �lter, will not be applicable. The Kalman �lter does not have this problem, however,
and so is well suited to the active vision approach to temporal integration.

3.2 Application to Shape-From-Shadows

Based on the discussion above, we will apply an active Kalman �lter to our shape-from-shadows
task. We will use the approach of Shmuel and Werman [19] to specify the trajectory of the light
source.

In this section, let us begin by outlining the basic equations involved in applying the Kalman
�lter to our task. Begin by de�ning, as our state vector, the six desired surface orientation and
position parameters:

~x = frqx; rqy; rqz; npx; npy; npzg (12)

The general form for the measurement equations are:

~z = h(~x; ~u) + �(~u) (13)

where the measurement vector ~z = (ipx; ipy; iqx; iqy) consists of the x and y coordinates of the
images of the cast and self-shadow boundaries of a single point on the surface. We will use
a separate �lter for each point along a shadow boundary. � is a vector of Gaussian random
variables with mean zero and covariance matrix R(~u). For our application the precise form of
h(~x; ~u) can be obtained from equation (2) and the illumination constraint equation (3). The four
components of the measurements can be written as:

ipx = f
(e1 � np) � (rl � rq) + rlx � rqx
(e3 � np) � (rl � rq) + rlz � rqz

(14)

ipy = f
(e2 � np) � (rl � rq) + rly � rqy
(e3 � np) � (rl � rq) + rlz � rqz

(15)

iqx = f
rqx
rqz

(16)

iqy = f
rqy
rqz

(17)
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where e1 = (1; 0; 0), e2 = (0; 1; 0) and e3 = (0; 0; 1).

Since the measurement equations are nonlinear, we will use the iterated extended Kalman �lter.
The update equations for the state variable estimates in the iterated extended Kalman �lter are
[8]:

x̂i+1k = x̂k�1 +Ki
k[zk � hk(x̂

i
k �Hk(x̂

i
k)(x̂k�1 � xik)] (18)

with Kalman gain matrix

Ki
k = PkH

T
k (x̂

i
k)[Hk(x̂

i
k)PkH

T
k (x̂

i
k) +Rk]

�1 (19)

where i = 1; 2; :::M is an iteration counter, and the updated state estimate is taken to be the
estimate after the last iteration, that is:

x̂k = x̂Mk (20)

and

x̂1k = x̂k�1 (21)

Hk(x̂
i
k) is the linear term of the taylor's series expansion of the measurement function h(~x) eval-

uated at ~x = x̂ik,

Hk(x̂k�1) =
@hk(~x)

@~x

����
~x=x̂k�1

(22)

Between measurements, the state estimate error covariance is updated using

Pk = [I �KM
k Hk(x̂k)]Pk�1 (23)

The state estimate error covariance matrix P provides a measure for the amount of uncertainty
in the estimate of the state variables. At each step of the Kalman �lter estimation process the
information provided by the new measurement reduces the error in the state estimates.

Note that, in our application, the scene is assumed to be static, apart from the motion of the
light source. Thus we will assume that the state vector is absolutely static.

3.3 Trajectory Determination

In our active shape-from-shadows technique it is assumed that we are able to control the position
of the light source. This is typical of active vision algorithms in general, which usually incorpo-
rate the control of some imaging parameter. Developers of active vision algorithms frequently
neglect to provide a speci�cation for trajectory generation, however, relying instead on prede�ned
trajectories, or on trajectories speci�ed by a process external to the algorithm (such as the use of
the motion of the sun, or the obstacle-avoidance system of a mobile robot). In all active vision
systems the controllable parameters in
uence, to some extent, the measurements that are made,
and one should choose the parameters so that this in
uence is bene�cial. There is a wealth of
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literature on the subject of sensor planning in active vision systems that we can draw on. A good
review of sensor planning approaches in computer vision can be found in Tarabanis et al [20].

The sensor planning problem has also been studied extensively in the �eld of automatic control.
For example, Meier et al [15] describes a method for jointly optimizing feedback control of a plant
and the measurement subsystem. They show that, assuming linearity in the plant, assuming that
the measurement system is linear in the state and measurement noise (but not necessarily in the
measurement control), and taking as the performance measure a quadratic function of the state
and measurement noise with an additive measurement control cost, then the plant control policy
can be decoupled from the measurement control policy, and this measurement control policy can
be determined a priori.

In most active vision algorithms, including the one being discussed in this paper, one is not
concerned with control of the state variables, but only with estimation of the state variables.
Thus, the control-theoretic formulation of the measurement optimization process made by Meier
et al is overly complex. One can simplify their approach by neglecting the plant control and
considering only the optimization of the measurement subsystem control. Following Meier et al
we can use the trace of the state estimate error covariance matrix, P , plus a control cost, as the
performance measure to be optimized.

