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Abstract 

The context-centered approach to object detection and 

recognition is based on the intuition that the contextual 

information of real-world scenes provides relevant 

information for these tasks. This intuition is supported by 

psychophysical experiments in human scene perception 

and visual search, which provide evidence that the human 

visual system uses the relationship between the 

environment and the objects to facilitate object 

recognition. Here we use a probabilistic model to 

investigate the possible interactions between object class 

hypotheses and scene class hypotheses in a visual system. 

The architecture of the model is based on separate 

modules interacting with each other via feedforward and 

feedback connections. A competitive-priors structure is 

used to implement the feedback connections.  

1. Introduction: context based object and 

scene identification 

Psychophysical studies in scene perception have 

provided evidence which shows object identification in 

human visual system does not operate exclusively on a 

bottom-up basis, but rather the conceptual meaning of the 

scene influences object identification [1][2]. This scheme 

can be useful in artificial visual systems, but the 

computational implementation of such a scheme requires 

dealing with several central questions. Is it possible to 

encode the context of a scene using the global scene 

information before any local object identification is 

performed? What kind of information could be used to 

identify a scene as a certain scene type? Is the scene 

identity inferred from the identity of the individual objects 

present in the scene? How could the scene and the object 

identification processes interact? 

Schyns and Oliva [3] have demonstrated that contexts             

of scenes can be identified from the low spatial frequency  

images that preserve the spatial relationships between 

large-scale structures in the scene. Oliva and Torralba [4] 

have shown that it is possible to construct definitions of 

scene context which are not dependent on identification of 

individual objects in the scene. In their research the scenes 

are represented globally, based on their second order 

statistical regularities. Torralba and Sinha [5] have 

proposed a representation of the context based on the 

statistics of the low level features of the scenes, encoding 

spatially localized structural information using Gabor 

filters. They have furthermore shown that the contextual 

information can be useful for the object detection task. 

Their approach is based on conditioning the statistics of 

the contextual features of the scene according to the 

presence or absence of object categories [6].  

In this paper a computational model is presented of 

how hypotheses could be formed simultaneously about 

both the objects present in the scene and the conceptual 

meaning of the scene. Inferences are made about objects 

present in the natural scene images based on their low-

level context features. As a higher level of conceptual 

abstraction of the scene, an estimate of the likelihood of 

the scene class is then computed based on the object-level 

likelihood estimates. Joint probabilities of the presence of 

different object categories influence the estimate of the 

likelihood of each scene category. A strongly-coupled 

structure is proposed to implement the interactions 

between the object and scene hypotheses.  

2. A strongly-coupled Bayesian model for 

object and scene identification

In this model we are interested in deriving two types of 

inferences from the images. First, we want to make a 

hypothesis about possible object classes present in the 

scene. Second, we want to make a hypothesis about the 

abstract classes of scenes. The computations for assigning 

probabilities for each object class and each scene class, 

for any given image, is performed in two separate 
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modules, which are referred to as the object module and 

the scene module.  

Assuming n  object classes OOO n,,, 21  and m

scene classes SSS m,,, 21 , and the low-level context 

features V C , as defined by Torralba and Sinha [5], as the 

input to the Bayesian system, the problem of inferring the 

presence of a certain object class Oi  from the input data 

is formulated as the following 
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where )( OVP iC  is a model of the context feature values 

given the condition of the presence of object class Oi in 

the scene. This probability density is estimated using the 

expectation-maximization (EM) algorithm and the V C

values computed from the set of images in the image 

database which contain object class Oi [6]. )(OP i is the a

priori expectation which is determined by measurement 

on the image database. )(VP C is a normalization factor, 

which can be computed from )( OVP iC and )(OP i . The 

probabilities )( VOPP Cii =  thus computed for each 

object class Oi  are then combined into a single vector 

},,,{ˆ
21 PPPP n= and is used for computation of the 

scene class probabilities. The Bayesian formulation of the 

estimation of the probability of the image with the 

corresponding vector P̂  belonging to scene class 

S j given P̂  is as follows 
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where the probability density )ˆ( SPP j is estimated using 

the EM algorithm based on the values of P̂ computed for 

the set of images in the data set which belong to the scene 

class S j . The computations in equations (1) and (2) 

represent the functioning of the object and the scene 

hypotheses generating modules.  The two modules can be 

connected simply through a feedforward connection as 

implied by these two equations or the equations can be 

revised in order to embed a feedback interaction between 

the two modules.  

