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Abstract

1t is our belief that the bulk of the sensors intended for use
in robotic applications should be designed taking into ac-
count the requirements of the robots motor systems. To this
end one should design special purpose sensing arrays which
output motor signals rather than sensor signals. Sensors of
this kind would greatly reduce the computational burden
from that imposed with standard sensing techniques that
use high bandwidth video cameras or even tactile sensing
arrays. In this paper we describe our eflorts to date in de-
veloping sensori-motor chips which contain arrays of sensing
elements, circuitry for processing the raw sensor data into
forms relevant for motion related tasks, circuitry for gen-
erating motion signals based on the processed sensor data
and the goals of the system, and finally which contain an
operating system which selects a unique motor command
from a set of usually conflicting motion signals.

1 Introduction

In most robotic systems sensory information is used
to generate manipulator motions. Currently this in-
volves (in the case of visual sensing) imaging the robots
workspace with one or more video cameras, digitizing
the high bandwidth video signals from the camera(s),
performing image processing and analysis operations of
varying complexity on the digitized data, and then rea-
soning about the processed data to determine a suitable
motor activity.

The amount of computation required in the above
scheme 1s exceedingly high. One reason for this is the
general purpose nature of the sensing device. The video
camera has a high bandwidth output as it contains a
large amount of redundant information, as well as infor-
mation that is irrelevant to the task at hand. Similarly
the computational components of these robotic systems
are often general purpose, and hence inefficient for do-
ing a particular task.
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One way to reduce the amount of computing machin-
ery needed in a robotic system is to reduce the band-
width of the sensory device. This can be done by inte-
grating in with the sensor array circuitry for extracting
only relevant and non-redundant portions of the sense
data. In this paper we describe sensors that we have
built which combine sensing arrays with spatial filters
and simple feature extractors. We have also developed
an approach to the design of intelligent low bandwidth
sensors based on an active sensing paradigm, which will
not be described here. Details on this rather unconven-
tional approach can be found in [5].

We can do even better than this, however. In robotic
systems one does not really care about the sensory in-
formation itself; one is more concerned with the actions
that the robot is to perform. Each robotic system is
performing sensing to help carry out motions, whether
these motions be navigational (exploration, transport,
etc) or manipulatory (handling objects, assembly, etc).
For each of these motor tasks there is a correspond-
ing set of sensory tasks that need to be done. Be-
sides purely manipulatory tasks, sensing tasks of vari-
ous kinds also have motion inherent to them. For ex-
ample, active vision and tactile sensing algorithms re-
quire sensor motions in order to perform properly. The
sensing devices, to be most efficient, should output mo-
tor information, and not sensory information. Thus we
have been investigating the implementation of sensori-
motor devices in VLSI technology. These devices con-
tain arrays of sensors (which are typically less dense
than a video camera sensor array) and circuitry which
processes and examines the raw sense data and out-
puts a low bandwidth stream of motor signals. Many
of these chips can be integrated in a sensori-motor sys-
tem which handles the multiplicity of different motor
requests coming from the sensorimotor chips depending
on the goals and current state of the robot.

Even on a single chip there may be multiple “sensor
tasks” which output differing, and usually conflicting,



motion requests. These motion request must be han-
dled by an “operating system” of some kind to produce
a unique motion command. We describe a simple, ex-
tensible, operating system, similar in flavor to Brooks’
subsumption architecture [2], which can be embedded
on the same chip as the sensors and the sensor process-
ing circuitry.

2 Integrating Sensors and
Sensor Processing Circuitry

The first stage in any sensori-motor system is process-
ing the raw sensor data so that the information relevant
to the motor task is extracted from the sensor data.
There has been a great deal of interest in combining
such sensory information processing circuitry and sen-
sors in a single integrated circuit. A currently popular
technique is that of using a resistive grid to implement
forms of temporal and spatial filter [6, 8]. This ap-
proach has the advantage of being relatively straight-
forward to implement and many image analysis opera-
tions map naturally into this paradigm. It has a num-
ber of drawbacks, however, one is that it is limited
in the types of operations it can implement; another is
that the implementations of some operations are unsta-
ble [9]. In this section we describe a rather straightfor-
ward approach that we have been investigating. This
approach uses current-mode circuit techniques (see for
example [7]) to implement spatial convolutions directly.