Sensor planning based on the concept of minimizing some function of the state estimate covari-
ance matrix is common in active vision. For example, Shmuel and Werman [19] consider the case
of controlling the direction of motion of a single camera in order to optimize the computation
of depth from the disparities induced by the camera motion. They derive an expression for the
predicted uncertainty (variance of the state variable, in this case inverse depth) as a function of
the camera displacement direction. They then �nd the direction which minimizes this predicted
uncertainty, by setting to zero the derivative of this expression with respect to the direction. In
the work of Whaite and Ferrie [24], the determinant of the state estimate error covariance matrix
was used as the objective function for optimization purposes.

For control of our active shape-from-shadows technique we propose to take the same approach
as that of Shmuel and Werman [19]. That is, we will use an (iterated extended) Kalman �lter to
estimate the object position and orientation parameters, and control the light source position so
that some measure of the magnitude of the state error covariance matrix is minimized at each time
step. Our problem is somewhat more complicated than that of Shmuel and Werman, as we have
more than one state variable, and these state variables have di�erent units. In our application,
some of the elements of the state error covariance matrix have units of meters2, some have units of
degrees2, and some have mixed units of meters*degrees. In the Shmuel and Werman algorithm it
was obvious that the covariance itself could be used as an optimization measure, as it was a scalar
quantity. In our application, however, the covariance is a matrix, and so we need to decide on
a suitable optimization measure which somehow re
ects the magnitude of the covariance matrix.
There are many appropriate candidates, including the determinant and the maximum element,
but we chose to use the trace (the sum of the diagonal elements) of the covariance matrix. As
we see in the appendix this choice of optimization measure permits us to obtain a closed form
analytical expression for the gradient of this measure with respect to the light source position.

To handle the di�erences in the units of various elements when computing the trace of the
covariance matrix, the diagonal elements are weighted. The weighting can be implemented by
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pre- and post- multiplying the covariance matrix by a constant diagonal matrix before computing
the trace. In terms of the notation introduced earlier, the optimization problem associated with
this choice of objective function can be expressed as follows (we drop the time step subscript from
H and K for clarity):

~u = argmin
~u

tr[WPkW ] = argmin
~u

tr[W (I �KH)Pk�1W ] (24)

where ~u is the light source position, which is under our control, and W is a constant diagonal
weighting matrix. This problem is equivalent to

~u = argmax
~u

�(~u) (25)

where

�(~u) = tr[WK(~u)H(~u)Pk�1W ] (26)

Noting that K = Pk�1H
T [HPk�1H

T +R]�1, we can express � in the simple form:

� = tr[ATBA] (27)

by taking

A = HPk�1W (28)

and

B = [HPk�1H
T +R]�1 (29)

The matrix B is symmetric. The matrices A and B can be seen to depend on the value of the
control vector ~u. This dependency arises through the dependency of the measurement matrix H
and the measurement noise covariance matrix R on the control variables. The prior covariance
matrix Pk�1 does not depend on the new control variables, only on their previous values.

The quantity, �(~u) that is to be maximized is a nonlinear function of the light source position ~u.
As such, solving for the value of ~u that minimizes � may be diÆcult. The situation is exacerbated
by the fact that, in practice, there may be constraints on the values of ~u that can be used. For
example, the light source may be mounted on the end of a robot arm which has a limited range
of motion. This means that solution of a constrained nonlinear optimization problem is required.
We can, however, use the constraints on the values of the control parameters to our advantage in
solving the optimization problem. In many active vision tasks that involve temporal integration,
measurements are taken after small, incremental, changes of the imaging parameters (see, for
example, [14]). In such a case we can replace the global constraints (those due to physical limits on
the actuators that move the light source) with arti�cially imposed limits that constrain the space
of possible control parameter values much more. In what follows we will make the assumption
that the range of possible light source positions is restricted to a spherical region centred on the
current value of the control parameter vector, and that the radius of this region is suÆciently
small so as to allow the assumption that the gradient of � with respect to the components of ~u is
constant. We further assume that this constant gradient is non-zero. These assumptions imply
that the extrema will lie on the boundary of the constraint sphere and that the extremal values
are equal to

~u� = ~u0 � r
r~u�(~u)

jr~u�(~u)j
(30)
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where r is the radius of the constraint sphere, ~u0 is the current control vector, and

r~u =

�
@

@u1
;
@

@u2
; :::;

@

@un

�
(31)

It is shown in the Appendix that, because of the special form of the objective function being
used (equation (19)), one can obtain the following closed form expression for the gradient of the
objective function with respect to the control vector:

@�

@ui
= tr

�
WK

�
2
@H

@ui
Pk �

@R

@ui
KT

�
W

�
(32)

It should be noted that this equation for the gradient is quite general, and can be used in other
active vision applications, not just the shape-from-shadows technique being described here. Any
application which needs to compute the gradient of the trace of the covariance matrix with respect
to a controllable parameter of the measurement equation can make use of this result.