In order to make feedback connections possible 

between the two modules, the a priori terms in equations 

(1) and (2) are expanded as following 
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In the Bayesian formulation the constraining 

assumptions derived from specific experimental domains 

are incorporated as a priori terms. The a priori constraints 

make the ill-posed problem of making interpretations from 

the information derived from the input image possible, by 

providing supplementary previously acquired knowledge 

of the world. Expanding the a priori terms as in equations 

(3) and (4) provides a way to feed back the output of the 

scene module to the object module in order to update the 

a priori values. The term )(SP j in equation (3) is revised 

based on )ˆ( PSP j and the term )(OP j in equation (4) is 

revised based on the new values of )( VOP Cj . This 

feedback is designed to use the new information inferred 

by the system from the input image, to determine a more 

accurate a priori model for the system. We can perceive 

that the a priori terms of the scene module could also be 

altered using the new values of the object module. This 

alteration of the a priori modules distinguishes the 

proposed system as a strongly-coupled architecture [7]. 

This architecture is visualized in detail in figure (1). 

3. Experimental results 

A database of 400 images from natural scenes has been 

gathered for the purpose of experimentation with the 

proposed architecture. The database consists of three sets 

of natural scene images from parks, streets, and indoor. 

Three object classes are chosen to be cars, trees, and 

people. Examples of images are shown in figure (4). 

The likelihood terms in equations (1) and (2) are 

estimated from the images in the database using the EM 

algorithm. The a priori terms are also initialized using the 

statistics of the image database. Given a new image, not 

belonging to the training data set, the object module 

estimates the probability of the image containing cars, 

trees, and peoples. 

The computed values form the three-dimensional 

vector },,{ˆ
321 PPPP = , which is the input to the scene 

module. The scene module estimates the probability of the 

scene belonging to the three scene classes, parks, streets, 

and indoors, based on the previously estimated joint 

distribution )ˆ( SPP j and the a priori values.  

Tables (1) and (2) illustrate the results of 

experimentation with a training set of 300 images. The 

classification results are shown for a set of 20 images in 

each scene class, not contained in the training set.  
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Figure 1. The strongly coupled model consists of two modules, object module, and scene module, 
which compute the hypothesis of the model about the object classes present in the scene, and 
the scene class, given a new test image. The a priori models in each module are revised through 
the feedback from the other module. In this figure it is assumed that 3== nm for the purpose of 
simplicity.   

Table 1. The initial classification results for 
20 test images in each scene class, before 
the starting of the feedback process. 

Initial 

results 

Correctly 

classified 

Mis-

classified 

Unclassified 

Park 

scenes 

13 3 4 

Street

scenes 

9 5 6 

Indoor 

scenes 

16 0 4 

Table 2. The classification results of the 
same image set as in table 1, after 35 
iterations of the model. 

After 35 

iterations 

Correctly 

classified 

Mis-

classified 

Unclassified 

Park 

scenes 

15 4 1 

Street

scenes 

12 4 4 

Indoor 

scenes 

18 0 2 

Table (1) shows the initial results of the classification 

of the scenes, and table (2) shows the results after 35 

iterations of the model. The comparison of the two tables 

indicates that the number of unclassified images has 

decreased for this set of test images after 35 iterations, 

while the number of correctly classified images has 

increased. It is possible to have an initially unclassified 

image misclassified after a number of iterations.  

The study of the dynamics of the system shows that for 

the correctly classified images the system is able to reach 

a stable decision, while for the unclassified images the 

system is not able to stabilize. Figures (2) and (3) 

illustrate the behavior of the system for reaching a stable 

hypothesis about the identity of the test images. In each 

figure the three curves illustrate the probability of the 

image being a park scene, a street scene, or an indoor 

scene as a function of the number of iterations. In figure 

(2) the system behavior is averaged for the 15 park scenes 

which are correctly classified.  Figure (3) illustrates the 

scene probabilities averaged over the 18 indoor scenes 

which are correctly classified.  It is interesting to note that 

while the system has produced a correct hypothesis about 

the identity of the scene, the system does not stabilize for 

scene classes with small probabilities. 
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Figure 2. The probability of the image being 
a park, indoor, or street scene, for the first 
100 iterations, averaged over the 15 park 
images, correctly classified in the 
experiment. 

Figure 3. The probability of the image being 
a park, indoor, or street scene, for the first 
100 iterations, averaged over the 18 indoor 
images correctly classified in the 
experiment. 

4. Conclusions 

A strongly-coupled Bayesian model is presented for 

modeling the influences between object and scene 

hypothesis inferred from images. The system uses the 

dependencies of the prior probability models of objects 

and scenes in order to incorporate feedback connections  

Figure 4. Sample images of the data base 
from the parks, streets, and indoors scene 
classes.

between the two object and scene modules. We have 

demonstrated the capability of the model for achieving 

better results for identifying scenes, compared to the 

simple feedforward probabilistic solution.  
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