The spatial processing of current mode signals is
based on Kirchofl’s Current Law, which states that
the sum of the currents flowing into and out of a cir-
cuit node must be zero. This law allows us to perform
spatial convolution in a very straightforward manner
by summing weighted currents from spatially disparate
sensing elements at a summation node. If the sum of
these currents from the sensors does not add up to zero
we will need to add an additional current from some-
where to make this sum go to zero. This additional
current will thus be equal to the negative of the sum of
the inputs currents. We can supply this current from a
coupled pair of n cha: .iel and p-channel current mirrors
which will in addition, provide differential, weighted
copies of this sum which can be used in further pro-
cessing. A schematic of this current mode convolution
scheme is shown in figure 1. The details of the oper-
ation of the convolution element can be found in [4].

The convolution cell provides a voltage that is pro-
portional to the sum of the input currents provided to
the cell. Since these inputs are scaled replicas of cur-
rents produced by sensing elements, the output voltage

1343

o sensor | from sensor 2

W

!

i tage =

autput sage e

o B tonal It sage -

conent sememing N

Figure 1: The current mode convolution element.

of the convolution cell has performed one point in a
spatial convolution on the output of the sensor array.
One could be satisfied with the output voltage obtained
from the convolution cell and output it through a buffer
amplifier and pass it off chip. This would then allow
one to do single pass convolutions on the outputs of the
sensor array. However, the nature of our convolution
elements allows one to perform multiple cascaded con-
volutions. For example, one could implement oriented
bar detectors.

We have built a number of sensor arrays which con-
tain these current mode convolution circuits using a
2 micron double metal, single poly, CMOS process
through the MOSIS foundry. A cifplot of one of these
chips is shown in figure 2. This particular chip (2.25mm
by 2.25mm in size) contains a 5 by 5 array of photo-
transistors as well as circuitry for computing three dif-
ferent convolutions (in parallel). These convolutions
include an x-derivative, a y-derivative and a Laplacian
operation. The convolution is done only for the cen-
tral point. The chip contains a form of automatic gain
control which reduces the effect of common mode (with
respect to the sensor stimuli) variations. This circuitry,
which is based on using an average of the sensor signals
to produce an adaptive bias signal, allows responses
of the convolutions over a larger range in light levels.
There is also circuitry on chip for processing the im-
age data to produce motor signals, and this will be
described in a later section. We have also fabricated
and tested arrays which contain different types of con-
volution kernels, both 1D and 2D, computing x and y
derivatives and smoothing of images. These chips have
been tested and shown to implement the desired op-
erations, proving the effectiveness of the current-mode
approach. The current mode technique is not limited
to optical sensors. We have also fabricated a 7 by 6 ele-
ment magnetic sensor array with combined smoothing
and Laplacian convolution [4]. This chip was intended



2: Plot of a 5 by 5 element visual sensori-motor

Figure
chip

for use in a magnetic field based tactile sensor [3].

3 Monolithic Sensori-motor
Systems

As mentioned in the introduction, most of the sensory
information provided by a high resolution video cam-
era is irrelevant for many robotic tasks. What a robotic
sensor should provide is a signal that is substantially
reduced in complexity, to ease the computational bur-
den on the system that is acting on the sensor data. In
addition, in many robotic situations, such as in the ma-
nipulation of objects or in workspace exploration, the
system that takes in sensory data ultimately produces
a motor signal of some kind. To this end our system
needs to do two things. First it must convert the pro-
cessed sensory data into a motion signal. A robotics
system may contain many of these sensing-to-motion
operations in parallel, each trying to satisfy a particu-
lar goal of the robot. Thus, the second thing that our
sensori-motor system must do is choose between these
motion signals and produce a unique motor signal that
can be sent off to the drivers of the robot actuators.
We will now present an architecture, suitable for in-
tegration with sensing elements for implementing such
a sensori-motor system. This architecture is based not
on Brooks’ subsumption ideas, but instead relies on an
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interrupt-driven, active sensing-based design.