The gradient approach that we have taken to the light source trajectory speci�cation gives rise
to many issues that need to be considered. The �rst issue is one of the step size that is used in
the computation of the displacement of the light source from one measurement to the next. The
question of the proper step size needs to be considered with regard to the assumptions that we
make. We assume that the illuminant displacement is restricted to lie within a spherical region.
Thus the optimization problem is a constrained optimization problem. As with all constrained
optimization problems the optimum will either lie in the interior or on the boundary of the
constraint region. If we assume that the optimum lies on the boundary the solution process is
simpli�ed. Furthermore, if we assume that the objective function is planar within the constraint
region, then the optimum will be located on the boundary at the location corresponding to the
gradient of the objective function. Thus the step size (i.e. the radius of the constraint sphere)
should be chosen so as to make the objective function approximately planar. If the step size
is chosen to be too large, the objective function may deviate from planarity, and the boundary
point corresponding to the gradient direction may no longer attain the maximum of the objective
function. Conversely, if the step size is too small, the information gained by the new measurement
will not reduce the error covariance signi�cantly as compared with the globally optimum light
source displacement. The choice of light source step size in practice must, therefore, balance the
need for a large displacement with the error induced by our assumption of a planar objective
function. Evaluation of this balance requires a detailed model of the objective function, which is
diÆcult to obtain. In the next section we present a limited empirical study of the e�ect of step
size, but clearly a more in-depth study is required.

It may appear that an incremental approach of the sort we are proposing results in a gradient
descent on the objective function �(~u). This is not true, however, since the objective function
depends on the current state vector estimate, x̂k. Thus, the form of the objective function is
constantly changing, and so the \landscape" which is being \descended" is constantly changing
its topography. In such a situation the objective function will never increase, but the system is not
guaranteed to converge to a minimum. This aspect of incremental active vision control systems
was noted by Whaite and Ferrie [24]. They observed that the change in the objective function
due to the information gained at a sensor location is of a form that decreases the value of the
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objective function at the current location relative to other locations, thereby forcing the sensor
away from its current location. We have observed, however, that the objective function becomes

atter and 
atter as convergence is attained.

Another issue is whether one can perform optimization of the entire trajectory, rather than
merely optimization of the next measurement. In the work of Meier et al [15], it was shown
that, under certain strong assumptions, it is possible to derive optimal policies for controlling
the measurement system control variables a priori. Thus the measurement process e�ectively
proceeds in an open-loop fashion, following the prede�ned optimal measurement policy. One can
formulate a similar optimization problem for the active shape-from shadows task, but its solution
is still very much an open research problem.

4 Experiments

In this section we describe a series of experiments intended to demonstrate the active shape-from-
shadows algorithm as well as the bene�ts of the light source position control technique.

The experiments were implemented using a 6 degree-of-freedom industrial robotic manipulator
and a real-time image analysis system. Details of the experimental setup can be found in [23]. In
�gure 2 we show a snap shot of the experiment area, in which one can see the robot manipulator
used to move the point light source, the light source itself, the video camera which acquired
the image data, and the objects under view. Figure 2b) shows the scene with an experiment in
progress, where the only scene illumination is provided by the point light source.

4.1 The Experimental Procedure

We outline the experimental procedure below. Numbered entries are in the order of execution.
The calibration process is split into two parts, an o�-line part which needs only to be done once,
and an on-line part which is done once at the beginning of every experiment. Details of the
calibration process can be found in [23].

1. Off-line calibration.

� Camera intrinsic parameters calibration.

� Camera rotation calibration.

� Robot hand calibration.

� Light source{robot hand calibration.

2. On-line calibration.
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� Hand-Camera calibration.
The relationship of the robot hand with respect to the camera de�nes the position of
the light source in the camera's coordinate system.

3. Initialization.
This procedure generates the initial raw surface map needed for the recursive estimation
process.

(a) Determine the initial light source trajectory.
We pick the initial light source trajectory to be a helix. This is used as the complete
trajectory for the un�ltered experiments and for the state variable initialization stage
of the experiments using recursive �ltering. See section 4.2.1 for an example of an
actual trajectory used in the experiments.

(b) Moving the light source.
Commands are issued to the robot controller to move the robot hand to carry the light
source to a desired point on the trajectory.

(c) Recording the light source position and acquiring an image.
When the robot hand stops moving, the forward kinematics matrix of the robot hand
is recorded. This together with the light source-robot hand calibration gives the coor-
dinates of the light source in camera's coordinate system.
At this point an image of the scene is captured for processing.

(d) Shadow detection & correspondence.
(Semi-)Detection of self and cast shadow boundaries.

(e) Repeat steps 3b through 3d until the loop count is 4.

(f) Computing the raw surface map (background position and orientation) from the �rst
four images using equations (10) and (11).

4. Execution.

(a) Trajectory generation.
Depending on the application, there are two possibilities:

� a �xed, pre-determined, helical trajectory.

� compute the next light source position using equations (30) and (32).

(b) Moving the light source.

(c) Recording the light source position and acquiring an image.

(d) Shadow detection & correspondence.

(e) Update the estimates of the background plane position and orientation.

