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Abstract

Many image analysis applications rely on background
subtraction as a pre-processing step. Hence it should be
efficient and robust. We present a background subtraction
algorithm that uses multiple competing Hidden-Markov-
Models (HMMs) over small neighbourheoods to maintain a
locally valid background model in all situations. We use the
DCT coefficients of JPEG encoded images directly to min-
imize computation and to use local information in a prin-
cipled way. Region level processing is reduced to the min-
imum so that the extracted information that goes to higher
level processing is unbiased.

1. Introduction

The goal of our work is to develop an efficient algorithm
for segmenting a sequence of images into foreground re-
gions, through suppression of the background. Simple so-
lutions can be implemented given an initialization sequence
free of foreground objects and a completely static back-
ground scene. However, in practice, such ideal situations
are rarely encountered, and the background subtraction al-
gorithm must work without clean training sequences and
continuously update -its reference model. Qur approach is
to use background models, in which we construct statisti-
cal predictions of which parts of the image correspend to
background regions.

Much of the work on background subtraction comes
from the field of video surveillance [2, 5]. Like previous re-
searchers, we face the major problem of adaptation: that is,
when do we adapt the background model, and how is this
adaption done? If we continuously adapt the background
model we get the degenerate case of frame differencing,
while with no adaptation we are left with naive background
subtraction. To avoid the known problems of these special
cases a decision process must be included in the algorithm.
Ideally, some form of temporal constraint should be used
to take this decision. One intuitive approach is to specify
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an immobility period that an object must satisfy before be-
ing integrated in the background. This makes more sense
then using some ad hoc update parameter. For example,
the immobility time parameter can be specified according
to the security level, specifying an infinite period for a high
security location down to a few minutes for a low secu-
rity room where people move objects frequently. Recently,
many probabilistic background models have been proposed
to solve the adaplation problem. Elgammal et al. [3] use
a mixture of normal kernel functions to quickly learn the
background distribution of scenes that contain moving ob-
jects (such as tree branches). Toyama et al. [8] use a Wiener
filter to predict background values using the 50 previous in-
tensity measurements.

‘We propose to use multiple models in our algorithm be-
cause they are needed in many application contexts. For ex-
ample, indoor surveillance footage will necessarily require
the surveillance of doors, as they are critical regions. There-
fore, it would be appropriate to learn both the “opened” and
“closed” background model of the doors. Another example
is the light switch problem described by Toyama et al.[8],
they used a frame level algorithm to switch between mod-
els, working at the pixel level would be an even stronger
approach.

One very popular technique to find the best mede! given
a sequence of observations are Hidden Markov Models
(HMM) (see [7] for a tutorial), more precisely the For-
ward algorithm. Rittscher et al. [6] used HMMs for back-
ground subtraction in a traffic monitoring application, us-
ing one HMM per pixel. However, as our goal is to accept
many models al the pixel level we need many HMMs per
pixel. The amount of processing and memory space for
such an implementation is currently not appropriate for a
pre-processing algorithm. Therefore, as Rittscher et al., we
divide the image into small non-overlapping regions. We
found that using images encoded with JPEG (see [9]) is a
good way to reduce the amount of processing that our al-
gorithm requires. Indeed, networked cameras that directly
compress images in JPEG are now inexpensive and com-
moenplace. JPEG compression operates by finding a linear



combination of 64 orthogonal 2D basis functions that syn-
thesize an 8 x 8 image block. The Discrete Cosine Trans-
form (DCT}) is used in JPEG to give such a decomposition.
Each of the basis functions in the DCT contains one of the
64 unigue two-dimensional frequencies found in 8 x 8 im-
age blocks. By directly using the block encoded data of
JPEG images, we reduce the number of HMMs we need by
a factor of 64 and also access, with minimal computational
cost, the average of each 8 x 8 neighborhood, as welk as 63
coefficients that can be used to robustly discriminate back-
ground from foreground.

2. Block-DCT domain observations

One major advantage of using DCT coefficients is that
it's possible to reduce the amount of input data in a princi-
pled way. Indeed, reading only lower frequency DCT co-
efficients is a reasonable way to reduce the dimensionality
of the observations. Intuitively, within a DCT block the DC
(zero frequency) component codes the average luminance
or chrominance, while the AC coefficients explain the de-
picted pattern. Lower frequency coefficients are less sen-
sitive to noise or small changes in the images, while they
preserve some edge information that is sufficient to detect
occlusion edges at the boundaries of foreground object.