The architecture consists of a number of distinct
components. The first stage is the raw sensor array.
The output of these sensing elements is processed by
a set of modules which extract information relevant to
the sensory task modules which follow. The sensory
task is a subsystem which attempts to get the overall
system to meet a particular small set of objectives, or
indeed a single objective. Sensory tasks include motor
components. Specifically, a sensory task continually
suggests courses of action for motor systems which the
task module itself calculates to be most appropriate
for the completion of its small, built-in mission. It is
always active in that it is always processing data and
suggesting actions. The courses of action suggested by
a sensory task take the form of motor signals, which, in
their complete form, come in sets. In each set of such
signals there is a data channel dedicated to each and
every motor in the system.

One example of a sensory task could be edge loca-
tion. This task might be accomplished using very sim-
ple behavior, such as suggesting motion straight ahead
for the overall system until the edge detector sensory
primitive is activated. A second example of a sensory
task could be centering the overall system over an edge.
In order to achieve this task, we might first postulate
a sensory primitive which locates edges on the sensor
array, and another which reports whether an edge is
centered on the array. The sensory task could then
be implemented simply in terms of the two primitives,
namely, move in the direction of the edge until the edge
is centered, then stop. In order to make sure that the
system does not try to implement this procedure when
no edge is present, the task could be designed so that it
will return an error signal unless an edge is detected in
the sensor field by the edge detection primitive. Sen-
sory tasks clearly rely heavily on sensory primitive data
for their function.

Sensory tasks are most useful as building blocks for
more complex procedures. Sensory tasks take sim-
ple information which is easy to acquire from sen-
sors or sensory primitives and generate output which
is “atomic” in nature. By atomic, we mean that the
output from sensory tasks applies to very basic situ-
ations and relates to the achievement of very small,
finite goals. The atoms, namely, the sensory tasks,
serve as building blocks for high-level overall system
behaviors. Ideally, sensory tasks are designed to be
sufficiently flexible so that they can be used in mul-
tiple contexts to help achieve ranges of more complex
objectives. One sensory task which is easy to see in
this light is the task of edge location. This task is
important in virtually every object location, landmark



identification, and navigation routine imaginable where
standard vision is the sensory modality. Edge location
sensory tasks, then, would be used over and over by
higher level modules.

The sensory task modules invoke motor tasks to help
get their job done. The motor task is an architectural
element which is closely related to the sensory task. In-
stead of focusing on the detection of particular phenom-
ena in the environment, however, the atomic elements
in a motor task involve the implementation of a set of
motor commands as a unit to accomplish some sim-
ple goal. Again, the motor signals which comprise the
output of a motor task come in sets, with each motor
receiving data through dedicated channels. One motor
task might be as simple as moving straight ahead. An-
other might be circular motion. These tasks could be
either locked into place, only escapable through some
as-yet-undefined interrupt procedure, or could be ended
after a predetermined interval of time had elapsed, or
could be terminated through a change in motor state
recognized by the use of proprioceptive senses. The
idea behind the motor task concept, like the idea be-
hind the sensory task concept, is that the task be simple
and usable as a building block for various types of more
complex behavior. The motor task is distinct from the
sensory task in that it does not sample environmental
data In order to make its decisions. It is quite parallel
to the sensory task, however, in that the concept un-
derlying motor tasks and sensory tasks is identical, the
only difference being that the environmental data used
by the sensory task is replaced in the motor task by
proprioceptive data.

We have described sensory tasks and motor tasks as
atomic elements of the overall architecture. Goals are
defined as the structures which serve to combine sets
of those atomic elements into larger routines. These
routines, then, are designed to accomplish some objec-
tive which is more complex than one met by a sensory
or motor task alone. Goals form the layer in the over-
all system at which overall system behavior is truly
specified in the sense that the set of goals is the set
of macroscopic objectives the system will be able to
perform, given appropriate circumstances.