(f) Repeat steps 4a through 4e until the estimates converge.

4.2 Experimental Results

We performed the following three sets of experiments:
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1. The implementation of the two-stage linear solution to three dimensional surface orientation
and position using equations (10) and (11). Raw (un�ltered) position and orientation mea-
surements for the background plane and position measurements for the shadowing object
are obtained in this set of experiment.

2. The implementation of a recursive �ltering scheme using the iterative extended Kalman
�lter. In this experiment the light source is moved along a prede�ned helical trajectory.

3. As in experiment 2, except that the light source trajectory is speci�ed by equations (30)
and (32).

We show a typical series of images acquired by the camera as the light source moves in �gure 3.
For the entire sequence the image of the object edge segment remain unchanged. For each point
along this segment we �nd its corresponding cast shadow within the dark box. This process is
semi-automatic; for the �rst image acquired we overlay by hand two rectangular regions, which
limit the area over which the search for the self- and cast-shadow boundaries is performed.

In our experiments the shadow boundaries were detected with an interactive procedure. During
initialization, two rectangles are overlaid by a user on the �rst image of the scene, in such a way
as to enclose the self-shadow and cast-shadow boundaries. These rectangles can be seen in �gure
3. The dark rectangle encloses the self-shadow boundary and the light rectangle encloses the
cast-shadow boundary. In subsequent time steps these rectangles are moved by a simple tracking
algorithm to keep the shadow edges roughly centred within them. Once the rectangles have
been de�ned, the shadow boundaries are located by �nding the maximum gradient value along
horizontal scan lines within the rectangles. This method works well if there are no surface markings
near to the shadow boundary (which could be confused with the shadow boundary) and if the
shadow boundaries are not near horizontal (which would cause problems with the computation
of the gradient). In our experiments, the contrast of the shadow boundaries was high due to
the high albedo of the surfaces, and to the minimization of the penumbra through the use of a
point light source. In a less-controlled environment, it may be necessary to use a more complex
shadow-detection scheme, which can distinguish shadow edges from non-shadow edges, and which
can handle the blurring of shadow edges caused by extended light sources.

4.2.1 Experiment 1: Un�ltered Measurements with a Prede�ned Light Source Tra-

jectory

In what follows we let the term \surface map" refer to the recovered positions of the background
plane edge point and its associated background normal. In this experiment, the light source is
moved along a helical path whose origin is at (560;�160; 420) mm. The helices range in the y
direction is 100 mm, and it projects into the x-z plane as a circle of radius 50 mm; Four di�erent
light source positions are required to recover one set of variables: the background normal np, the
location of the shadowing half-plane edge points rq, and, derived from rq, their corresponding cast
shadow points rp on the background plane. After the initial set of variables have been computed,
we use each new image together with three previous ones to obtain a new surface map. We do so
for �fty images, and show the histograms of the recovered surface parameters in �gures 4 and 5.
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Recall the de�nition of np from equation (1):

np
T rp = �1:

We have assumed that the background surface is locally planar, implying that np is the same for
all the rp's that make up the local background patch. Instead of plotting its three components,
in �gure 4 we visualize the background normal by rotating it about the camera coordinate axes.
Let \np yz denote the amount by which np has rotated about the y-axis referenced to the z-axis.
Similarly, de�ne \np zx to be the rotation about the z-axis referenced to the x-axis, and \np xy

about the x-axis referenced to the y-axis. If we imagine that we are looking at the background
through the camera lens, then \np yz is the amount of rotation of the background toward the
camera, \np zx is the tilt. In the terms borrowed from robotics nomenclature, \np zx = \roll",
\np xy = \pitch", and \np yz is the amount of \yaw".

Since there are many points along the shadowing half-plane edge (for this set of experiments,
225), we have as many local surface maps for each four-image sequence. We look at one of them
as a representative. In �gure 5 we plot the histograms of the coordinates of the �rst point, rq1,
along the object edge. In �gure 3, the camera sees rq1 as the top-most point in the white box.

We can observe a few things from these histograms. We get a sense of how the background plane
is oriented with respect to the camera: it stands nearly upright with a few degrees of tilt, rotated
approximately 120 degrees toward the camera. We also have an estimate of where the object edge
approximately is. We did not obtain accurate ground truth in our experiments, but only obtained
a rough measure of how good the results are by way of measurements with a yard stick. This
gives us a sense of whether the reconstruction is near the truth, and in later experiments, whether
the �lters are converging towards reasonable values.

The statistical measures on the local surface maps indicate large errors as indicated by the large
standard deviations. This is due to the un�ltered noise in acquiring the images and in placing the
light source.

From the raw surface maps we can reconstruct the scene. To visualize the background, we simply
plot all the cast shadows, since by de�nition they are part of the background (See �gure 6(a)).
We can see that the un�ltered noise in the local surface maps make the \surface" unrecognizable.
This illustrates the fact that the simple two-stage surface recovery (raw map) is inaccurate in the
presence of noise. The shadowing half-plane edge can be represented by collecting all the surface
maps for points along the self-shadow boundary at one particular step. Shown in �gure 6(b) as
the \object edge" is the collection of such surface maps at the last time step. The particular
helical light source trajectory that was used in this experiment is shown in �gure 6(c).