We obtain the DCT coefficients by entropy decoding of
the JPEG source data. There is no need to de-quantize the
values, as it does not bring any new information. The num-
ber ot AC coefficienis to use is somewhat system depen-
dant. It depends on the targeted sensitivity and on the spe-
cific camera used. Inspection of the quantization table is a
straightforward way to automatically determine how much
or which coefficients to use (e.g. take the /V less quantized
coefficients}. Our current implementation use color images,
in YCrCb color space, where all three DC coefficients are
included in the observations, but the chrominance AC co-
efficients are left out because they don’t bring much more
information.

3. Probabilistic background model

An HMM is built for each 8 x 8 block provided by the
JPEG encoding. We use a very simple model with only two
states: background and foreground. The transition matrix
is fixed by hand based on the following hypothesis: blocks
are more likely to stay in background state than to switch to
the foreground siate, and when they are in the foreground
state there is no bias on the next state. We use a weak ini-
tialization prior which assumes that all blocks start out in
the background state.

At any given time £ the state of a 8 x 8 pixel block is
estimated using an on-line Viterbi algorithm, which com-
putes the most likely sequence of state transitions ending
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Figure 1. Histograms collected on a 3 hour
period for a sampled DCT block.

at state (), given the past history of observations. The last
state ¢J, for each block are combined to form the segmen-
tation mask. This computation is only performed for the
winning model for each block. The state estimate at each
time step given by the other models are not needed because
competition occurs at the sequence level.

The background probabilities are estimated empirically,
by collecting histograms over a long period for a set of
image blocks that we manually selected in the scene be-
ing viewed. Two samples of such histograms are shown in
Fig.1. In this case, the data was collected on a three hour
period for an indoor scene similar to the one shown in Fig.2
during an active period of the day, i.e. there was a lot of
human activity in the room while recording the data. We
show the histograms for the most interesting sampled block,
and only for the luminance (Y) DC and first AC compo-
nents. Over such a long period the background distribution
should completely dominate, so it’s assumed that the his-
tograms correctly depict the true background models. The
histograms show that the Y-DC component can be modelled
by a mixture of Gaussians. The sampled block is located
near a door, which explains the two modes of the distribu-
tion associated with the state of the door. On the other hand,
the distribution of the first AC coefficient is modelled by a
Gaussians of very small variance. This is caused by the
quantization step in JPEG compression. Using very narrow
(e.g. 5 units) uniform distributions is an acceptable approx-
imation of this distribution that greatly reduce the complex-
ity of the algorithm.

Let Tiax and T,f;i be the maximum and minimum accept-
able values for the i** AC coefficient, these thresholds can
be set such that the acceptable range is the same for alt AC
coefficients, i.e. {r, = Téfa)x - f&iV(i)}. Furthermore,
if we assume that the DC and AC coefficients are uncorre-
lated, we get the following background distribution:
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where G is a Gaussian distribution:
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And where z,. is the 3-dimensional DC component vector,
n,,., is the number of AC coefficients, and 1/(r,.)"" is the
probability of an observation given that all AC coefficients
are within range. This normalizes py{z) such that its inte-
gral over all z i1s equal to 1.

We assume a uniform distribution for the foreground
model:
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where d,, (1) is the effective dimension of the it" AC coef-
ficient, which can be computed from the quantization table.

4. Background model adaptation

To be successtul, a background subtraction algorithm
must consider both smooth and sudden transitions in illu-
mination. To cover both problems we use two separate
approaches. Smooth transitions of the DC coeflicients are
integrated into the background model with a steady-state
Kalman filter [4] and sudden changes are detected and ana-
lyzed by the competing HMMs. The AC coefficient distri-
butions are not updated because of their very low variance.

4.1, Competing models to detect sudden transitions

Al regular intervals, the best model is elected. Given a
sequence of observations O and many models A; we can
compute the probability p{O|A;} for each HMM using the
Forward algorithm [7], the model with the highest probabil-
ity is elected. We use an on-line version of the algorithm to
achieve a constant processing load. When a challenger wins
against the current best model both the Viterbi and Forward
algorithms are initialized with a new observation and the
prior that the pixe! block is currently in background state.