An example of a goal which a simple autonomous
system might implement is “follow an edge.” This goal
can be subdivided into a number of atomic sub-goals
and thus can be described in terms of sensory and/or
motor tasks. The first step in following an edge is
finding an edge. One way that finding an edge can
be implemented is as a sensory task which sends mo-
tor requests for straight ahead motion until the edge-
detection primitive is activated, then sends a motor
request for stopping and finally signals its completion

to higher processing levels. The next sensory task
which would be activated in edge-following would be
one which orients the system along an edge. This task
would calculate and send motor signals designed to cen-
ter the system over the edge. The centering would be
carried out in such a way so that future forward mo-
tion will carry the system parallel to the edge as cur-
rently observed once centering is complete. The edge-
following objective could then be continued by alternat-
ing between a simple motor task, move forward either
a fixed distance (using a proprioceptive odometer-type
sense) or for a fixed time (using an internal timer), and
a sensory task, the centering task described above. The
motion task sends the system along the edge and the
centering task recenters the system over the edge. The
goal would remain active until the system lost track of
the edge, as indicated by data from the edge detection
primitive, or until an interrupt signal preempted the
goal.

So far, we have seen that goal modules are connected
to the systermn primarily through motor and sensory
tasks. Motor and sensory tasks suggest motor signals
which will, if properly designed, help the system ac-
complish the atomic task objectives. The goal module
has to arbitrate among all of these suggested courses of
action. It does this in that only one of the task nodes
which feed the goal module data are active with respect
to that goal at any one time. The active task, of course,
reflects the current state of the goal module. Knowl-
edge of the preset order of tasks for a given goal as well
as which task is active, then, indicates which among
the atomic subgoals have been and which have not yet
been accomplished. That one task is active with respect
to the goal implies that motor signals are received by
that goal only from the active task. The other tasks
are by no means inactive. In fact, as mentioned ear-
lier, all tasks in the system are continually gathering
data from sensors, sensory primitives, and propriocep-
tors. Furthermore, all tasks are continually calculating
desired courses of action and trying to send those sug-
gestions to all goal modules connected to them. Each
goal in the system selects exactly one of its component
tasks and accepts this task’s motor signal suggestions
as its own motor signal suggestion to be passed on to
higher levels in the architecture. Note that it is en-
tirely possible for a goal to receive input not only from
task modules, but from other goal modules. Because
the output from a goal, like the output of a task, is
a stream or set of streams of motor signals, goals can
receive input from other goals or from tasks equally
well.

The final component of our architecture is the oper-
ating system (more details on our approach to this can
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be found in [1]). Much as the goal module serves to
arbitrate among task modules which compete for con-
trol of the overall system, the operating system serves
to arbitrate among competing goal modules. Each goal
module presents a course of action for the overall sys-
tem in the form of commands sent to the system’s mo-
tor resources. The courses of action suggested by each
goal, of course, are generated at the task level as de-
scribed earlier and are passed from task to goal, ei-
ther directly or through further, higher level goals, and
ultimately toward the operating system. The operat-
ing system, depending on its internal state, chooses a
course of action by choosing which goal is active with
respect to the operating system at any given time.
Again, this does not imply that the goals which are
not active with respect to the operating system are in-
active. The active goal is the goal whose motor sug-
gestions are being listened to and acted upon by the
system at large; the operating system ignores the sug-
gestions of the goals which are not active.

At its simplest level, then, the control system for the
entire autonomous robot can be understood in terms of
motor signal flow through binary gates from the task
level to the operating system level. Each task sends
a flow of motor signals upward to as many goal mod-
ules as are connected to it. The goal modules control
a set of information passage gates, one for each task
connected to a given goal module. Some goals may
be connected to other goals as well; each goal feeding
signals to a higher level goal requires that higher level
goal to accommodate it with one additional information
passage gate. One and only one of these information
passage gates is open at any one time, insuring that
each goal suggests one uncluttered course of action to
higher levels in the architecture. F inally, some subset
of the complete set of goal modules sends data upward
to the operating system. The operating system is in
many ways analogous to an overall top-level goal mod-
ule. The operating system has one information passage
gate for each goal module connected to it and passes
exactly one set of motor signals to the motor-driver
circuitry. Because the operating system listens to only
one goal module at a time, it can only try to implement
a single motor command set at a time, thus preventing
the system from trying to do two mutually exclusive
things at once. If necessary, the motor signal set could
be processed in the operating system as well so that
motor signals passed around by the lower system lev-
els could modified, if necessary, to meet motor driver
signal requirements.