4.2.2 Experiment 2: Iterated Extended Kalman Filtering with a Pre-de�ned Tra-

jectory

In this section we describe the experiments and results of using the iterated extended Kalman
�lter with the same sequence of images acquired using the same pre-de�ned light source trajectory
as in the previous experiment.
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The �rst four images that are acquired as the light source moves gives, using equation (10), a
raw surface map which serves as the initial state estimates for the Kalman �lters. Each subsequent
image provides the measurements of self- and cast-shadow pixels needed for the �lters. All self-
shadow points and their associated cast shadow points are assumed to be independent, so we use
a separate Kalman �lter on each shadow boundary pixel. For each of these Kalman �lters we
assume that the measurement noise covariance matrix is initially:

1. R0 = 1:18�

0
BB@
10�3 0 0 0
0 10�3 0 0
0 0 10�3 0
0 0 0 10�3

1
CCAmm2:

The elements of this initial error covariance R0 are chosen to correspond to a measurement
noise with a standard deviation of 2-pixels. This number was based on empirical measure-
ments on the shadow edges detected by our algorithm. The CCD elements of the Panasonic
camera have a size of 17:2 � 10�3 mm. Doubling this value and then squaring we get the
value for the diagonal entries of R0.

2. We set the initial values of the state estimate error covariance matrix to be:

P0 =

0
BBBBBBBB@

r̂2qx0 : : : 0 0

r̂2qy0 0
... r̂2qz0

. . .
. . . n̂2px0

...

0 n̂2py0
0 0 : : : n̂2py0

1
CCCCCCCCA
mm2;

where r̂q(�)0 is the initial estimate for the state variable rq(�), which is a component of the
position of the self shadow, and n̂p(�)0 is the initial estimate for the state variable np(�), which
is a component of the background normal vector. These values are based on our �ndings,
via simulation studies, that the standard deviations in the initial state estimates can be
well approximated by the magnitude of the state estimates produced by the linear solution
action on the �rst four images.

To compare with the raw surface maps obtained in the previous experiment (section 4.2.1), we
plot the distributions of the state estimates provided by the Kalman �lter in �gures 7 and �gure
8.
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Figure 2: Snap shots of experiments. Shown here are top: at the beginning of the experiments
under indoor lighting; bottom: experiment in progress.
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Figure 3: A series of images captured as the light source moves. The white and black rectangular
outlines are overlaid by hand and serve as constraint regions for the shadow boundary detection
algorithm. Enclosed in the white box is the self cast shadow, i.e., the portion of the object edge
of interest. Enclosed in the dark box is the region in which we wish to �nd the corresponding cast
shadow.
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Figure 4: Histograms of background angles for the raw surface map: (a) amount of rotation of
np about ŷ w.r.t. ẑ|\yaw", (b) amount of rotation of np about ẑ w.r.t. x̂|\roll", (c) amount of
rotation of np about x̂ w.r.t. ŷ|\pitch". Their respective median values and standard deviations
(in Æ) are marked at the top of each graph. Values along the horizontal axes are all in degrees (Æ).
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Figure 5: Histograms of object edge position rq1 for the raw surface map: (a) the x-component rqx,
(b) the y-component rqy, (c) the z-component rqz. Their respective median values and standard
deviations (in mm) are marked at the top of each graph. Values along the horizontal axes are all
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Figure 6: 3D reconstruction for raw surface map: (a) A portion of the shadowing object edge map
plus all the cast shadow maps which make up a portion of the background, (b) the helical light
source trajectory for the images taken in this sequence. All values along the axes are in mm.
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Figure 7: Histograms of background angles for the iterated extended Kalman �lter: (a) amount of
rotation of np about ŷ w.r.t. ẑ|\yaw", (b) amount of rotation of np about ẑ w.r.t. x̂|\roll", (c)
amount of rotation of np about x̂ w.r.t. ŷ|\pitch". Their respective median values and standard
deviations (in Æ) are marked at the top of each graph. Values along the horizontal axes are all in
degrees (Æ).

As in �gures 4 and 5 in section 4.2.1, we plot \np yz, \np zx, \np xy (�gure 7), and components
of the �rst point on the object edge rq1 (�gure 8). We see that indeed the estimates provided by
the Kalman �lter exhibit much lower variances than the un�ltered raw surface maps.

How well does the Kalman �lter work? To answer this question, we plot the state variables
against time and examine their convergence behaviour. We pick the �rst point on the self shadow
boundary, rq1. whose image in �gure 3(b) is the top-most pixel inside the white box. In �gure
9 we plot the angles \np yz, \np zx, and \np xy for the background normal np1 associated with
rq1, and the components of rq1 in �gure 10. We observe that np1 converges quickly, and it does
not take more than 40 steps for rq1 to converge. This is a reasonable speed, since if we could put
all the components of the system together (i.e., image acquisition, image processing, the Kalman
�lter, robot command) on one machine and have the robot operate at real-time speed, it will take
about a second to converge at video rate (30 image frames per second).