4.2. Adaptation to smooth transitions

A simple approach to track small illumination changes
without integrating outliers is to compute some range of va-
lidity using the background distribution variance and then
update the mean of the distribution for observations that
fall within that range. However, note that our observa-
tions are averaged on 8 x & blocks. Thercfore, all transi-
tions caused by objects moving through some block will be
smooth enough to seriously corrupt the background distri-
bution. To avoid updating the background pdf. with ob-
servations that are near sudden transitions, we inspect the

state sequence and update the background only if there are
no state transitions in the near past or future. This is pos-
sible when using HMM s because the lattice structure keeps
the histery of state transitions. In practice, we keep a very
limited record of state transitions.

Once a valid observation is found we update the mean
of the 3D Gaussian part of the model. We use a steady-
state Kalman filter. The dynamics of the distribution are
modelled as constant. The measurement error covariance is
computed during the training process. The process variance
is set to the identity matrix.

5. Bootstrapping the training process

Having multiple competing HMMs is crucial for our al-
gorithm to work. We need a module that will automatically
detect stable changes to the scene and build new models for
the affected blocks. We consider the detection of persistent
changes and the training process as two different functions.

Detection of stable changes is the only module within
the algorithm that operates at the region level. The idea
is to look for large regions that do not change for a given
period of time. This is implemented by adding an alternate
HMM meodel for each block. This model adapts rapidly to
any changes to the DC coefficients. We use a gain matrix
K = 0.5I. The AC coefficients are left out of this model.
I the main model for a block is in the foreground state the
alternate model is used to see if the foreground object stays
stable. It runs as follows:

» Flag blocks for which Q¥ = F and Q&' = B;
o Compute the mask of the flagged blocks;
» Remove unconnected blocks from the mask;

o If the mask has not changed for X seconds train new
models for all flagged blocks.

The training process is itself straightforward. A fixed num-
ber of sample observation vectors are recorded. The mean
and covariance matrix are then computed for the three DC -
coefficients inside the vectors. The range for each AC co-
efficient is computed as the samples are obtained. Singular |
value decomposition is performed on the covariance matrix.
We inspect singular values and invert the covariance matrix.
Finally, the steady state Kalman gain matrix is computed.
For the initial training, all the observations are used; but
when a new mode! is being trained we use a prior obtained
from the persistent change detection algorithm. This prior
is a 3D Gaussian distribution of the DC coefficients of the
new background. We use it to coarsely filter the incoming
observations taking only observations that fall within 5 stan-
dard deviations of the prier estimate. If for some reason the
fixed number of training samples cannot be reached because
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there is too much variance, the training is interrupted, the
previous model is seiected and the Viterbi and Forward al-
gorithm are initialized with a foreground prior. These rules
adequately implement the learning process even for training
sequences with moving objects.

The number of models is limited. We use a Least Re-
cently Used algorithm to discard old models as new ones
are being learned. When a model wins a competition or is
created we put it on top of the list. When there is no more
space for a new model we replace the LRU model. In our
experiment we used 3 models per block, which is enough in
most contexts.

6. Results

We tested our system in many indoor configurations:
computer labs with much activity, corridors, and rooms with
large window. We used the Axis 200 network camera [1]
to provide the JPEG encoded image sequenced. The algo-
rithm behaved robustly, giving good foreground segmenta-
tion over full day periods.

Representative results are given in figure 2, which pro-
vides a set of snapshots of the background modelling pro-
cess for the case of an opening-closing door. The model
learns to switch quickly between the “closed” and “opened”
door background models.

Figure 2. Snapshots of the background mod-
elling process run on a scene containing an
opening and closing door. All images come
from a single sequence.

7. Conclusions

We showed that we can use the DCT coefficients of pre-
coded JPEG images to inexpensively obtain good observa-
tions on 8 x 8 blocks. We described a background subtrac-
tion algorithm that uses competing HMMs to represent the
background modef accurately over time. This algorithm in-
cludes two levels of background adaptation. The small illu-
mination variations are tracked with a steady state Kalman
filter while model switching adapts to sudden change be-
tween two learned background distributions. A learning al-
gorithm automatically creates and updates model over time
to get reliable performance in all situations. However, the
algorithm has many parameters that need to be tuned to fit
the application context. This approach is particularly well
suited for indoor automated video surveillance, due to the
nature of the scene changes encountered in such applica-
nons.
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