As an illustration of our approach consider the sys-

tem which we are in the process of constructing. The
chip depicted in figure 2 contains part of a full sensori-
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motor system for an insect-like system. Its overall goal
(which is similar to the “buggy” system described in
our paper [1]) is to find a source of “food”, which we
assume to be found in cracks in the floor. The system
will have the sensori-motor chip looking down at the
floor, and will contain a motor system that will allow
it to move about the floor with 3 degrees of freedom
(z,y and orientation). It is further assumed that the
cracks in the “floor” that the system moves about on
will have sufficiently different light intensity levels as
to appear as (pairs of) edges in an image of the floor.

The chip that we have built contains, as mentioned
earlier, a 5 by 5 array of phototransistors, along with
current-mode convolution circuitry for computing x
and y derivatives and the Laplacian. In addition to
this the chip contains logic circuitry that determines
eleven quantities related to the sensor data:

o i) Whether an edge is present or not within the 5
by 5 sensor receptive field of the chip (1 signal).

o ii) If there is an edge, it determines the orientation
of the edge, as one of eight possible values (e.g. 45
degree increments) (8 signals).

e iii) If the edge is determined to be a horizontal
edge or a vertical edge the chip decides whether
the edge is centered in the 5 by 5 sensor receptive
field (2 signals).

These processed sensor signals are produced as follows.
The analog outputs from the three convolution circuits
(V for the z derivative, H for the y derivative, and
L for the Laplacian) are passed to pairs of compara-
tors, generating six digital signals. One comparator
in each pair detects whether the signal is less than a
low threshold (resulting in signals we call V—,H ™, and
L™), the other comparator in each pair detects whether
the signal is greater than a high threshold (resulting in
signals we call V* ,H* and L+). These six signals are
then input to Boolean logic which computes the desired
eleven signals described above. The logic equations for
this process are given below.

Oedge= E(VYL= +V~L")
45_edge = (VY H L™ + V- H*L")
90.edge = E(H*LT* + H™L™)
135.edge = (VYHYLY + V"H™L7)
180.edge = E(VYLt +V~L7)
225_edge = (VYH LY+ V™" HTL™)
270_edge = E(H* L™ + H™L%)
315.edge = (VY HYL™ + V- H™ L")



vert_centered = F(VT +V7)
horviz_centered = F(HY + H™)
edge_detected = F + vert_centered + horiz_centered

where

E = 45_edge + 135_edge + 225_edge + 315_edge
F = E + 0_edge + 90_edge -+ 180_edge + 270_edge

The signals produced by the chip can be used to pro-
duce the motor requests needed for attaining the goals
of the system. For example, if the goal of our system
is to find “food” and it is assumed that food can usu-
ally be found in cracks in the floor, then the following
behaviour may be used.

e 1. Look for a crack in the floor. This is done by
moving the robot in some specified search pattern
if the “edge_detected” signal from the sensorimotor
chip is low.

9. Once an crack has been found it will typically
not be oriented such that motion of the robot in
the same direction it was previously moving will
follow the crack. Thus the robot must orient itsell
with the edge. The information needed to com-
mand the orientating movements come from the
“edge_orientation” signal of the sensorimotor chip.

3. Once the robot has been properly oriented (e.g.
so that the edge appears vertical to the robot),
the robot must center the edge so that it may be
reliably followed.

4. Once the robot has lined itself up with the crack
it moves forward until the edge is no longer cen-
tered, or when the orientation is no longer vertical
or when “food” has been found.

From the above sequence of steps it can be seen thai
the chip that we have built, simple as it is, still con-
tains most of the circuitry required for implementing an
autonomous system capable of non-trivial behaviour.
The next chip that we intend to build will contain the
operating system component which will take in motar
requests from multiple such sensori-motor chips, each
concerned with a different behavioural aspect, and out-
put a unique motor signal to the robot actuators.
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