We would like to show the time evolution of the entire object edge. Since each point along
the self shadow boundary carries a Kalman �lter, we pick a few such points and track their state
variables together to form an informative picture. This is shown in �gure 11, where we plot the x,
y, and z-components of a few estimated object edge points. We notice that although the graphs
show convergence for all, they do not seem to all converge to a line (which they should since in
this case the object edge is a line segment). For example see �gure 11(c). An explanation for
this can possibly come from the fact that the �lters are independent and corrections to the state
estimates may not occur at the same instance, and that at di�erent shadow boundary locations
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Figure 8: Histograms of object edge position rq1 for the iterated extended Kalman �lter: (a) the
x-component rqx, (b) the y-component rqy, (c) the z-component rqz. Their respective median
values and standard deviations (in mm) are marked at the top of each graph. Values along the
horizontal axes are all in mm.

the noise contributes to the image measurements equation di�erently. In this respect, correlating
neighbouring points may help keep their spatial relationships correct, but it would not necessarily
force the neighbouring points to be on a straight line or an arc or some speci�cation. To do so,
prior knowledge about the shape of the edge is needed, which we have not assumed so far. This
prior knowledge about the object is also necessary when we integrate local maps to form a global
structure, but this is a topic of future research. It should be noted that, in the �gure, it appears
that the shadow edge point that is nearest the bottom (pixel 0) is the one most inconsistent
with the other shadow edge estimates. This implies some sort of systematic error, perhaps in the
measurement of the shadow edge location on the image. It may also be due to a deviation in
linearity of the edge of the object casting the shadow.

Finally, we present the three dimensional reconstruction. We collect all the estimates of the
position of the shadowing half-plane edge at the last time step to form the �nal estimate of the
shadowing half-plane edge, seen in �gure 12(a) marked as \object edge". To represent the local
background patch, we use all the estimates of the background normal np to derive the cast shadow
positions rp. Then we gather some of the cast shadows represent portions of the background patch.
The reconstruction is depicted in �gure 12, together with the helical light source trajectory as a
reference. The reconstruction shows signi�cant improvement over the raw surface map, although
the background plane is not quite planar in shape. This is so because the cast shadow rp depends
on the state variables np and the reconstruction includes all rp's in time. The larger errors are due
to the errors in the early estimates. The relative position and orientation between the shadowing
shalf-plane edge and the background is in accordance with what is roughly measured in the lab.
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Figure 9: Convergence of the background angles for the iterated extended Kalman �lter: (a)
amount of rotation of np about ŷ w.r.t. ẑ|\yaw", (b) amount of rotation of np about ẑ w.r.t. x̂|
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4.2.3 Experiment 3: Kalman Filtering with On-Line Light Source Trajectory Spec-

i�cation

In this experiment we implement the incremental light source position speci�cation described in
section 3.3 in conjunction with the iterated extended Kalman �ltering process.

The results of the experiment are summarized in the following �gures. In �gure 13 we show
the histograms of the angles \np yz, \np xy, and \np zx, similarly de�ned as in sections 4.2.1 and
4.2.2.

The histograms for the components of the �rst point on the object edge rq1 are plotted in �gure
14. Compare these histograms to those in the pre-de�ned light source trajectory case (�gures 7
and 8). We see that, on average, with the on-line trajectory speci�cation algorithm, the standard
deviations of the estimated states are smaller. This implies a faster convergence rate, which is
indeed the case when we examine the evolution of these state estimates in �gures 15 and 16.
Shown in �gure 15 are the convergence rates for the angles \np yz, \np zx, and \np xy, and in
�gure 16, the convergence rates for the �rst point on the object edge, rq1. While in the pre-
de�ned trajectory case it takes from 20 to 40 steps for the estimates to converge, with the on-line
trajectory generation process the state estimates converge after about 6 to 7 steps. This is a
signi�cant improvement. Indeed, with the control loop which maximizes the drop in the estimate
covariance we quickly come to a point where new measurements do not bring in any more useful

23



0 10 20 30 40 50
83

84

85

86

87

time step
0 10 20 30 40 50

−71

−70

−69

−68

−67

time step

(a) convergence of rqx (mm) (b) convergence of rqy (mm)

0 10 20 30 40 50
675

680

685

690

695

700

705

time step

(c) convergence of rqz (mm)

Figure 10: Convergence of object edge position rq1 for the iterated extended Kalman �lter: (a)
the x-component rqx, (b) the y-component rqy, (c) the z-component rqz. Horizontal axes mark
the time steps. Values along the vertical axes are all in mm.

information for the estimation process to utilize. So, little change to the state estimates will be
made from that point onward.

In �gure 17 we render a three dimensional representation of the convergence for a few points
along the object edge. While the �gure shows the correct convergence for all the components,
notice that di�erent points along the object edge do converge to points along a line segment
now. The three dimensional reconstruction of the partial scene is rendered in �gure 18 where we
again use estimates of the background normal to derive the cast shadows, and plot some of the
cast shadows as portions of the background patch. Also plotted is the light source trajectory,
with its starting position marked. The arrowheads mark the light source position at the end of
each time step. Note that the distance between successive light source positions is �xed, at a
value of 20mm. We have yet to understand the exact mechanism which produces the light source
trajectory as shown in the �gure, other than explaining it as the obvious result of the control
scheme. Experimentally, the algorithm pays more attention to where the uncertainty in the state
estimate is high, i.e., where stronger changes to the state estimate may be needed.

The light starts o� with the same initial four locations as in the pre-de�ned trajectory case.
When the control loop comes into e�ect the robot hand takes the light to regions as described
in, e.g., �gure 18. When comparing this with �gure 12, we postulate that by going into this new
region some information is gained to enable the algorithm to converge faster, and that the Kalman
�ltering technique may show the same behaviour if the light source in that case is allowed into the
same region. This is, in fact, precisely the purpose of the control loop, to �nd out where the light
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Figure 11: Convergence of object edge positions rq for the iterated extended Kalman �lter: (a)
x-components rqx, (b) y-components rqy, (c) z-components rqz. Values along the vertical axes are
all in mm. The components in each graph converge to di�erent values because they belong to
di�erent points along the object edge.

source should go for faster convergence. In looking at the light source trajectory, we see that the
light moves in three distinct phases: initially the light moves towards the background plane, then
moves parallel to the background plane, and then away from the background plane. In the �rst
phase, the estimate of the gradient of the trace of the covariance matrix is poor, due to the error
in the state variable estimates. Thus the initial light source motion is essentially in a random
direction. In the second phase, the state variable estimates have improved enough so that an
accurate estimate of the gradient can be obtained. The light moves parallel to the surface, which
provides the largest displacement of the shadow edge on the image plane, thereby maximizing the
signal to noise ratio. Note that, by the second stage, after about 10 time steps, the estimate has
more or less converged to its �nal value. It is in the transition interval, between steps 5 and 10,
that the in
uence of the light source trajectory speci�cation is at its peak.

In �gures 19 and 20 we show the histograms of the position parameters obtained for light source
position step sizes of 25mm and 12.5mm respectively. It can be seen, along with �gure 14, that
lower step sizes produce lower error variances, implying that, at least initially, the assumption of
a constant gradient in the objective function was not valid for the constraint regions implied in
the larger step sizes. A much more detailed study of step-size needs to be performed, however.
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Figure 12: 3D reconstruction for the iterated extended Kalman �lter: (a) one object edge map
plus the cast shadow maps which make up a portion of the background, (b) the light source
trajectory for the images taken in this sequence. All values along the axes are in mm.
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Figure 13: Histograms of background angles for on-line trajectory speci�cation with step = 20
mm: (a) amount of rotation of np about ŷ w.r.t. ẑ|\yaw", (b) amount of rotation of np about ẑ
w.r.t. x̂|\roll", (c) amount of rotation of np about x̂ w.r.t. ŷ|\pitch". Their respective median
values and standard deviations (in Æ) are marked at the top of each graph. Values along the
horizontal axes are all in degrees (Æ).
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Figure 14: Histograms of object edge position rq1 for on-line trajectory speci�cation with step
= 20 mm: (a) the x-component rqx, (b) the y-component rqy, (c) the z-component rqz. Their
respective median values and standard deviations (in mm) are marked at the top of each graph.
Values along the horizontal axes are all in mm.
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Figure 15: Convergence of the background angles for on-line trajectory speci�cation with step =
20 mm: (a) amount of rotation of np about ŷ w.r.t. ẑ|\yaw", (b) amount of rotation of np about
ẑ w.r.t. x̂|\roll", (c) amount of rotation of np about x̂ w.r.t. ŷ|\pitch". Horizontal axes mark
the time steps. Values along the vertical axes are all in degrees (Æ).
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Figure 16: Convergence of object edge position rq1 for on-line trajectory speci�cation with step =
20 mm: (a) the x-component rqx, (b) the y-component rqy, (c) the z-component rqz. Horizontal
axes mark the time steps. Values along the vertical axes are all in mm.
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Figure 17: Convergence of object edge positions rq for on-line trajectory speci�cation with step
= 20 mm: (a) x-components rqx, (b) y-components rqy, (c) z-components rqz. Values along the
vertical axes are all in mm. The components in each graph converge to di�erent values because
they belong to di�erent points along the object edge.
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Figure 18: 3D reconstruction for on-line trajectory speci�cation with step = 20 mm: (a) one
object edge map plus the cast shadow maps which make up a portion of the background, (b) the
light source trajectory for the images taken in this sequence. All values along the axes are in mm.
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Figure 19: Histograms of object edge position rq1 for on-line trajectory speci�cation with step
= 25 mm: (a) the x-component rqx, (b) the y-component rqy, (c) the z-component rqz. Their
respective median values and standard deviations (in mm) are marked at the top of each graph.
Values along the horizontal axes are all in mm.
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Figure 20: Histograms of object edge position rq1 for on-line trajectory speci�cation with step
= 12.5 mm: (a) the x-component rqx, (b) the y-component rqy, (c) the z-component rqz. Their
respective median values and standard deviations (in mm) are marked at the top of each graph.
Values along the horizontal axes are all in mm.
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5 Conclusions

In this paper we have presented an active vision technique for determining the orientation and
position of a planar surface onto which is cast a shadow by a half-plane, or object edge, with
unknown position. This unknown position is also determined by the algorithm. The algorithm
uses position control over a nearby point light source to provide the necessary information required
to obtain a solution.

Using the technique proposed by Shmuel and Werman [19] we reduce the e�ect of measurement
noise and light source position uncertainty through the use an iterated extended Kalman �lter to
temporally integrate measurements taken with di�erent light source positions. Following common
practice in active vision systems, we take advantage of the fact that we have control over the light
source position to plan the trajectory of the light source so as to locally optimize the temporal
integration process. We take an incremental approach, similar to that of Whaite and Ferrie [24]
in which the next light source position is chosen in the direction of the gradient of a measure of
the expected uncertainty in the solution with respect to the light source position. The diÆculty
in this type of approach lies in the computation of the gradient. In this paper, however, we show
that, if the trace of the state estimate covariance matrix is used as a measure of uncertainty, and
if a Kalman �lter is used to compute the state estimate, then a closed form solution can be found
for the gradient. This is a general result which can be used in other active vision applications
that similarly use a Kalman �lter for temporal integration and which require the computation of
the gradient of uncertainty with respect to one or more control parameters.

We presented experiments using a real robotic light source position system and real-time vision
processing which demonstrate the validity of the shape-from-shadows algorithm as well as the
e�ectiveness of the on-line light source trajectory speci�cation technique.
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Appendix - Derivation of the Gradient of the Trace of the

State Estimate Covariance Matrix

In this appendix we derive an expression for the gradient of �(~u) with respect to the components
of the control parameter vector ~u (equation (32) in section 3). This derivation was originally
presented in a conference paper [4]. We repeat it here for completeness and ease of reference.

It suÆces to �nd a general form for the individual gradient components, so we will determine
the partial derivative of �(~u) with respect to an arbitrary component ui. In the derivation of the
expression for the gradient we will use the following matrix di�erentiation identities:

Let X = X(t) and Y = Y (t) be matrix functions of a scalar t. Then

@

@t
tr[XTY X] = tr

�
@

@t
(XTY X)

�
(33)

Let X(t) = Y �1(t) be a symmetric matrix function of a scalar t. Then

@X

@t
= �X

�
@Y

@t

�
X (34)

From equation (19) we have that:

@�

@ui
=

@

@ui
tr[ATBA] (35)

Using the �rst of the matrix di�erentiation identities this can be written as:

@�

@ui
= tr

�
@AT

@ui
(BA) + AT @B

@ui
A+ ATB

@A

@ui

�
(36)
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From the de�nition of the matrix A we have that:

@A

@ui
=

@H

@ui
Pk�1W (37)

(since Pk�1 and W do not depend on the new value of the control vector ~u). Using the second
identity we can write:

@B

@ui
= �B

�
@H

@ui
Pk�1H

T +HPk�1

@HT

@ui
+

@R

@ui

�
B (38)

Expanding equation (28), using the linearity of the trace operator, we get

@�
@ui

= tr
h
WPk�1

@HT

@ui
BA

i
� tr

h
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TBA
i
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tr
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@HT
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� tr
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ATB @R
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BA

i (39)

Since the trace of a matrix is equal to the trace of its transpose, the above equation can be written
as

@�

@ui
= 2tr

�
ATB

@H

@ui
Pk�1W � ATB

@H

@ui
Pk�1H

TBA

�
� tr
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(40)

Using ATB = WK, we get

@�

@ui
= 2tr

�
WK

@H

@ui
Pk�1(I �HTKT )W

�
� tr

�
WK

@R

@ui
KTW

�
(41)

Note that Pk�1(I � HTKT ) = (I � KH)Pk�1 = Pk, the update to the covariance matrix. Thus
we can write:

@�

@ui
= tr

�
WK

�
2
@H

@ui
Pk �

@R

@ui
KT

�
W

�
(42)

Usually R depends on u only indirectly, through the in
uence of u on the measurement function
h. So we use

@R

@ui
=

@R

@h

@h

@ui
(43)

in the above equation. The quantity @R
@h

is obtained from a model for how the measurement noise
varies with the measured value.
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